Download citation
Download citation
link to html
The title compound, {[Cd4(C5H2N2O4)(C5HN2O4)2(C10H8N2)2(H2O)]·2H2O}n, crystallized in the monoclinic space group P21/n and displays a three-dimensional architecture. The asymmetric unit is composed of four crystallographically independent CdII centres, two triply deprotonated pyrazole-3,5-dicarb­oxy­lic acid mol­ecules, one doubly deprotonated pyrazole-3,5-dicarb­oxy­lic acid mol­ecule, two 2,2′-bipyridine ligands, one coordinated water mol­ecule and two inter­stitial water mol­ecules. Inter­estingly, the CdII centers exhibit two different coordination numbers. Two CdII centres adopt a distorted octa­hedral arrangement and a third a trigonal–prismatic geometry, though they are all hexa­coordinated. However, the fourth CdII center is hepta­coordinated and displays a penta­gonal–bipyramidal geometry. The three anionic ligands adopt μ3-, μ4- and μ5-bridging modes, first linking CdII centers into a one-dimensional wave-like band, then into a wave-like layer and finally into a three-dimensional coordination framework, which is stabilized by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112005525/dt3011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112005525/dt3011Isup2.hkl
Contains datablock I

CCDC reference: 873881

Comment top

The assembly of metal–organic frameworks (MOFs) has attracted much attention due not only to their potential applications in gas adsorption, photochemical areas, magnetism and catalysis, but also to their intriguing topologies (Ferey et al., 2005). However, one of the biggest challenges is how to rationally design new materials and construct the related frameworks with desired structures and properties. In this regard, self-assembly of the organic ligands containing N- and/or O-donor atoms as building blocks, especially polycarboxylic acids, and transition metal ions under hydrothermal conditions, has been documented to be one of the most efficient and fruitful methods (Zhao et al., 2011). Up to now, a variety of MOFs with one-, two- and three-dimensional structures have been constructed by assembling transition metals and polycarboxylic acids such as benzene-1,3,5-tricarboxylate acid, benzene-1,4-bicarboxylate acid, and so on, due to their rigidity as building blocks and the variety of their coordination modes (Dincã & Long, 2008; Tong et al., 2011; Li et al., 1998). Recently, pyrazole-3,5-dicarboxylic acid has been employed to assemble MOFs because it is an intriguing multidentate ligand with two nitrogen donors from the corresponding pyrazole ring and two carboxylate groups as coordination sites (Pan, Huang & Li, 2000; Pan, Huang, Li, Wu et al., 2000). The participation of the N atoms of the pyrazole ring together or individually may lead to unusual multidimensional architectures because of its flexible coordination modes, which may be tuned by the pH value of the reaction mixture removing the nitrogen proton (Pan, Huang & Li, 2000; Pan, Huang, Li, Wu et al., 2000). To date, coordination polymers containing pyrazole-3,5-dicarboxylic acid and CdII ions have rarely been investigated (Pan et al., 2001). In contrast to other transition metals, interestingly, the Cd atoms could provide different coordination numbers in one compound, which could determine the magnitude of the channel of the desired MOFs (Xia et al., 2004). We report here the synthesis and structural characterization of a three-dimensional Cd coordination polymer, namely poly[[aquadi(2,2'-bipyridine)(µ5-pyrazol-1-ide-3,5-dicarboxylato)(µ4-pyrazol-1-ide-3,5-dicarboxylato)(µ3-pyrazole-3,5-dicarboxylato)tetracadmium(II)] dihydrate], (I), which demonstrates a variety of coordination modes of pyrazole-3,5-dicarboxylic acid and two kinds of coordination numbers of the Cd atoms.

Single-crystal structure analysis reveals that (I) crystallized in the monoclinic space group P21/n and exhibits a three-dimensional architecture. The asymmetric unit of (I) consists of four crystallographically independent CdII ions, two triply deprotonated pyrazole-3,5-dicarboxylic acid molecules, one doubly deprotonated pyrazole-3,5-dicarboxylic acid molecule, two 2,2'-bipyridine, one coordinated water molecule and two interstitial water molecules (Fig. 1). The Cd1 atom is hexacoordinated and adopts a distorted octahedral arrangement defined by two 2,2'-bipyridine N atoms in a chelating mode and four carboxylate O atoms from two different anionic ligands, viz pyrazol-1-ide-3,5-dicarboxylate (PDC) and pyrazole-3,5-dicarboxylate (HPDC). The equatorial plane of the Cd1 geometry is composed of atoms N7, N8, O4 and O10; two apical positions are occupied by O3 and O12 from two different PDC ligands. The small chelating angles of 70.70 (16) (N7—Cd1—N8 from 2,2-bpy) and 52.01 (10)° (O3—Cd1—O4 from the same carboxylate group) reflect the distortion of the Cd1 geometry, as do the Cd1—N,O bond lengths [2.206 (3)–2.719 (4) Å; Table 1], which are typical for such coordination geometries reported in the literature (Fang & Zhang, 2006). Whereas [In contrast] the Cd2 center is heptacoordinated and lies in a pentagonal–bipyramidal geometry constructed by five carboxylate O atoms (O5, O6, O7, O8 and O9) from two different PDC and one HPDC unit, and two N atoms (N2 and N5) from two separate pyrazole rings. Atoms N2 and N5 occupy two axial positions and the other atoms (O5, O6, O7, O8 and O9) form the equatorial pentagonal planes. The Cd—O bond lengths involving Cd2 range from 2.271 (3) to 2.619 (3) Å and the angles vary from 52.88 (10) to 115.78 (12)°. It is worth noting that the Cd2—O5 and Cd2—O7 bond lengths are much longer than the others, probably due to stereochemical requirements (O5 and O7 sit on two axial sites). Similar to Cd1, both Cd3 and Cd4 are hexacoordinated, but the coordination geometries are different. Atom Cd3 displays a trigonal prismatic geometry by two sets of chelated N and O atoms from µ3-HPDC and µ4-PDC, respectively, a bridging carboxylate O atom of µ5-PDC and a terminal water molecule. However, atom Cd4, like Cd1, is located in a very distorted octahedral geometry, the equatorial plane of which is composed of N6, O1 and two 2,2-bipyridine N atoms, with the axial positions occupied by two carboxylate O atoms from µ4-PDC and µ5-PDC. Apparently, the Cd3 polyhedron shares one vertex with that of Cd4 through O2 and those of two separate adjacent Cd2 through O6 and O9, respectively. It should be noted that the Cd3—O1W bond length [2.275 (3) Å] is significantly longer than those of coordinated hydroxy groups, excluding the possibility that O1W could be a hydroxy group (Bruno et al., 2002).

Interestingly, the three crystallographically independent anionic ligands show different coordination modes in this complex, viz. µ5, µ4 and µ3. µ5-PDC chelates two Cd atoms (Cd2 and Cd4) through O9 and N5, and O11 and N6, respectively, and bridges two adjacent atoms (Cd1) from different units with O10 and O12, respectively. The polyhedra of the Cd2 and Cd3 centers share apex atom O9 from µ5-PDC and O6 from µ3-PDC together alternatively to form a wave-like nano-band along the b axis (Figs. 2 and 3). The adjacent wave-like bands are bridged to form a two-dimensional wave-like layer through carboxylate groups (O12 and O11) of µ5-PDC. µ3-HPDC bridges one Cd atom (Cd2) with one carboxylate group and two Cd atoms (Cd2 and Cd3) from an adjacent layer through the other carboxylate group and an N atom (N1) of the pyrazole ring to form a three-dimensional framework, but leaves atom N3 free with one H atom, which was confirmed by the N—H stretching vibration at 3424 cm-1 (Pan, Huang & Li, 2000; Pan, Huang, Li, Wu et al., 2000). The other point to note is that each carboxylate group is almost in the plane of correspondingly linking pyrazole rings [the dihedral angles between them ranging from 3.264 (5) to 11.887 (1) Å].

The CdII ions show two different coordination numbers (six and seven) in (I), which are also found in the literature (Wang et al., 2007). The water molecules fill the molecular cavities, which leads to a lack of a solvent-accessible void due to the coordinated 2,2'-bipyridine (77 Å, 1.9% of the whole unit-cell volume solvent-accessible void calculated using the SQUEEZE method in PLATON; Spek, 2009). Furthermore, hydrogen bonds (Table 2) between water molecules (O1W, O2W and O3W) and the carboxylate O atoms (O1, O3, O4, O8 and O10) of the framework, and between a pyrazole N atom (N3) and the carboxylate O7 atom, further enhance the stability of the three-dimensional structure.

Related literature top

For related literature, see: Bruker (2000); Bruno et al. (2002); Dincã & Long (2008); Fang & Zhang (2006); Ferey et al. (2005); Li et al. (1998); Pan et al. (2001); Pan, Huang & Li (2000); Pan, Huang, Li, Wu & Zheng (2000); Spek (2009); Tong et al. (2011); Wang et al. (2007); Xia et al. (2004); Zhao et al. (2011).

Experimental top

Cd(NO3)2.4H2O (0.154 g, 0.5 mmol), pyrazole-3,5-dicarboxylic acid (0.156 g, 1.0 mmol) and 2,2'-bipyridine (0.156 g, 1.0 mmol) were mixed with deionized water (8 ml) in a 25 ml Parr Teflon-lined stainless steel vessel. The vessel was sealed and heated to 433 K. The temperature was maintained for 3 d and then the mixture was allowed to cool naturally to obtain colorless crystals of (I) [yield 42%, based on Cd(NO3)2.4H2O]. Elemental analysis calculated for C35H26Cd4N10O15: C 32.93, H 2.05, N 10.97%; found: C 33.34, H 1.96, N 11.13%. IR (KBr pellet, ν cm-1): 3424, 3140, 1623, 1555, 1508, 1439, 1365, 1018, 846, 762, 651, 579.

Refinement top

H atoms bonded to C atoms were placed in calculated positions and treated using a riding model approximation, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C). Initially, the aqua H atoms were located in a difference Fourier map and their positions were adjusted, using the HIMP command in XP (SHELXTL; Bruker, 2000), to O—H = 0.85 Å. In the final cycles, these H atoms were constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP IN SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn with 30% probability and all H atoms have been omitted for clarity. [Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x+2, -y+2, -z+1.]
[Figure 2] Fig. 2. A perspective view of the two-dimensional layered structure of (I). All 2,2'-bipyridine C atoms and all H atoms have been omitted for clarity, as have the uncoordinated water molecules.
[Figure 3] Fig. 3. Packing diagram showing the wave-like layers of (I). All H atoms and the uncoordinated water molecules have been omitted for clarity.
poly[[aquabis(2,2'-bipyridine)(µ5-pyrazol-1-ide-3,5-dicarboxylato)(µ4- pyrazol-1-ide-3,5-dicarboxylato)(µ3-pyrazole-3,5- dicarboxylato)tetracadmium(II)] dihydrate] top
Crystal data top
[Cd4(C5H2N2O4)(C5HN2O4)2(C10H8N2)2(H2O)]·2H2OF(000) = 2472
Mr = 1276.26Dx = 2.102 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 49694 reflections
a = 15.574 (3) Åθ = 1.3–27.5°
b = 16.197 (3) ŵ = 2.17 mm1
c = 16.928 (3) ÅT = 293 K
β = 109.21 (3)°Block, yellow
V = 4032.3 (14) Å30.16 × 0.13 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9211 independent reflections
Radiation source: fine-focus sealed tube8760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 020
Tmin = 0.72, Tmax = 0.76k = 021
38399 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0759P)2 + 6.8969P]
where P = (Fo2 + 2Fc2)/3
9211 reflections(Δ/σ)max = 0.002
578 parametersΔρmax = 1.99 e Å3
656 restraintsΔρmin = 1.24 e Å3
Crystal data top
[Cd4(C5H2N2O4)(C5HN2O4)2(C10H8N2)2(H2O)]·2H2OV = 4032.3 (14) Å3
Mr = 1276.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.574 (3) ŵ = 2.17 mm1
b = 16.197 (3) ÅT = 293 K
c = 16.928 (3) Å0.16 × 0.13 × 0.13 mm
β = 109.21 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
8760 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.76Rint = 0.033
38399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030656 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 1.99 e Å3
9211 reflectionsΔρmin = 1.24 e Å3
578 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.70024 (2)0.676520 (18)0.505581 (19)0.02253 (9)
Cd20.814615 (18)0.893103 (16)0.274573 (16)0.01671 (8)
Cd30.725505 (19)1.128017 (16)0.256542 (18)0.01986 (9)
Cd41.04689 (2)0.746181 (17)0.23133 (2)0.02443 (9)
N10.6734 (2)1.0167 (2)0.3063 (2)0.0198 (6)
N20.7095 (2)0.9416 (2)0.3294 (2)0.0192 (6)
N30.9234 (3)1.1104 (2)0.4372 (2)0.0275 (8)
H3A0.93211.05800.43700.033*
N40.8604 (2)1.1513 (2)0.3767 (2)0.0252 (7)
N50.9052 (2)0.9069 (2)0.1913 (2)0.0199 (6)
N60.9643 (2)0.8572 (2)0.1723 (2)0.0210 (6)
N70.8107 (3)0.7382 (3)0.6186 (3)0.0374 (9)
N80.8290 (3)0.5933 (3)0.5474 (2)0.0311 (8)
N91.1690 (3)0.6725 (3)0.3202 (3)0.0438 (11)
N101.1351 (3)0.8339 (3)0.3380 (3)0.0384 (9)
O10.4898 (3)1.1192 (2)0.3466 (3)0.0381 (8)
O20.5762 (2)1.15871 (19)0.2730 (2)0.0308 (7)
O30.7583 (2)0.7894 (2)0.4154 (2)0.0359 (7)
O40.6296 (3)0.7898 (2)0.4440 (2)0.0352 (7)
O50.8185 (2)1.36687 (19)0.3612 (2)0.0347 (8)
O60.7483 (2)1.26534 (18)0.27902 (19)0.0268 (6)
O71.0683 (2)1.0599 (2)0.5824 (2)0.0364 (8)
O81.0682 (2)1.18431 (19)0.6353 (2)0.0289 (6)
O90.8074 (2)1.03199 (18)0.2196 (2)0.0260 (6)
O100.8393 (2)1.11416 (19)0.1277 (2)0.0283 (6)
O111.1039 (2)0.7896 (2)0.1270 (2)0.0311 (7)
O121.0987 (3)0.8952 (2)0.0419 (2)0.0337 (7)
O1W0.6411 (2)1.16531 (19)0.12419 (19)0.0260 (6)
H1A0.61801.21000.13440.039*
H1B0.67621.18490.09950.039*
C10.6030 (3)1.0268 (2)0.3354 (2)0.0213 (7)
C20.5914 (3)0.9565 (2)0.3776 (3)0.0237 (7)
H2A0.54800.94660.40330.028*
C30.6603 (3)0.9042 (2)0.3723 (2)0.0201 (7)
C40.5531 (3)1.1058 (2)0.3179 (3)0.0241 (8)
C50.6859 (3)0.8219 (2)0.4123 (3)0.0230 (8)
C60.8703 (3)1.2310 (2)0.3999 (3)0.0240 (8)
C70.9391 (3)1.2398 (3)0.4764 (3)0.0279 (9)
H7A0.95901.28840.50610.034*
C80.9715 (3)1.1616 (3)0.4986 (3)0.0266 (8)
C90.8094 (3)1.2929 (3)0.3443 (2)0.0229 (7)
C101.0414 (3)1.1318 (3)0.5769 (3)0.0250 (8)
C110.9058 (3)0.9807 (2)0.1535 (2)0.0199 (7)
C120.9671 (3)0.9788 (3)0.1091 (3)0.0237 (7)
H12B0.98071.02070.07760.028*
C131.0029 (3)0.8997 (3)0.1233 (3)0.0225 (7)
C140.8472 (3)1.0474 (2)0.1663 (2)0.0195 (7)
C151.0737 (3)0.8583 (3)0.0959 (3)0.0220 (7)
C160.8900 (4)0.6989 (4)0.6507 (3)0.0392 (10)
C170.9599 (5)0.7324 (5)0.7163 (5)0.0591 (15)
H17A1.01530.70520.73750.071*
C180.9458 (6)0.8076 (5)0.7500 (5)0.0690 (17)
H18A0.99060.83000.79590.083*
C190.8657 (6)0.8476 (5)0.7150 (5)0.0642 (16)
H19A0.85600.89920.73480.077*
C200.7987 (5)0.8108 (4)0.6495 (4)0.0538 (14)
H20A0.74340.83780.62650.065*
C210.8992 (4)0.6177 (3)0.6129 (3)0.0345 (9)
C220.9771 (4)0.5694 (4)0.6432 (4)0.0472 (12)
H22A1.02580.58740.68850.057*
C230.9816 (4)0.4953 (4)0.6060 (4)0.0522 (13)
H23A1.03280.46190.62650.063*
C240.9106 (5)0.4709 (4)0.5388 (4)0.0505 (13)
H24A0.91270.42110.51200.061*
C250.8355 (4)0.5214 (3)0.5110 (3)0.0427 (11)
H25A0.78700.50460.46490.051*
C261.2278 (4)0.7132 (5)0.3841 (4)0.0492 (12)
C271.3070 (5)0.6744 (6)0.4337 (5)0.0686 (17)
H27A1.34880.70270.47740.082*
C281.3227 (6)0.5925 (6)0.4169 (5)0.0710 (17)
H28A1.37490.56570.45020.085*
C291.2631 (5)0.5523 (5)0.3531 (5)0.0665 (17)
H29A1.27310.49770.34140.080*
C301.1860 (5)0.5941 (5)0.3050 (5)0.0587 (15)
H30A1.14450.56670.26040.070*
C311.2058 (4)0.7994 (4)0.3978 (4)0.0463 (11)
C321.2540 (5)0.8443 (5)0.4676 (4)0.0613 (15)
H32A1.30220.82000.50910.074*
C331.2304 (5)0.9254 (5)0.4758 (4)0.0643 (16)
H33A1.26180.95580.52310.077*
C341.1595 (5)0.9606 (5)0.4126 (4)0.0577 (15)
H34A1.14361.01550.41570.069*
C351.1131 (4)0.9128 (4)0.3455 (4)0.0457 (11)
H35A1.06450.93590.30350.055*
O2W0.4685 (4)0.8415 (5)0.4745 (4)0.0890 (18)
H2C0.51560.82080.46750.134*
H2D0.48020.85420.52560.134*
O3W0.3652 (7)0.9955 (8)0.3855 (7)0.156 (3)
H3E0.39981.02990.37290.233*
H3F0.39340.95220.40870.233*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02292 (16)0.01840 (15)0.02728 (16)0.00061 (10)0.00963 (12)0.00386 (10)
Cd20.01610 (14)0.01419 (14)0.01820 (14)0.00095 (9)0.00344 (10)0.00106 (9)
Cd30.02066 (15)0.01355 (14)0.02426 (15)0.00125 (9)0.00589 (11)0.00066 (9)
Cd40.02177 (16)0.01626 (15)0.03130 (17)0.00147 (10)0.00336 (12)0.00397 (10)
N10.0197 (15)0.0154 (15)0.0241 (15)0.0023 (12)0.0071 (12)0.0018 (12)
N20.0207 (15)0.0141 (14)0.0229 (15)0.0016 (12)0.0074 (12)0.0012 (12)
N30.0277 (18)0.0150 (15)0.0282 (18)0.0044 (13)0.0067 (15)0.0016 (13)
N40.0252 (17)0.0193 (16)0.0228 (16)0.0040 (13)0.0035 (13)0.0014 (13)
N50.0204 (15)0.0171 (15)0.0233 (16)0.0031 (12)0.0084 (13)0.0020 (12)
N60.0218 (16)0.0188 (15)0.0231 (16)0.0040 (12)0.0084 (13)0.0018 (12)
N70.037 (2)0.033 (2)0.040 (2)0.0039 (17)0.0106 (18)0.0067 (17)
N80.0303 (19)0.031 (2)0.0285 (18)0.0091 (16)0.0046 (15)0.0035 (15)
N90.028 (2)0.046 (3)0.052 (3)0.0081 (18)0.0060 (19)0.020 (2)
N100.027 (2)0.049 (3)0.032 (2)0.0061 (18)0.0001 (16)0.0063 (18)
O10.0393 (19)0.0290 (16)0.056 (2)0.0128 (14)0.0293 (17)0.0093 (15)
O20.0334 (16)0.0200 (14)0.0431 (18)0.0089 (12)0.0182 (14)0.0096 (13)
O30.0353 (18)0.0220 (15)0.052 (2)0.0087 (13)0.0172 (15)0.0015 (14)
O40.0417 (18)0.0255 (16)0.0452 (18)0.0056 (14)0.0236 (15)0.0123 (14)
O50.0345 (18)0.0182 (15)0.0384 (18)0.0018 (12)0.0059 (14)0.0003 (12)
O60.0284 (15)0.0175 (13)0.0256 (14)0.0030 (11)0.0033 (12)0.0013 (11)
O70.0342 (17)0.0206 (15)0.0402 (18)0.0046 (13)0.0068 (14)0.0038 (13)
O80.0275 (15)0.0236 (15)0.0264 (15)0.0028 (12)0.0035 (12)0.0026 (11)
O90.0332 (15)0.0178 (13)0.0332 (15)0.0056 (11)0.0194 (13)0.0029 (11)
O100.0385 (17)0.0188 (14)0.0296 (15)0.0070 (12)0.0141 (13)0.0062 (11)
O110.0341 (16)0.0244 (15)0.0401 (17)0.0092 (12)0.0194 (14)0.0045 (13)
O120.0428 (19)0.0305 (17)0.0376 (18)0.0109 (14)0.0267 (15)0.0082 (13)
O1W0.0303 (15)0.0223 (14)0.0254 (14)0.0001 (12)0.0093 (12)0.0019 (11)
C10.0223 (17)0.0192 (17)0.0231 (17)0.0034 (14)0.0087 (14)0.0007 (14)
C20.0257 (18)0.0184 (17)0.0297 (18)0.0021 (14)0.0125 (15)0.0040 (14)
C30.0220 (17)0.0166 (16)0.0222 (17)0.0004 (14)0.0078 (14)0.0001 (13)
C40.0244 (19)0.0185 (18)0.0284 (19)0.0028 (14)0.0072 (15)0.0007 (14)
C50.0277 (19)0.0150 (17)0.0256 (18)0.0012 (14)0.0079 (15)0.0006 (13)
C60.0246 (18)0.0163 (16)0.0245 (17)0.0028 (14)0.0009 (15)0.0025 (14)
C70.032 (2)0.0163 (17)0.0259 (19)0.0035 (15)0.0034 (16)0.0012 (14)
C80.0264 (19)0.0200 (18)0.0243 (18)0.0026 (15)0.0041 (15)0.0007 (15)
C90.0204 (17)0.0211 (18)0.0219 (17)0.0032 (14)0.0001 (14)0.0050 (14)
C100.0205 (18)0.0202 (18)0.0262 (19)0.0026 (14)0.0033 (15)0.0040 (14)
C110.0227 (17)0.0173 (16)0.0202 (16)0.0015 (13)0.0079 (13)0.0011 (13)
C120.0271 (18)0.0205 (18)0.0265 (18)0.0040 (15)0.0130 (15)0.0025 (14)
C130.0223 (17)0.0232 (18)0.0223 (17)0.0037 (14)0.0078 (14)0.0014 (14)
C140.0198 (16)0.0181 (16)0.0201 (16)0.0017 (13)0.0057 (13)0.0013 (13)
C150.0222 (17)0.0216 (18)0.0242 (18)0.0033 (14)0.0101 (14)0.0028 (14)
C160.034 (2)0.045 (2)0.038 (2)0.0056 (19)0.0103 (18)0.0043 (19)
C170.048 (3)0.060 (3)0.058 (3)0.006 (3)0.002 (2)0.012 (3)
C180.065 (3)0.065 (3)0.062 (3)0.014 (3)0.000 (3)0.023 (3)
C190.069 (4)0.056 (3)0.061 (3)0.010 (3)0.014 (3)0.027 (3)
C200.054 (3)0.046 (3)0.058 (3)0.002 (2)0.014 (3)0.020 (2)
C210.032 (2)0.040 (2)0.031 (2)0.0017 (18)0.0099 (17)0.0051 (17)
C220.036 (2)0.056 (3)0.042 (2)0.009 (2)0.003 (2)0.005 (2)
C230.047 (3)0.057 (3)0.047 (3)0.024 (2)0.008 (2)0.007 (2)
C240.060 (3)0.042 (3)0.047 (3)0.022 (2)0.015 (2)0.002 (2)
C250.047 (3)0.037 (2)0.037 (2)0.012 (2)0.004 (2)0.0012 (19)
C260.034 (2)0.069 (3)0.040 (2)0.006 (2)0.0070 (19)0.012 (2)
C270.050 (3)0.089 (4)0.053 (3)0.017 (3)0.002 (3)0.011 (3)
C280.057 (3)0.083 (4)0.062 (3)0.023 (3)0.005 (3)0.023 (3)
C290.056 (3)0.068 (3)0.071 (3)0.023 (3)0.016 (3)0.025 (3)
C300.048 (3)0.058 (3)0.064 (3)0.014 (3)0.010 (3)0.022 (3)
C310.030 (2)0.070 (3)0.036 (2)0.003 (2)0.0070 (18)0.004 (2)
C320.042 (3)0.085 (4)0.043 (3)0.006 (3)0.004 (2)0.002 (3)
C330.052 (3)0.082 (4)0.048 (3)0.019 (3)0.001 (2)0.015 (3)
C340.051 (3)0.067 (4)0.050 (3)0.016 (3)0.010 (2)0.017 (3)
C350.038 (2)0.055 (3)0.040 (2)0.007 (2)0.0064 (19)0.009 (2)
O2W0.062 (3)0.132 (5)0.085 (4)0.016 (3)0.040 (3)0.023 (4)
O3W0.122 (5)0.179 (6)0.161 (6)0.002 (5)0.040 (5)0.031 (5)
Geometric parameters (Å, º) top
Cd1—O32.719 (4)O10—Cd1iv2.362 (3)
Cd1—O42.216 (3)O11—C151.255 (5)
Cd1—O10i2.362 (3)O12—C151.256 (5)
Cd1—O12ii2.206 (3)O12—Cd1v2.206 (3)
Cd1—N72.335 (4)O1W—H1A0.8516
Cd1—N82.324 (4)O1W—H1B0.8507
Cd2—O5i2.575 (3)C1—C21.387 (5)
Cd2—O6i2.341 (3)C1—C41.475 (5)
Cd2—O7iii2.619 (3)C2—C31.392 (6)
Cd2—O8iii2.324 (3)C2—H2A0.9300
Cd2—O92.423 (3)C3—C51.488 (5)
Cd2—N22.271 (3)C4—Cd4iv2.727 (4)
Cd2—N52.310 (3)C6—C71.390 (6)
Cd3—O1W2.275 (3)C6—C91.484 (5)
Cd3—O22.482 (3)C7—C81.369 (6)
Cd3—O62.265 (3)C7—H7A0.9300
Cd3—O92.227 (3)C8—C101.492 (5)
Cd3—N12.251 (3)C11—C121.395 (5)
Cd3—N42.425 (4)C11—C141.476 (5)
Cd4—O1i2.408 (4)C12—C131.387 (6)
Cd4—O2i2.365 (3)C12—H12B0.9300
Cd4—O112.332 (3)C13—C151.488 (5)
Cd4—N62.245 (3)C16—C171.385 (8)
Cd4—N92.329 (4)C16—C211.491 (8)
Cd4—N102.353 (4)C17—C181.392 (11)
Cd4—C4i2.727 (4)C17—H17A0.9300
N1—N21.342 (4)C18—C191.357 (12)
N1—C11.352 (5)C18—H18A0.9300
N2—C31.359 (5)C19—C201.383 (9)
N3—N41.339 (5)C19—H19A0.9300
N3—C81.348 (5)C20—H20A0.9300
N3—H3A0.8600C21—C221.392 (7)
N4—C61.343 (5)C22—C231.369 (9)
N5—N61.339 (5)C22—H22A0.9300
N5—C111.357 (5)C23—C241.359 (9)
N6—C131.361 (5)C23—H23A0.9300
N7—C201.326 (7)C24—C251.378 (8)
N7—C161.335 (7)C24—H24A0.9300
N8—C211.336 (7)C25—H25A0.9300
N8—C251.337 (7)C26—C271.392 (9)
N9—C261.338 (8)C26—C311.475 (10)
N9—C301.339 (9)C27—C281.395 (12)
N10—C351.339 (8)C27—H27A0.9300
N10—C311.347 (7)C28—C291.339 (12)
O1—C41.253 (5)C28—H28A0.9300
O1—Cd4iv2.408 (4)C29—C301.385 (9)
O2—C41.273 (5)C29—H29A0.9300
O2—Cd4iv2.365 (3)C30—H30A0.9300
O3—C51.229 (5)C31—C321.380 (9)
O4—C51.280 (5)C32—C331.383 (12)
O5—C91.228 (5)C32—H32A0.9300
O5—Cd2iv2.575 (3)C33—C341.383 (11)
O6—C91.279 (5)C33—H33A0.9300
O6—Cd2iv2.341 (3)C34—C351.369 (8)
O7—C101.231 (5)C34—H34A0.9300
O7—Cd2iii2.619 (3)C35—H35A0.9300
O8—C101.266 (5)O2W—H2C0.8501
O8—Cd2iii2.324 (3)O2W—H2D0.8490
O9—C141.276 (5)O3W—H3E0.8506
O10—C141.249 (5)O3W—H3F0.8509
O12ii—Cd1—O4106.07 (14)C14—O10—Cd1iv145.1 (3)
O12ii—Cd1—N8103.62 (15)C15—O11—Cd4113.6 (3)
O4—Cd1—N8150.26 (14)C15—O12—Cd1v112.0 (3)
O12ii—Cd1—N7113.52 (15)Cd3—O1W—H1A99.9
O4—Cd1—N798.58 (16)Cd3—O1W—H1B109.1
N8—Cd1—N770.70 (16)H1A—O1W—H1B99.5
O12ii—Cd1—O10i93.20 (12)N1—C1—C2110.3 (3)
O4—Cd1—O10i88.37 (13)N1—C1—C4117.9 (4)
N8—Cd1—O10i88.31 (13)C2—C1—C4131.8 (4)
N7—Cd1—O10i148.88 (14)C1—C2—C3103.5 (3)
O12ii—Cd1—O3155.69 (13)C1—C2—H2A128.3
O4—Cd1—O352.01 (11)C3—C2—H2A128.3
N8—Cd1—O398.51 (13)N2—C3—C2110.1 (3)
N7—Cd1—O383.17 (14)N2—C3—C5121.9 (4)
O10i—Cd1—O377.38 (11)C2—C3—C5127.8 (4)
N2—Cd2—N5151.99 (12)O1—C4—O2121.8 (4)
N2—Cd2—O8iii115.78 (12)O1—C4—C1120.2 (4)
N5—Cd2—O8iii86.98 (12)O2—C4—C1118.1 (4)
N2—Cd2—O6i101.41 (12)O1—C4—Cd4iv62.0 (2)
N5—Cd2—O6i96.36 (12)O2—C4—Cd4iv60.1 (2)
O8iii—Cd2—O6i85.17 (11)C1—C4—Cd4iv174.0 (3)
N2—Cd2—O983.50 (10)O3—C5—O4123.5 (4)
N5—Cd2—O968.68 (11)O3—C5—C3120.6 (4)
O8iii—Cd2—O9132.87 (11)O4—C5—C3115.8 (4)
O6i—Cd2—O9135.34 (11)N4—C6—C7110.5 (3)
N2—Cd2—O5i86.82 (12)N4—C6—C9118.4 (4)
N5—Cd2—O5i86.86 (13)C7—C6—C9131.0 (4)
O8iii—Cd2—O5i136.48 (11)C8—C7—C6105.2 (4)
O6i—Cd2—O5i52.88 (10)C8—C7—H7A127.4
O9—Cd2—O5i83.60 (11)C6—C7—H7A127.4
N2—Cd2—O7iii84.16 (12)N3—C8—C7107.3 (4)
N5—Cd2—O7iii99.02 (13)N3—C8—C10123.0 (4)
O8iii—Cd2—O7iii52.59 (11)C7—C8—C10129.6 (4)
O6i—Cd2—O7iii133.68 (10)O5—C9—O6122.5 (4)
O9—Cd2—O7iii90.86 (11)O5—C9—C6120.7 (4)
O5i—Cd2—O7iii169.90 (11)O6—C9—C6116.7 (4)
O9—Cd3—N181.70 (12)O7—C10—O8124.0 (4)
O9—Cd3—O6131.32 (12)O7—C10—C8120.3 (4)
N1—Cd3—O6141.23 (12)O8—C10—C8115.7 (4)
O9—Cd3—O1W96.18 (12)N5—C11—C12110.3 (3)
N1—Cd3—O1W114.75 (12)N5—C11—C14118.3 (3)
O6—Cd3—O1W84.99 (11)C12—C11—C14131.4 (4)
O9—Cd3—N485.77 (12)C13—C12—C11103.6 (4)
N1—Cd3—N497.48 (12)C13—C12—H12B128.2
O6—Cd3—N470.21 (11)C11—C12—H12B128.2
O1W—Cd3—N4147.68 (12)N6—C13—C12109.8 (4)
O9—Cd3—O2144.65 (12)N6—C13—C15119.0 (4)
N1—Cd3—O269.64 (11)C12—C13—C15131.2 (4)
O6—Cd3—O283.42 (11)O10—C14—O9123.5 (4)
O1W—Cd3—O278.38 (11)O10—C14—C11121.1 (3)
N4—Cd3—O2117.36 (13)O9—C14—C11115.4 (3)
N6—Cd4—N9157.59 (16)O11—C15—O12124.2 (4)
N6—Cd4—O1174.15 (12)O11—C15—C13118.9 (4)
N9—Cd4—O11102.13 (15)O12—C15—C13116.9 (4)
N6—Cd4—N1087.82 (15)N7—C16—C17121.1 (6)
N9—Cd4—N1070.55 (19)N7—C16—C21116.9 (5)
O11—Cd4—N1097.30 (15)C17—C16—C21121.9 (6)
N6—Cd4—O2i97.24 (13)C16—C17—C18118.9 (7)
N9—Cd4—O2i101.22 (15)C16—C17—H17A120.6
O11—Cd4—O2i131.60 (12)C18—C17—H17A120.6
N10—Cd4—O2i130.45 (14)C19—C18—C17119.1 (7)
N6—Cd4—O1i116.25 (14)C19—C18—H18A120.5
N9—Cd4—O1i84.99 (18)C17—C18—H18A120.5
O11—Cd4—O1i85.61 (12)C18—C19—C20119.1 (7)
N10—Cd4—O1i155.46 (16)C18—C19—H19A120.4
O2i—Cd4—O1i55.07 (11)C20—C19—H19A120.4
N6—Cd4—C4i110.24 (13)N7—C20—C19122.1 (7)
N9—Cd4—C4i91.90 (16)N7—C20—H20A118.9
O11—Cd4—C4i109.97 (13)C19—C20—H20A118.9
N10—Cd4—C4i150.34 (15)N8—C21—C22121.1 (5)
O2i—Cd4—C4i27.81 (12)N8—C21—C16116.7 (4)
O1i—Cd4—C4i27.34 (12)C22—C21—C16122.2 (5)
N2—N1—C1108.4 (3)C23—C22—C21119.6 (6)
N2—N1—Cd3131.8 (3)C23—C22—H22A120.2
C1—N1—Cd3118.3 (3)C21—C22—H22A120.2
N1—N2—C3107.7 (3)C24—C23—C22119.3 (5)
N1—N2—Cd2118.9 (2)C24—C23—H23A120.3
C3—N2—Cd2132.3 (3)C22—C23—H23A120.3
N4—N3—C8111.5 (3)C23—C24—C25118.6 (6)
N4—N3—H3A124.2C23—C24—H24A120.7
C8—N3—H3A124.2C25—C24—H24A120.7
N3—N4—C6105.5 (3)N8—C25—C24123.0 (5)
N3—N4—Cd3141.2 (3)N8—C25—H25A118.5
C6—N4—Cd3112.3 (3)C24—C25—H25A118.5
N6—N5—C11107.7 (3)N9—C26—C27120.0 (7)
N6—N5—Cd2134.0 (3)N9—C26—C31117.4 (5)
C11—N5—Cd2118.3 (2)C27—C26—C31122.6 (7)
N5—N6—C13108.6 (3)C26—C27—C28119.1 (8)
N5—N6—Cd4135.5 (3)C26—C27—H27A120.5
C13—N6—Cd4111.9 (3)C28—C27—H27A120.5
C20—N7—C16119.6 (5)C29—C28—C27120.4 (7)
C20—N7—Cd1122.8 (4)C29—C28—H28A119.8
C16—N7—Cd1117.6 (4)C27—C28—H28A119.8
C21—N8—C25118.3 (4)C28—C29—C30118.2 (8)
C21—N8—Cd1118.1 (3)C28—C29—H29A120.9
C25—N8—Cd1123.6 (3)C30—C29—H29A120.9
C26—N9—C30119.8 (5)N9—C30—C29122.6 (8)
C26—N9—Cd4117.8 (4)N9—C30—H30A118.7
C30—N9—Cd4122.2 (4)C29—C30—H30A118.7
C35—N10—C31119.7 (5)N10—C31—C32120.3 (7)
C35—N10—Cd4123.1 (4)N10—C31—C26116.7 (5)
C31—N10—Cd4116.9 (4)C32—C31—C26123.0 (6)
C4—O1—Cd4iv90.7 (3)C31—C32—C33119.9 (6)
C4—O2—Cd4iv92.1 (3)C31—C32—H32A120.1
C4—O2—Cd3113.0 (3)C33—C32—H32A120.1
Cd4iv—O2—Cd3153.67 (15)C32—C33—C34119.0 (6)
C5—O3—Cd181.0 (3)C32—C33—H33A120.5
C5—O4—Cd1103.4 (3)C34—C33—H33A120.5
C9—O5—Cd2iv87.5 (2)C35—C34—C33118.6 (7)
C9—O6—Cd3121.3 (3)C35—C34—H34A120.7
C9—O6—Cd2iv97.1 (2)C33—C34—H34A120.7
Cd3—O6—Cd2iv141.29 (14)N10—C35—C34122.5 (6)
C10—O7—Cd2iii84.9 (3)N10—C35—H35A118.8
C10—O8—Cd2iii97.8 (3)C34—C35—H35A118.8
C14—O9—Cd3121.2 (3)H2C—O2W—H2D109.3
C14—O9—Cd2118.7 (2)H3E—O3W—H3F112.6
Cd3—O9—Cd2119.96 (12)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7iii0.861.942.786 (5)169
O1W—H1A···O8vi0.851.882.721 (4)168
O1W—H1B···O3iv0.852.032.762 (4)143
O1W—H1B···O100.852.683.177 (5)118
O2W—H2C···O40.852.012.849 (7)171
O2W—H2D···O1vii0.852.102.951 (8)178
O3W—H3E···O10.852.163.010 (12)177
O3W—H3F···O2W0.852.233.079 (14)178
Symmetry codes: (iii) x+2, y+2, z+1; (iv) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+5/2, z1/2; (vii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cd4(C5H2N2O4)(C5HN2O4)2(C10H8N2)2(H2O)]·2H2O
Mr1276.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.574 (3), 16.197 (3), 16.928 (3)
β (°) 109.21 (3)
V3)4032.3 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.16 × 0.13 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.72, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
38399, 9211, 8760
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.113, 1.08
No. of reflections9211
No. of parameters578
No. of restraints656
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.99, 1.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP IN SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O32.719 (4)Cd3—O1W2.275 (3)
Cd1—O42.216 (3)Cd3—O22.482 (3)
Cd1—O10i2.362 (3)Cd3—O62.265 (3)
Cd1—O12ii2.206 (3)Cd3—O92.227 (3)
Cd1—N72.335 (4)Cd3—N12.251 (3)
Cd1—N82.324 (4)Cd3—N42.425 (4)
Cd2—O5i2.575 (3)Cd4—O1i2.408 (4)
Cd2—O6i2.341 (3)Cd4—O2i2.365 (3)
Cd2—O7iii2.619 (3)Cd4—O112.332 (3)
Cd2—O8iii2.324 (3)Cd4—N62.245 (3)
Cd2—O92.423 (3)Cd4—N92.329 (4)
Cd2—N22.271 (3)Cd4—N102.353 (4)
Cd2—N52.310 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7iii0.861.942.786 (5)169.2
O1W—H1A···O8iv0.851.882.721 (4)168.1
O1W—H1B···O3v0.852.032.762 (4)143.2
O1W—H1B···O100.852.683.177 (5)118.4
O2W—H2C···O40.852.012.849 (7)170.9
O2W—H2D···O1vi0.852.102.951 (8)177.7
O3W—H3E···O10.852.163.010 (12)177.4
O3W—H3F···O2W0.852.233.079 (14)177.7
Symmetry codes: (iii) x+2, y+2, z+1; (iv) x1/2, y+5/2, z1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds