Download citation
Download citation
link to html
3,4-Dimeth­oxy-trans-cinnamic acid (Dmca) reacts with zinc sulfate in the presence of 4-(1H-pyrazol-3-yl)pyridine (L1) or 4,4′-bipyridine (L2) under hydro­thermal conditions to afford two mixed-ligand coordination complexes, namely tetra­kis­(μ-3,4-dimeth­oxy-trans-cinnamato-κ2O:O′)bis­[[4-(1H-pyrazol-3-yl)pyridine]­zinc(II)] hepta­hydrate, [Zn2(C11H11O4)4(C8H7N3)2]·7H2O or [Zn2(Dmca)4(L1)2]·7H2O, (I), and catena-poly[[bis­(3,4-dimeth­oxy-trans-cinnamato-κO)zinc(II)]-μ-4,4′-bipyridine-κ2N:N′], [Zn(C11H11O4)2(C10H8N2)]n or [Zn(Dmca)2(L2)]n, (II). The ZnII centres in the two compounds display different coordination polyhedra. In complex (I), the ZnII cation is five-coordinated with a pseudo-square-pyramidal geometry, while in complex (II) the ZnII cation sits on a twofold axis and adopts a distorted tetra­hedral coordination environment. Complex (I) features a centrosymmetric binuclear paddle-wheel-like structure, while complex (II) shows a chain structure. This study emphasizes the significant effect of the coordination mode of both carboxyl­ate-group and N-donor coligands on the formation of complex structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113007075/dt3018sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113007075/dt3018Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113007075/dt3018IIsup3.hkl
Contains datablock II

CCDC references: 950347; 950348

Comment top

Considerable attention has been devoted to metal–organic frameworks (MOFs) because of their potential applications as functional solid materials (Ghosh et al., 2013; Liu et al., 2010; Qin et al., 2011) and intriguing structural topologies (Zhang et al., 2011; Xu & Raymond, 2000). Although the principles of the rational design and synthesis MOFs still need to be classified, the selection of appropriate organic ligands is considered one of the most effective ways of manipulating the structure of target MOFs (Farha et al., 2010). Among the various organic ligands, carboxylate ligands, especially aromatic carboxylate ligands, are often selected as useful building blocks, due to their various coordination modes to metal cations (Mahata et al., 2013; Zhao et al., 2009) and their ability to act as both hydrogen-bond acceptors and donors to assemble intriguing supramolecular structures (Das & Bharadwaj, 2006; Weyna et al., 2012). The introduction of additional auxiliary N-donor ligands to the synthetic systems can satisfy and even mediate the coordination needs of the metal centres and consequently generate more meaningful architectures (Lan et al., 2009). Cinnamic acid and its derivatives are well known for their biological activities, such as antioxidant (Chung & Shin, 2007) and antimicrobial (Qian et al., 2012) properties, yet little attention has been paid to this system in supramolecular and materials chemistry to date, especially based on 3,4-dimethoxy-trans-cinnamic acid (Dmca; see Scheme 1) (Drew et al., 1994). In this contribution, we investigated the self-assembly reaction of Dmca with 4-(1H-pyrazol-3-yl)pyridine (L1), 4,4'-bipyridine (L2) and ZnSO4 under hydrothermal reaction conditions. Two coordination complexes, [Zn2(Dmca)4(L1)2].7H2O, (I), and [Zn(Dmca)2(L2)]n, (II), were isolated (see Scheme 2).

Complex (I) crystallizes in the monoclinic space group C2/c, with one half of a [Zn2(Dmca)4(L1)2].7H2O unit (the ZnII cation is on a centre of inversion) in the asymmetric unit. Complex (I) consists of a dinuclear paddle-wheel-type framework, wherein the pair of ZnII cations is bridged by four synsyn bidentate bridging carboxylate groups (Fig. 1). The nonbonded Zn···Zn separation of 2.9585 (6) Å is shorter than that observed in the structurally related compound [Zn2(MeCH CHCO2)4(quinoline)2] [2.976(su?) Å; Clegg et al., 1986]. Ligand L1 is coordinated to each ZnII cation along the Zn···Zn axis and thus the ZnII centre attains a square-pyramidal geometry. The Zn—O and Zn—N bond lengths (Table 1) are all within the normal ranges (Kumar et al., 2011; Olmo et al., 2006). The pyrazole group of L1 is uncoordinated, which limits the further extension of the structure.

Given the strong hydrogen-bond capability of the water molecules and the uncoordinated pyrazole groups, it is not surprising that complex (I) displays a robust hydrogen-bonding framework. The dinuclear units are linked into a one-dimensional chain-like structure extending along the crystallographic c axis via O6—H6B···O3i and O6—H6A···O9ii hydrogen bonds (Fig. 2) [symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1; (ii) x, y, z + 1]. The uncoordinated pyrazole groups act as hydrogen-bond acceptors and link the chains into a two-dimensional network in the ac plane via O3W—H3A···N3iii hydrogen bonds (Fig. 3) [symmetry code: (iii) x + 1, -y + 2, -z + 1]. These two-dimensional layers are stacked in an ···AA··· fashion, and are further linked into a three-dimensional framework via hydrongen-bonding interactions involving the solvent water molecules and Dmca ligands [O5—H5B···O7iv, O5—H5B···O8iv, O5—H5A···O2v and O5—H5A···O1vi; symmetry codes: (iv) x, -y + 1, z + 1/2; (v) -x + 1, y, -z + 3/2; (vi) x + 1/2, -y + 3/2, z + 1/2; Fig. 4].

When ligand L2 was used instead of L1 in the reaction, complex (II) was obtained. The asymmetric unit of (II) contains one crystallographically independent ZnII centre, one Dmca ligand and one half of an L2 ligand. As shown in Fig. 5, the ZnII centre possesses a distorted tetrahedral geometry, coordinated by two O atoms from the carboxylate groups and two N atoms from the L2 ligand. The Zn—O and Zn—N bond lengths [1.957 (2)–2.095 (2) Å] are comparable with those reported for complex (I). The ZnII cations are bridged by the L2 ligand to form an infinite chain structure extending along the crystallographic c axis (Fig. 6). Pairs of adjacent L2 ligands are almost perpendicular to each other [dihedral angle = 83.48 (5)°]. The carboxylate group of the Dmca ligand is monodentate, which prevents the structure from attaining a higher dimensionality. No hydrogen-bonding or ππ interactions are observed in the crystal structure of (II).

In summary, two mixed-ligand coordination complexes have been synthesized based on zinc(II), Dmca and two kinds of pyridine derivatives under hydrothermal conditions. The results show that the N-donor coligands have a significant effect on the formation of the complex structure.

Related literature top

For related literature, see: Chung & Shin (2007); Clegg et al. (1986); Das & Bharadwaj (2006); Drew et al. (1994); Farha et al. (2010); Ghosh et al. (2013); Kumar et al. (2011); Lan et al. (2009); Liu et al. (2010); Mahata et al. (2013); Olmo et al. (2006); Qian et al. (2012); Qin et al. (2011); Weyna et al. (2012); Xu & Raymond (2000); Zhang et al. (2011); Zhao et al. (2009).

Experimental top

3,4-Dimethoxy-trans-cinnamic acid (Dmca) was synthesized according to the literature method of Qian et al. (2012) (see Scheme 1). Malonic acid (10.5 g, 0.1 mol) and 3,4-dimethoxybenzaldehyde (16.6 g, 0.1 mol) in ethanol (50 ml) were added to a 500 ml round-bottomed flask fitted with a reflux condenser and thermometer. Pyridine (5 ml) was then added. The mixture was heated under reflux for 12 h and then cooled to 273 K. Colourless crystals precipitated and were separated by filtration and washed with cold water (4 × 20 ml). The product was dried at 333–343 K (yield 16.6 g, 80%; m.p. 559.8–561.0 K) and was used without further purification in the syntheses of the title metal complexes.

For the synthesis of (I), Dmca (0.1 mmol, 20.8 mg), zinc sulfate (0.05 mmol, 14.4 mg) and 4-(1H-pyrazol-3-yl)pyridine (L1; 0.1 mmol, 14.5 mg) were sealed in a Teflon-lined autoclave (10 ml) and heated at 433 K for 3 d to give colourless block-shaped crystals of (I).

Complex (II) was synthesized in an analogous manner, but using 4,4'-bipyridine (L2) instead of L1.

Refinement top

Water H atoms were located in difference Fourier maps and included as riding atoms, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). Other H atoms were placed in idealized positions and treated as riding, with C—H = 0.93 Å (CH) and Uiso(H) = 1.2Ueq(C).

The elongated displacement ellipsoids of the F atoms in the trifluoromethanesulfonate anion (OTf-) indicate possible disorder, but attempts to refine this with split F-atom positions were unsuccessful. In order to keep the OTf- anion stable in the refinement, a series of C—F [1.40 (1) Å], C—S [1.65 (2) Å] and F···F [2.20 (2) Å] distance restraints were used.

Computing details top

For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and the coordination environment around the ZnII centre. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1/2, -y + 3/2, -z + 1.] [The figure should be fully labelled. The figure quality is poor]
[Figure 2] Fig. 2. The hydrogen-bond-driven chain formed along the crystallographic c direction of (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1; (ii) x, y, z + 1.]
[Figure 3] Fig. 3. A view of the two-dimensional supramolecular sheet of (I) constructed from one-dimensional chains (highlighted by different colours in the electronic version of the paper). Hydrogen bonds are shown as dashed lines. [Symmetry code: (iii) -x + 1, -y + 2, -z + 1.]
[Figure 4] Fig. 4. A perspective view, along the c axis, of the three-dimensional hydrogen-bonded network in (I). Hydrogen bonds are shown as dashed lines. [Looks very dark and cluttered. Can fewer layers be shown?]
[Figure 5] Fig. 5. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x + 2, y, -z + 3/2.]
[Figure 6] Fig. 6. The chain structure of complex (II).
(I) Tetrakis(µ-3,4-dimethoxy-trans-cinnamato-κ2O:O')bis[[4-(1H-pyrazol-3-yl)pyridine]zinc(II)] heptahydrate top
Crystal data top
[Zn2(C11H11O4)4(C8H7N3)2]·7H2OF(000) = 2872
Mr = 1376.02Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6010 reflections
a = 25.1037 (8) Åθ = 2.7–25.5°
b = 17.2675 (8) ŵ = 0.82 mm1
c = 14.9338 (6) ÅT = 293 K
β = 90.042 (2)°Block, colourless
V = 6473.5 (4) Å30.23 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
6010 independent reflections
Radiation source: fine-focus sealed tube5030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2830
Tmin = 0.833, Tmax = 0.880k = 2020
33253 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0626P)2 + 8.0375P]
where P = (Fo2 + 2Fc2)/3
6010 reflections(Δ/σ)max = 0.002
436 parametersΔρmax = 0.74 e Å3
13 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn2(C11H11O4)4(C8H7N3)2]·7H2OV = 6473.5 (4) Å3
Mr = 1376.02Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.1037 (8) ŵ = 0.82 mm1
b = 17.2675 (8) ÅT = 293 K
c = 14.9338 (6) Å0.23 × 0.20 × 0.16 mm
β = 90.042 (2)°
Data collection top
Bruker D8 Venture Photon
diffractometer
6010 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5030 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.880Rint = 0.033
33253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04113 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.74 e Å3
6010 reflectionsΔρmin = 0.28 e Å3
436 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.58140 (10)0.75328 (14)0.8611 (2)0.0783 (8)
C10.32715 (11)0.65652 (16)0.46089 (17)0.0416 (6)
C20.36894 (11)0.59985 (16)0.43752 (18)0.0440 (6)
H20.35900.54850.42920.053*
C30.41941 (10)0.61807 (15)0.42788 (17)0.0419 (6)
H30.42810.66960.43850.050*
C40.46358 (10)0.56758 (15)0.40256 (17)0.0383 (6)
C50.45753 (10)0.48734 (15)0.39626 (17)0.0393 (6)
H50.42470.46510.40900.047*
C60.49921 (10)0.44090 (14)0.37160 (17)0.0386 (6)
C70.54889 (10)0.47401 (15)0.35110 (18)0.0413 (6)
C80.55514 (11)0.55329 (16)0.35754 (19)0.0473 (6)
H80.58790.57580.34470.057*
C90.51270 (11)0.59910 (16)0.38301 (19)0.0473 (6)
H90.51730.65240.38710.057*
C100.44772 (13)0.32548 (17)0.3772 (3)0.0635 (9)
H10A0.43500.33520.43680.095*
H10B0.45160.27070.36830.095*
H10C0.42270.34570.33460.095*
C110.63862 (12)0.4534 (2)0.3080 (3)0.0802 (12)
H11A0.63600.49070.26060.120*
H11B0.66190.41220.29000.120*
H11C0.65270.47790.36070.120*
C120.35825 (13)0.93060 (19)0.5886 (2)0.0631 (8)
H120.34360.90980.64050.076*
C130.39590 (15)0.9886 (2)0.5968 (3)0.0707 (10)
H130.40621.00580.65330.085*
C140.41826 (11)1.02102 (16)0.5211 (2)0.0544 (8)
C150.40035 (13)0.99383 (19)0.4398 (3)0.0629 (8)
H150.41351.01500.38700.075*
C160.36291 (13)0.93516 (18)0.4364 (2)0.0580 (8)
H160.35180.91720.38080.070*
C170.45941 (12)1.08121 (17)0.5285 (3)0.0618 (9)
N30.48003 (11)1.11337 (16)0.4546 (3)0.0792 (9)
N20.51663 (12)1.16377 (17)0.4867 (3)0.0889 (12)
H2N0.53621.19250.45320.107*
C200.23439 (11)0.77561 (16)0.33199 (18)0.0436 (6)
C210.22632 (11)0.79081 (18)0.23574 (18)0.0473 (6)
H210.24550.83130.21020.057*
C220.19432 (12)0.75171 (17)0.18372 (19)0.0496 (7)
H220.17580.71110.21010.060*
C230.18448 (11)0.76485 (17)0.08839 (18)0.0468 (6)
C240.15298 (12)0.71382 (18)0.0408 (2)0.0534 (7)
H240.13830.67130.07000.064*
C250.14273 (12)0.72470 (18)0.05071 (19)0.0517 (7)
H250.12130.68970.08130.062*
C260.16406 (11)0.78635 (16)0.09488 (17)0.0425 (6)
C270.19627 (11)0.83883 (16)0.04645 (18)0.0448 (6)
C280.20587 (12)0.82744 (16)0.04350 (19)0.0471 (6)
H280.22710.86250.07450.056*
C290.24901 (15)0.9534 (2)0.0511 (2)0.0715 (10)
H29A0.22970.97540.00180.107*
H29B0.25890.99370.09210.107*
H29C0.28050.92820.02920.107*
C300.12583 (15)0.7519 (2)0.2349 (2)0.0719 (10)
H30A0.14080.70090.23110.108*
H30B0.12570.76860.29630.108*
H30C0.09000.75120.21260.108*
H5A0.6129 (8)0.749 (2)0.880 (3)0.086*
H6A0.2380 (17)0.922 (2)0.7727 (12)0.086*
H5B0.5664 (13)0.7097 (14)0.860 (3)0.086*
H6B0.2392 (17)0.9035 (17)0.6801 (17)0.086*
N10.34200 (8)0.90327 (12)0.51022 (15)0.0419 (5)
C180.48261 (15)1.1115 (2)0.6057 (3)0.0804 (11)
H180.47481.09840.66470.097*
C190.51897 (17)1.1640 (2)0.5769 (4)0.0929 (15)
H190.54121.19420.61240.111*
O10.20728 (10)0.72376 (13)0.36834 (13)0.0652 (6)
O20.34037 (8)0.72572 (12)0.47361 (16)0.0621 (6)
O30.28029 (8)0.63211 (12)0.46419 (16)0.0591 (5)
O40.26762 (9)0.81782 (13)0.37178 (13)0.0570 (5)
O60.23775 (16)0.9384 (2)0.7179 (2)0.1125 (11)
O70.58735 (7)0.42290 (11)0.32691 (14)0.0533 (5)
O80.49778 (8)0.36230 (11)0.36520 (15)0.0559 (5)
O90.21647 (9)0.89884 (13)0.09573 (14)0.0622 (6)
O100.15731 (9)0.80455 (13)0.18233 (14)0.0593 (6)
Zn10.289143 (11)0.814009 (16)0.502212 (19)0.03508 (11)
O1W0.6926 (3)0.9436 (4)0.2585 (5)0.120 (2)0.50
O2W0.5701 (4)0.8765 (4)0.7276 (4)0.205 (4)0.70
O3W0.50000.9583 (6)0.75000.192 (5)0.60
H2A0.55000.87520.68380.288*0.70
H2B0.58050.83490.75240.288*0.70
H1B0.71800.95870.29420.288*0.50
H3A0.50070.94610.69350.288*0.60
H1A0.71040.91870.21800.288*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0521 (14)0.0501 (13)0.133 (2)0.0032 (11)0.0171 (14)0.0116 (15)
C10.0405 (15)0.0417 (15)0.0427 (14)0.0097 (12)0.0015 (11)0.0017 (12)
C20.0425 (15)0.0361 (14)0.0534 (16)0.0082 (11)0.0039 (12)0.0031 (12)
C30.0433 (15)0.0334 (13)0.0489 (15)0.0064 (11)0.0034 (11)0.0015 (11)
C40.0361 (13)0.0376 (13)0.0413 (14)0.0055 (10)0.0012 (10)0.0007 (11)
C50.0322 (13)0.0377 (13)0.0482 (15)0.0003 (10)0.0036 (10)0.0016 (11)
C60.0385 (14)0.0335 (13)0.0438 (14)0.0024 (10)0.0013 (11)0.0005 (11)
C70.0350 (13)0.0438 (14)0.0451 (14)0.0051 (11)0.0022 (11)0.0017 (12)
C80.0363 (14)0.0449 (15)0.0606 (17)0.0054 (12)0.0094 (12)0.0001 (13)
C90.0456 (15)0.0336 (13)0.0626 (18)0.0014 (12)0.0070 (13)0.0010 (12)
C100.0519 (18)0.0382 (16)0.101 (3)0.0079 (13)0.0038 (17)0.0019 (16)
C110.0361 (17)0.070 (2)0.134 (4)0.0047 (16)0.0205 (19)0.018 (2)
C120.0589 (19)0.063 (2)0.067 (2)0.0174 (16)0.0027 (15)0.0026 (17)
C130.069 (2)0.063 (2)0.081 (2)0.0185 (18)0.0074 (18)0.0092 (18)
C140.0355 (15)0.0388 (15)0.089 (2)0.0022 (12)0.0021 (15)0.0017 (15)
C150.0536 (19)0.0517 (18)0.083 (2)0.0076 (15)0.0086 (16)0.0115 (17)
C160.0519 (18)0.0559 (18)0.0663 (19)0.0084 (14)0.0002 (15)0.0036 (16)
C170.0408 (16)0.0354 (15)0.109 (3)0.0034 (12)0.0036 (17)0.0022 (17)
N30.0514 (16)0.0472 (16)0.139 (3)0.0091 (13)0.0068 (17)0.0137 (18)
N20.0489 (17)0.0430 (16)0.175 (4)0.0115 (13)0.012 (2)0.017 (2)
C200.0426 (15)0.0456 (15)0.0425 (14)0.0099 (12)0.0014 (12)0.0002 (12)
C210.0459 (16)0.0538 (16)0.0422 (15)0.0012 (13)0.0002 (12)0.0065 (13)
C220.0516 (16)0.0497 (16)0.0474 (16)0.0051 (13)0.0050 (13)0.0064 (13)
C230.0431 (15)0.0504 (16)0.0469 (15)0.0044 (12)0.0017 (12)0.0002 (13)
C240.0548 (18)0.0519 (17)0.0535 (17)0.0051 (14)0.0011 (14)0.0041 (14)
C250.0506 (17)0.0529 (17)0.0516 (17)0.0057 (13)0.0032 (13)0.0024 (14)
C260.0399 (14)0.0483 (15)0.0392 (14)0.0056 (12)0.0015 (11)0.0041 (12)
C270.0450 (15)0.0437 (15)0.0458 (15)0.0036 (12)0.0002 (12)0.0048 (12)
C280.0468 (16)0.0464 (16)0.0480 (16)0.0034 (12)0.0020 (12)0.0002 (13)
C290.082 (2)0.058 (2)0.074 (2)0.0167 (18)0.0153 (19)0.0047 (17)
C300.074 (2)0.082 (2)0.059 (2)0.012 (2)0.0113 (17)0.0028 (18)
N10.0321 (11)0.0359 (11)0.0576 (14)0.0001 (9)0.0002 (10)0.0006 (10)
C180.058 (2)0.059 (2)0.124 (3)0.0099 (18)0.014 (2)0.010 (2)
C190.064 (3)0.052 (2)0.163 (5)0.0095 (18)0.030 (3)0.004 (3)
O10.0890 (17)0.0639 (14)0.0426 (11)0.0219 (13)0.0107 (11)0.0135 (10)
O20.0439 (12)0.0426 (12)0.0998 (17)0.0127 (9)0.0025 (11)0.0116 (11)
O30.0398 (11)0.0482 (12)0.0895 (16)0.0071 (9)0.0144 (10)0.0078 (11)
O40.0547 (13)0.0740 (15)0.0422 (11)0.0113 (11)0.0065 (9)0.0036 (10)
O60.133 (3)0.119 (3)0.086 (2)0.003 (2)0.018 (2)0.033 (2)
O70.0349 (10)0.0469 (11)0.0780 (14)0.0056 (8)0.0110 (9)0.0082 (10)
O80.0410 (11)0.0344 (10)0.0922 (16)0.0009 (8)0.0063 (10)0.0055 (10)
O90.0728 (15)0.0572 (13)0.0565 (12)0.0167 (11)0.0091 (10)0.0085 (10)
O100.0642 (14)0.0653 (14)0.0483 (12)0.0053 (11)0.0059 (10)0.0026 (10)
Zn10.03140 (17)0.03075 (17)0.04309 (19)0.00042 (11)0.00039 (12)0.00036 (12)
O1W0.131 (6)0.092 (5)0.136 (6)0.004 (4)0.013 (5)0.023 (4)
O2W0.347 (12)0.149 (6)0.118 (5)0.088 (7)0.044 (6)0.015 (4)
O3W0.253 (15)0.155 (10)0.168 (10)0.0000.094 (10)0.000
Geometric parameters (Å, º) top
O5—H5A0.845 (18)C20—O41.257 (3)
O5—H5B0.840 (18)C20—C211.475 (4)
C1—O31.251 (3)C21—C221.305 (4)
C1—O21.255 (3)C21—H210.9300
C1—C21.476 (4)C22—C231.462 (4)
C2—C31.314 (4)C22—H220.9300
C2—H20.9300C23—C241.381 (4)
C3—C41.460 (3)C23—C281.381 (4)
C3—H30.9300C24—C251.403 (4)
C4—C91.379 (4)C24—H240.9300
C4—C51.397 (4)C25—C261.362 (4)
C5—C61.369 (3)C25—H250.9300
C5—H50.9300C26—O101.354 (3)
C6—O81.361 (3)C26—C271.413 (4)
C6—C71.406 (4)C27—O91.369 (3)
C7—O71.357 (3)C27—C281.379 (4)
C7—C81.381 (4)C28—H280.9300
C8—C91.381 (4)C29—O91.413 (4)
C8—H80.9300C29—H29A0.9600
C9—H90.9300C29—H29B0.9600
C10—O81.420 (4)C29—H29C0.9600
C10—H10A0.9600C30—O101.437 (4)
C10—H10B0.9600C30—H30A0.9600
C10—H10C0.9600C30—H30B0.9600
C11—O71.419 (4)C30—H30C0.9600
C11—H11A0.9600N1—Zn12.037 (2)
C11—H11B0.9600C18—C191.357 (6)
C11—H11C0.9600C18—H180.9300
C12—N11.326 (4)C19—H190.9300
C12—C131.383 (4)O1—Zn1i2.042 (2)
C12—H120.9300O2—Zn12.0399 (19)
C13—C141.381 (5)O3—Zn1i2.0389 (19)
C13—H130.9300O4—Zn12.022 (2)
C14—C151.376 (5)O6—H6A0.868 (18)
C14—C171.469 (4)O6—H6B0.826 (18)
C15—C161.383 (4)Zn1—O3i2.0389 (19)
C15—H150.9300Zn1—O1i2.042 (2)
C16—N11.339 (4)Zn1—Zn1i2.9585 (5)
C16—H160.9300O1W—H1B0.8712
C17—N31.339 (5)O1W—H1A0.8671
C17—C181.393 (5)O2W—H2A0.8261
N3—N21.353 (4)O2W—H2B0.8498
N2—C191.349 (6)O3W—H3A0.8695
N2—H2N0.8600O3W—H3A0.8695
C20—O11.249 (3)
H5A—O5—H5B111 (3)C21—C22—C23127.1 (3)
O3—C1—O2124.3 (2)C21—C22—H22116.5
O3—C1—C2117.0 (2)C23—C22—H22116.5
O2—C1—C2118.6 (2)C24—C23—C28118.2 (3)
C3—C2—C1123.6 (3)C24—C23—C22119.9 (3)
C3—C2—H2118.2C28—C23—C22121.9 (3)
C1—C2—H2118.2C23—C24—C25121.4 (3)
C2—C3—C4128.2 (3)C23—C24—H24119.3
C2—C3—H3115.9C25—C24—H24119.3
C4—C3—H3115.9C26—C25—C24120.3 (3)
C9—C4—C5118.3 (2)C26—C25—H25119.9
C9—C4—C3119.9 (2)C24—C25—H25119.9
C5—C4—C3121.8 (2)O10—C26—C25126.8 (3)
C6—C5—C4121.1 (2)O10—C26—C27114.6 (2)
C6—C5—H5119.5C25—C26—C27118.6 (2)
C4—C5—H5119.5O9—C27—C28124.6 (3)
O8—C6—C5125.7 (2)O9—C27—C26115.0 (2)
O8—C6—C7114.4 (2)C28—C27—C26120.4 (3)
C5—C6—C7119.9 (2)C27—C28—C23121.1 (3)
O7—C7—C8125.6 (2)C27—C28—H28119.4
O7—C7—C6115.1 (2)C23—C28—H28119.4
C8—C7—C6119.2 (2)O9—C29—H29A109.5
C9—C8—C7120.0 (2)O9—C29—H29B109.5
C9—C8—H8120.0H29A—C29—H29B109.5
C7—C8—H8120.0O9—C29—H29C109.5
C4—C9—C8121.5 (2)H29A—C29—H29C109.5
C4—C9—H9119.3H29B—C29—H29C109.5
C8—C9—H9119.3O10—C30—H30A109.5
O8—C10—H10A109.5O10—C30—H30B109.5
O8—C10—H10B109.5H30A—C30—H30B109.5
H10A—C10—H10B109.5O10—C30—H30C109.5
O8—C10—H10C109.5H30A—C30—H30C109.5
H10A—C10—H10C109.5H30B—C30—H30C109.5
H10B—C10—H10C109.5C12—N1—C16117.3 (3)
O7—C11—H11A109.5C12—N1—Zn1121.4 (2)
O7—C11—H11B109.5C16—N1—Zn1121.2 (2)
H11A—C11—H11B109.5C19—C18—C17105.6 (4)
O7—C11—H11C109.5C19—C18—H18127.2
H11A—C11—H11C109.5C17—C18—H18127.2
H11B—C11—H11C109.5N2—C19—C18106.6 (4)
N1—C12—C13123.1 (3)N2—C19—H19126.7
N1—C12—H12118.4C18—C19—H19126.7
C13—C12—H12118.4C20—O1—Zn1i128.08 (19)
C14—C13—C12119.9 (3)C1—O2—Zn1125.23 (18)
C14—C13—H13120.0C1—O3—Zn1i131.32 (19)
C12—C13—H13120.0C20—O4—Zn1127.83 (19)
C15—C14—C13116.8 (3)H6A—O6—H6B113 (3)
C15—C14—C17122.5 (3)C7—O7—C11117.2 (2)
C13—C14—C17120.7 (3)C6—O8—C10117.4 (2)
C14—C15—C16120.3 (3)C27—O9—C29117.8 (2)
C14—C15—H15119.9C26—O10—C30116.7 (2)
C16—C15—H15119.9O4—Zn1—N1101.86 (9)
N1—C16—C15122.5 (3)O4—Zn1—O3i89.68 (9)
N1—C16—H16118.7N1—Zn1—O3i101.37 (8)
C15—C16—H16118.7O4—Zn1—O289.46 (9)
N3—C17—C18111.4 (3)N1—Zn1—O299.62 (9)
N3—C17—C14120.2 (3)O3i—Zn1—O2158.71 (9)
C18—C17—C14128.4 (4)O4—Zn1—O1i159.04 (9)
C17—N3—N2103.8 (4)N1—Zn1—O1i99.08 (9)
C19—N2—N3112.6 (4)O3i—Zn1—O1i87.12 (10)
C19—N2—H2N123.7O2—Zn1—O1i86.12 (10)
N3—N2—H2N123.7O4—Zn1—Zn1i79.97 (6)
O1—C20—O4124.9 (3)N1—Zn1—Zn1i177.72 (7)
O1—C20—C21118.5 (3)O3i—Zn1—Zn1i77.20 (6)
O4—C20—C21116.6 (3)O2—Zn1—Zn1i81.71 (6)
C22—C21—C20124.9 (3)O1i—Zn1—Zn1i79.12 (6)
C22—C21—H21117.6H1B—O1W—H1A101.4
C20—C21—H21117.6H2A—O2W—H2B120.5
O3—C1—C2—C3177.0 (3)C26—C27—C28—C230.1 (4)
O2—C1—C2—C31.1 (4)C24—C23—C28—C270.2 (4)
C1—C2—C3—C4178.1 (2)C22—C23—C28—C27179.8 (3)
C2—C3—C4—C9170.5 (3)C13—C12—N1—C161.2 (5)
C2—C3—C4—C58.6 (4)C13—C12—N1—Zn1176.9 (3)
C9—C4—C5—C60.2 (4)C15—C16—N1—C120.6 (5)
C3—C4—C5—C6179.4 (2)C15—C16—N1—Zn1177.5 (2)
C4—C5—C6—O8178.6 (3)N3—C17—C18—C190.2 (4)
C4—C5—C6—C70.8 (4)C14—C17—C18—C19178.7 (3)
O8—C6—C7—O70.9 (3)N3—N2—C19—C180.2 (5)
C5—C6—C7—O7179.6 (2)C17—C18—C19—N20.0 (4)
O8—C6—C7—C8178.5 (3)O4—C20—O1—Zn1i4.3 (4)
C5—C6—C7—C81.0 (4)C21—C20—O1—Zn1i177.4 (2)
O7—C7—C8—C9180.0 (3)O3—C1—O2—Zn10.1 (4)
C6—C7—C8—C90.6 (4)C2—C1—O2—Zn1177.81 (18)
C5—C4—C9—C80.2 (4)O2—C1—O3—Zn1i4.9 (4)
C3—C4—C9—C8179.0 (3)C2—C1—O3—Zn1i177.15 (19)
C7—C8—C9—C40.1 (4)O1—C20—O4—Zn11.9 (4)
N1—C12—C13—C140.2 (6)C21—C20—O4—Zn1179.85 (18)
C12—C13—C14—C151.3 (5)C8—C7—O7—C111.1 (4)
C12—C13—C14—C17178.3 (3)C6—C7—O7—C11178.3 (3)
C13—C14—C15—C161.9 (5)C5—C6—O8—C106.0 (4)
C17—C14—C15—C16177.7 (3)C7—C6—O8—C10174.6 (3)
C14—C15—C16—N11.0 (5)C28—C27—O9—C290.7 (4)
C15—C14—C17—N31.8 (4)C26—C27—O9—C29180.0 (3)
C13—C14—C17—N3178.6 (3)C25—C26—O10—C302.3 (4)
C15—C14—C17—C18177.1 (3)C27—C26—O10—C30178.6 (3)
C13—C14—C17—C182.5 (5)C20—O4—Zn1—N1178.2 (2)
C18—C17—N3—N20.3 (4)C20—O4—Zn1—O3i76.6 (2)
C14—C17—N3—N2178.7 (3)C20—O4—Zn1—O282.1 (2)
C17—N3—N2—C190.3 (4)C20—O4—Zn1—O1i4.5 (4)
O1—C20—C21—C223.1 (4)C20—O4—Zn1—Zn1i0.4 (2)
O4—C20—C21—C22178.5 (3)C12—N1—Zn1—O4166.8 (2)
C20—C21—C22—C23179.3 (3)C16—N1—Zn1—O415.1 (2)
C21—C22—C23—C24174.1 (3)C12—N1—Zn1—O3i74.8 (2)
C21—C22—C23—C285.9 (5)C16—N1—Zn1—O3i107.2 (2)
C28—C23—C24—C250.0 (4)C12—N1—Zn1—O2101.7 (2)
C22—C23—C24—C25180.0 (3)C16—N1—Zn1—O276.3 (2)
C23—C24—C25—C260.3 (5)C12—N1—Zn1—O1i14.1 (2)
C24—C25—C26—O10179.4 (3)C16—N1—Zn1—O1i163.9 (2)
C24—C25—C26—C270.3 (4)C1—O2—Zn1—O477.3 (2)
O10—C26—C27—O91.3 (4)C1—O2—Zn1—N1179.2 (2)
C25—C26—C27—O9179.6 (3)C1—O2—Zn1—O3i10.5 (4)
O10—C26—C27—C28179.3 (2)C1—O2—Zn1—O1i82.2 (2)
C25—C26—C27—C280.2 (4)C1—O2—Zn1—Zn1i2.7 (2)
O9—C27—C28—C23179.3 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···N3ii0.872.493.336 (5)165
O5—H5B···O8iii0.84 (2)2.12 (2)2.897 (3)152 (4)
O6—H6A···O9iv0.86 (2)2.10 (2)2.916 (4)163 (4)
O6—H6B···O3i0.83 (2)2.28 (2)3.011 (4)147 (3)
O5—H5A···O1v0.84 (2)2.42 (2)3.186 (4)152 (3)
O5—H5A···O2vi0.84 (2)2.52 (3)3.189 (4)137 (3)
O5—H5B···O7iii0.84 (2)2.40 (3)3.088 (3)139 (3)
O1W—H1A···O4vii0.872.273.083 (8)157
O1W—H1B···O6ii0.872.102.708 (8)126
O2W—H2A···N3ii0.832.213.002 (8)161
O2W—H2B···O50.852.152.929 (7152
N2—H2N···O5viii0.862.012.867 (5)171
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1/2; (iv) x, y, z+1; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y, z+3/2; (vii) x+1, y, z+1/2; (viii) x, y+2, z1/2.
(II) catena-Poly[[bis(3,4-dimethoxy-trans-cinnamato-κO)zinc(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Zn(C11H11O4)2(C10H8N2)]F(000) = 1320
Mr = 635.97Dx = 1.492 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2804 reflections
a = 26.6175 (11) Åθ = 2.3–26.1°
b = 6.0635 (3) ŵ = 0.93 mm1
c = 18.7796 (9) ÅT = 293 K
β = 110.954 (2)°Block, colourless
V = 2830.5 (2) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker D8 Venture Photon
diffractometer
2804 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3231
Tmin = 0.801, Tmax = 0.847k = 67
15758 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0521P)2 + 5.2961P]
where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.82 e Å3
13 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Zn(C11H11O4)2(C10H8N2)]V = 2830.5 (2) Å3
Mr = 635.97Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.6175 (11) ŵ = 0.93 mm1
b = 6.0635 (3) ÅT = 293 K
c = 18.7796 (9) Å0.24 × 0.20 × 0.18 mm
β = 110.954 (2)°
Data collection top
Bruker D8 Venture Photon
diffractometer
2804 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2473 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.847Rint = 0.033
15758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03913 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
2804 reflectionsΔρmin = 0.58 e Å3
197 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70862 (10)1.2295 (4)0.63512 (14)0.0324 (5)
C21.00075 (10)0.0676 (4)0.96740 (14)0.0310 (5)
C30.75587 (10)1.1146 (4)0.65099 (15)0.0333 (6)
H30.76110.98450.67900.040*
C40.91399 (11)0.7744 (5)0.68978 (17)0.0431 (6)
C50.79649 (10)1.1908 (4)0.62552 (15)0.0340 (6)
C60.84658 (11)1.0676 (5)0.64012 (16)0.0379 (6)
H60.87001.12500.61820.045*
C70.70055 (11)1.4278 (5)0.59293 (15)0.0352 (6)
C80.86246 (11)0.8876 (5)0.67996 (16)0.0403 (6)
H80.84030.82700.70350.048*
C90.63889 (14)1.7147 (5)0.53058 (19)0.0532 (8)
H9A0.66631.82560.54910.080*
H9B0.60501.77400.52870.080*
H9C0.63631.66970.48040.080*
C100.96471 (12)0.0337 (5)0.89359 (16)0.0414 (7)
H100.93840.07480.88410.050*
C110.78791 (12)1.3861 (5)0.58533 (17)0.0435 (7)
H110.81461.44040.56890.052*
C121.03855 (13)0.2323 (5)0.97580 (16)0.0491 (8)
H121.06380.26261.02380.059*
C131.03899 (12)0.3512 (5)0.91370 (16)0.0477 (7)
H131.06500.45990.92130.057*
C140.96792 (12)0.1606 (5)0.83463 (15)0.0430 (7)
H140.94330.13390.78590.052*
C150.74044 (13)1.5033 (5)0.56893 (18)0.0437 (7)
H150.73561.63410.54140.052*
C160.67560 (13)0.9839 (5)0.70686 (19)0.0455 (7)
H16A0.68240.85430.68230.068*
H16B0.64430.96060.72000.068*
H16C0.70611.01320.75230.068*
N11.00409 (8)0.3189 (4)0.84324 (12)0.0320 (5)
O10.92764 (9)0.6198 (4)0.73752 (14)0.0585 (6)
O20.94172 (9)0.8319 (4)0.65310 (14)0.0574 (5)
O30.66668 (8)1.1677 (3)0.65616 (12)0.0438 (5)
O40.65248 (9)1.5292 (3)0.58049 (13)0.0460 (5)
Zn11.00000.51729 (7)0.75000.02977 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (13)0.0318 (13)0.0320 (13)0.0002 (11)0.0125 (11)0.0015 (11)
C20.0304 (13)0.0333 (13)0.0286 (13)0.0009 (11)0.0097 (10)0.0002 (11)
C30.0366 (14)0.0282 (12)0.0346 (13)0.0035 (11)0.0120 (11)0.0020 (11)
C40.0381 (12)0.0457 (13)0.0468 (13)0.0033 (11)0.0168 (10)0.0058 (11)
C50.0342 (13)0.0342 (13)0.0334 (13)0.0001 (11)0.0119 (11)0.0046 (11)
C60.0360 (14)0.0371 (14)0.0453 (16)0.0038 (12)0.0202 (12)0.0055 (12)
C70.0378 (14)0.0327 (13)0.0329 (14)0.0049 (11)0.0101 (11)0.0007 (11)
C80.0310 (13)0.0482 (16)0.0430 (15)0.0029 (13)0.0147 (12)0.0034 (13)
C90.0604 (19)0.0442 (17)0.0511 (18)0.0173 (15)0.0154 (15)0.0138 (14)
C100.0419 (15)0.0478 (16)0.0314 (14)0.0165 (13)0.0094 (12)0.0000 (12)
C110.0491 (17)0.0405 (15)0.0495 (17)0.0017 (13)0.0283 (14)0.0056 (13)
C120.0541 (18)0.0519 (18)0.0289 (14)0.0205 (15)0.0002 (12)0.0008 (13)
C130.0486 (17)0.0479 (17)0.0375 (15)0.0195 (14)0.0043 (13)0.0044 (13)
C140.0444 (16)0.0516 (17)0.0266 (13)0.0138 (14)0.0049 (11)0.0016 (12)
C150.0536 (18)0.0347 (15)0.0472 (17)0.0060 (13)0.0234 (14)0.0102 (12)
C160.0523 (18)0.0419 (16)0.0504 (17)0.0026 (13)0.0283 (15)0.0089 (13)
N10.0328 (11)0.0337 (11)0.0284 (11)0.0004 (9)0.0095 (9)0.0015 (9)
O10.0434 (12)0.0704 (16)0.0682 (15)0.0215 (12)0.0279 (11)0.0250 (13)
O20.0530 (9)0.0602 (9)0.0654 (9)0.0030 (7)0.0290 (7)0.0025 (8)
O30.0385 (10)0.0429 (11)0.0556 (12)0.0069 (9)0.0237 (9)0.0138 (9)
O40.0424 (11)0.0408 (11)0.0543 (13)0.0134 (9)0.0166 (10)0.0149 (9)
Zn10.0253 (2)0.0360 (3)0.0288 (2)0.0000.01061 (16)0.000
Geometric parameters (Å, º) top
C1—O31.363 (3)C9—H9C0.9600
C1—C31.374 (4)C10—C141.376 (4)
C1—C71.414 (4)C10—H100.9300
C2—C121.386 (4)C11—C151.385 (4)
C2—C101.390 (4)C11—H110.9300
C2—C2i1.486 (5)C12—C131.375 (4)
C3—C51.408 (4)C12—H120.9300
C3—H30.9300C13—N11.332 (3)
C4—O21.227 (4)C13—H130.9300
C4—O11.258 (4)C14—N11.328 (3)
C4—C81.485 (4)C14—H140.9300
C5—C111.379 (4)C15—H150.9300
C5—C61.466 (4)C16—O31.430 (3)
C6—C81.305 (4)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—O41.362 (4)C16—H16C0.9600
C7—C151.372 (4)N1—Zn12.095 (2)
C8—H80.9300O1—Zn11.957 (2)
C9—O41.426 (3)Zn1—O1ii1.957 (2)
C9—H9A0.9600Zn1—N1ii2.095 (2)
C9—H9B0.9600
O3—C1—C3125.4 (2)C5—C11—C15121.5 (3)
O3—C1—C7114.8 (2)C5—C11—H11119.3
C3—C1—C7119.8 (2)C15—C11—H11119.3
C12—C2—C10115.7 (2)C13—C12—C2120.5 (3)
C12—C2—C2i122.4 (3)C13—C12—H12119.8
C10—C2—C2i121.9 (3)C2—C12—H12119.8
C1—C3—C5121.0 (2)N1—C13—C12123.4 (3)
C1—C3—H3119.5N1—C13—H13118.3
C5—C3—H3119.5C12—C13—H13118.3
O2—C4—O1122.2 (3)N1—C14—C10123.9 (2)
O2—C4—C8120.9 (3)N1—C14—H14118.1
O1—C4—C8116.9 (3)C10—C14—H14118.1
C11—C5—C3118.1 (2)C7—C15—C11120.5 (3)
C11—C5—C6120.1 (3)C7—C15—H15119.7
C3—C5—C6121.8 (2)C11—C15—H15119.7
C8—C6—C5128.3 (3)O3—C16—H16A109.5
C8—C6—H6115.9O3—C16—H16B109.5
C5—C6—H6115.9H16A—C16—H16B109.5
O4—C7—C15125.7 (3)O3—C16—H16C109.5
O4—C7—C1115.2 (2)H16A—C16—H16C109.5
C15—C7—C1119.2 (3)H16B—C16—H16C109.5
C6—C8—C4123.6 (3)C14—N1—C13116.4 (2)
C6—C8—H8118.2C14—N1—Zn1119.64 (17)
C4—C8—H8118.2C13—N1—Zn1123.73 (19)
O4—C9—H9A109.5C4—O1—Zn1110.08 (19)
O4—C9—H9B109.5C1—O3—C16116.7 (2)
H9A—C9—H9B109.5C7—O4—C9118.1 (2)
O4—C9—H9C109.5O1ii—Zn1—O1142.94 (16)
H9A—C9—H9C109.5O1ii—Zn1—N1ii92.13 (9)
H9B—C9—H9C109.5O1—Zn1—N1ii109.13 (10)
C14—C10—C2120.0 (3)O1ii—Zn1—N1109.13 (10)
C14—C10—H10120.0O1—Zn1—N192.13 (9)
C2—C10—H10120.0N1ii—Zn1—N1109.91 (12)
O3—C1—C3—C5178.9 (2)C1—C7—C15—C110.4 (4)
C7—C1—C3—C50.3 (4)C5—C11—C15—C70.4 (5)
C1—C3—C5—C111.1 (4)C10—C14—N1—C130.6 (5)
C1—C3—C5—C6178.4 (2)C10—C14—N1—Zn1174.7 (2)
C11—C5—C6—C8176.3 (3)C12—C13—N1—C140.7 (5)
C3—C5—C6—C84.3 (5)C12—C13—N1—Zn1174.3 (3)
O3—C1—C7—O40.9 (3)O2—C4—O1—Zn16.0 (4)
C3—C1—C7—O4179.8 (2)C8—C4—O1—Zn1173.5 (2)
O3—C1—C7—C15179.8 (3)C3—C1—O3—C168.3 (4)
C3—C1—C7—C150.5 (4)C7—C1—O3—C16172.4 (2)
C5—C6—C8—C4178.9 (3)C15—C7—O4—C98.3 (4)
O2—C4—C8—C68.5 (5)C1—C7—O4—C9172.4 (2)
O1—C4—C8—C6170.9 (3)C4—O1—Zn1—O1ii44.4 (2)
C12—C2—C10—C140.3 (4)C4—O1—Zn1—N1ii77.3 (2)
C2i—C2—C10—C14179.1 (3)C4—O1—Zn1—N1170.8 (2)
C3—C5—C11—C151.2 (4)C14—N1—Zn1—O1ii151.6 (2)
C6—C5—C11—C15178.3 (3)C13—N1—Zn1—O1ii33.5 (3)
C10—C2—C12—C130.1 (5)C14—N1—Zn1—O159.3 (2)
C2i—C2—C12—C13179.0 (3)C13—N1—Zn1—O1115.6 (3)
C2—C12—C13—N10.4 (5)C14—N1—Zn1—N1ii51.9 (2)
C2—C10—C14—N10.1 (5)C13—N1—Zn1—N1ii133.2 (3)
O4—C7—C15—C11179.7 (3)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn2(C11H11O4)4(C8H7N3)2]·7H2O[Zn(C11H11O4)2(C10H8N2)]
Mr1376.02635.97
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)25.1037 (8), 17.2675 (8), 14.9338 (6)26.6175 (11), 6.0635 (3), 18.7796 (9)
β (°) 90.042 (2) 110.954 (2)
V3)6473.5 (4)2830.5 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.820.93
Crystal size (mm)0.23 × 0.20 × 0.160.24 × 0.20 × 0.18
Data collection
DiffractometerBruker D8 Venture Photon
diffractometer
Bruker D8 Venture Photon
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.833, 0.8800.801, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
33253, 6010, 5030 15758, 2804, 2473
Rint0.0330.033
(sin θ/λ)max1)0.6060.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.05 0.039, 0.105, 1.05
No. of reflections60102804
No. of parameters436197
No. of restraints1313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.280.82, 0.58

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) for (I) top
N1—Zn12.037 (2)O3—Zn1i2.0389 (19)
O1—Zn1i2.042 (2)O4—Zn12.022 (2)
O2—Zn12.0399 (19)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···N3ii0.872.493.336 (5)165.3
O5—H5B···O8iii0.843 (18)2.12 (2)2.897 (3)152 (4)
O6—H6A···O9iv0.862 (18)2.10 (2)2.916 (4)163 (4)
O6—H6B···O3i0.832 (18)2.28 (2)3.011 (4)147 (3)
O5—H5A···O1v0.844 (18)2.42 (2)3.186 (4)152 (3)
O5—H5A···O2vi0.844 (18)2.52 (3)3.189 (4)137 (3)
O5—H5B···O7iii0.843 (18)2.40 (3)3.088 (3)139 (3)
O1W—H1A···O4vii0.872.273.083 (8)157
O1W—H1B···O6ii0.872.102.708 (8)126
O2W—H2A···N3ii0.832.213.002 (8)161
O2W—H2B···O50.852.152.929(7152
N2—H2N···O5viii0.862.012.867 (5)171
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1/2; (iv) x, y, z+1; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y, z+3/2; (vii) x+1, y, z+1/2; (viii) x, y+2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds