metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium N-bromo-4-chloro­benzene­sulfonamidate monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 2 June 2011; accepted 16 June 2011; online 22 June 2011)

In the structure of the title compound, K+·C6H4BrClNO2S·H2O, the K+ cation is hepta­coordinated. It is connected to two water O atoms, four sulfonyl O atoms and one Br atom. Further, the sulfonyl and water O atoms in the structure are bridged in a bidentate fashion. The S—N distance of 1.584 (6) Å is consistent with an S—N double bond, The crystal structure is stabilized by inter­molecular O—H⋯N hydrogen bonds.

Related literature

For our study of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1647-m1648.], 2011a[Gowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.],b[Gowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m926.]); and on the oxidative strengths of N-halolaryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For similar structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For the preparation of the title compound, see: Gowda & Usha (2003[Gowda, B. T. & Usha, K. M. (2003). Z. Naturforsch. Teil A, 58, 351-356.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H4BrClNO2S·H2O

  • Mr = 326.64

  • Monoclinic, P 21 /c

  • a = 15.596 (1) Å

  • b = 10.188 (1) Å

  • c = 6.7649 (7) Å

  • β = 99.947 (9)°

  • V = 1058.73 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.70 mm−1

  • T = 293 K

  • 0.34 × 0.34 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.298, Tmax = 0.333

  • 3796 measured reflections

  • 2147 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.156

  • S = 1.19

  • 2147 reflections

  • 134 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.82 (2) 2.25 (5) 3.005 (8) 152 (8)
O3—H32⋯N1ii 0.82 (2) 2.16 (3) 2.967 (8) 166 (9)
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To explore the effect of substitution and replacing sodium ion by potassium ion in the solid state structures of N-chloroarylsulfonamides (Gowda et al., 2007; 2011a,b; Usha & Gowda, 2006), in the present work, the structure of potassium N-bromo-4-chloro- benzenesulfonamidate monohydrate (I) has been determined (Fig. 1). The structure of (I) resembles those of potassium N-bromo-2-chloro- benzenesulfonamidate sesquihydrate(II)(Gowda et al., 2011b), potassium N,4-dichloro-benzenesulfonamidate monohydrate (III) (Gowda et al., 2011a), sodium N-bromo-4-chloro- benzenesulfonamidate sesquihydrate (IV)(Gowda et al., 2007) and other sodium N-chloro-arylsulfonamdes (George et al., 2000; Olmstead & Power, 1986). In particular, there is no interaction between the nitrogen and potassium atom in the molecule. Further, K+ is hepta co-ordinated in contrast to hexa co-ordination with Na+

K+ hepta coordination involves two O atoms from water molecules, four sulfonyl O atoms of N-bromo-4-chlorobenzenesulfonamide anions and one Br, in contrast to octahedral coordination of Na+ in (IV) by three O atoms of water molecules and by three sulfonyl O atoms of N-bromo-4-chloro- benzenesulfonamide anions (Gowda et al., 2007).

The S—N distance of N1—S1, 1.584 (6) Å is consistent with an S—N double bond and is in agreement with the observed values of 1.582 (4) Å in (II), 1.588 (2)Å in (III), and N1—S1, 1.574 (5)Å and N2—S2 1.579 (4)Å in (IV).

K+ ion coordination in the structure gives rise to several hydrogen bonding between coordinated water molecules and nitrogen atoms. The packing diagram consists of a two-dimensional polymeric layer running parallel to the b-axis (Fig. 2). The molecular packing is stabilized by O3—H31···N1 and O3—H32···N1 hydrogen bonds (Table 1).

Related literature top

For our study of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda et al. (2007, 2011a,b); and on the oxidative strengths of N-halolarylsulfonamides, see: Usha & Gowda (2006). For similar structures, see: George et al. (2000); Olmstead & Power (1986). For the preparation of the title compound, see: Gowda & Usha (2003).

Experimental top

The title compound was prepared similar to the literature method (Gowda & Usha, 2003). The purity of the compound was checked by determining its melting point (184 ° C). It was characterized by recording its infrared and NMR spectra.

Yellow prisms of the title compound used in X-ray diffraction studies were obtained from its aqueous solution at room temperature.

Refinement top

The O bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The residual electron-density features are located in the region of Br1. The highest peak and the deepest hole are 1.70 and 0.93 Å from Br1, respectivily.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme for the asymmetric unit and extended to show the coordination geometry for the K+. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Potassium N-bromo-4-chlorobenzenesulfonamidate monohydrate top
Crystal data top
K+·C6H4BrClNO2S·H2OF(000) = 640
Mr = 326.64Dx = 2.049 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2989 reflections
a = 15.596 (1) Åθ = 3.0–27.8°
b = 10.188 (1) ŵ = 4.70 mm1
c = 6.7649 (7) ÅT = 293 K
β = 99.947 (9)°Prism, yellow
V = 1058.73 (17) Å30.34 × 0.34 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2147 independent reflections
Radiation source: fine-focus sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1917
Tmin = 0.298, Tmax = 0.333k = 512
3796 measured reflectionsl = 86
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0614P)2 + 8.645P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.014
2147 reflectionsΔρmax = 1.22 e Å3
134 parametersΔρmin = 0.95 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (3)
Crystal data top
K+·C6H4BrClNO2S·H2OV = 1058.73 (17) Å3
Mr = 326.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.596 (1) ŵ = 4.70 mm1
b = 10.188 (1) ÅT = 293 K
c = 6.7649 (7) Å0.34 × 0.34 × 0.30 mm
β = 99.947 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2147 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1984 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.333Rint = 0.035
3796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 1.22 e Å3
2147 reflectionsΔρmin = 0.95 e Å3
134 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.25575 (4)0.43815 (7)0.31985 (10)0.0299 (3)
K10.44027 (9)0.61960 (15)0.3785 (2)0.0252 (4)
Cl10.02963 (13)0.5964 (3)0.2758 (3)0.0534 (6)
S10.34113 (9)0.53777 (15)0.0566 (2)0.0190 (4)
O10.3587 (3)0.6607 (5)0.0369 (7)0.0310 (11)
O20.4024 (3)0.5053 (6)0.2355 (7)0.0329 (11)
O30.5513 (3)0.7034 (5)0.6370 (8)0.0318 (11)
H310.572 (5)0.692 (9)0.739 (8)0.038*
H320.589 (4)0.753 (7)0.578 (12)0.038*
N10.3390 (4)0.4126 (6)0.0831 (8)0.0258 (12)
C10.2367 (4)0.5577 (6)0.1250 (9)0.0197 (12)
C20.1965 (4)0.4475 (7)0.1854 (11)0.0278 (14)
H20.22390.36620.19140.033*
C30.1148 (5)0.4602 (8)0.2370 (11)0.0341 (16)
H30.08670.38790.28060.041*
C40.0755 (4)0.5829 (8)0.2223 (10)0.0306 (15)
C50.1156 (5)0.6906 (8)0.1639 (11)0.0371 (17)
H50.08850.77210.15730.044*
C60.1977 (5)0.6771 (7)0.1141 (10)0.0286 (14)
H60.22600.74990.07330.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0227 (4)0.0383 (5)0.0267 (4)0.0011 (3)0.0019 (3)0.0082 (3)
K10.0199 (7)0.0332 (8)0.0234 (7)0.0037 (5)0.0062 (5)0.0010 (6)
Cl10.0198 (9)0.0954 (18)0.0479 (11)0.0083 (10)0.0137 (8)0.0025 (11)
S10.0136 (7)0.0251 (8)0.0178 (7)0.0009 (5)0.0013 (5)0.0026 (5)
O10.032 (3)0.029 (2)0.034 (3)0.009 (2)0.014 (2)0.005 (2)
O20.019 (2)0.052 (3)0.024 (2)0.006 (2)0.0043 (18)0.003 (2)
O30.023 (2)0.042 (3)0.032 (3)0.005 (2)0.008 (2)0.000 (2)
N10.021 (3)0.032 (3)0.024 (3)0.005 (2)0.002 (2)0.003 (2)
C10.018 (3)0.025 (3)0.016 (3)0.000 (2)0.001 (2)0.002 (2)
C20.020 (3)0.027 (3)0.037 (4)0.002 (2)0.007 (3)0.002 (3)
C30.028 (4)0.040 (4)0.036 (4)0.010 (3)0.009 (3)0.002 (3)
C40.016 (3)0.056 (5)0.020 (3)0.003 (3)0.003 (2)0.000 (3)
C50.036 (4)0.040 (4)0.036 (4)0.015 (3)0.010 (3)0.002 (3)
C60.029 (3)0.026 (3)0.033 (3)0.002 (3)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—N11.897 (5)O2—K1ii2.784 (5)
Br1—K13.5001 (16)O2—K1vi2.827 (5)
K1—O1i2.704 (5)O3—K1i2.818 (6)
K1—O2ii2.784 (5)O3—K1v3.295 (6)
K1—O32.799 (5)O3—H310.82 (2)
K1—O3iii2.818 (6)O3—H320.82 (2)
K1—O2iv2.827 (5)C1—C61.356 (9)
K1—O12.855 (5)C1—C21.382 (9)
K1—O3v3.295 (6)C2—C31.384 (10)
K1—N13.468 (6)C2—H20.9300
Cl1—C41.745 (7)C3—C41.388 (11)
S1—O21.446 (5)C3—H30.9300
S1—O11.450 (5)C4—C51.355 (11)
S1—N11.584 (6)C5—C61.386 (10)
S1—C11.780 (6)C5—H50.9300
O1—K1iii2.704 (5)C6—H60.9300
N1—Br1—K173.28 (18)O2—S1—C1108.1 (3)
O1i—K1—O2ii147.39 (17)O1—S1—C1105.3 (3)
O1i—K1—O378.43 (15)N1—S1—C1108.7 (3)
O2ii—K1—O375.72 (16)S1—O1—K1iii130.8 (3)
O1i—K1—O3iii84.28 (16)S1—O1—K1111.7 (3)
O2ii—K1—O3iii71.01 (15)K1iii—O1—K1101.36 (15)
O3—K1—O3iii77.42 (11)S1—O2—K1ii144.2 (3)
O1i—K1—O2iv88.05 (16)S1—O2—K1vi133.0 (3)
O2ii—K1—O2iv99.40 (13)K1ii—O2—K1vi80.60 (12)
O3—K1—O2iv66.52 (15)K1—O3—K1i99.95 (16)
O3iii—K1—O2iv143.94 (16)K1—O3—K1v72.59 (13)
O1i—K1—O187.38 (13)K1i—O3—K1v132.42 (18)
O2ii—K1—O1105.97 (15)K1—O3—H31149 (6)
O3—K1—O1150.63 (16)K1i—O3—H3184 (6)
O3iii—K1—O175.66 (14)K1v—O3—H3182 (6)
O2iv—K1—O1139.19 (15)K1—O3—H32110 (6)
O1i—K1—O3v148.56 (15)K1i—O3—H32102 (6)
O2ii—K1—O3v60.31 (15)K1v—O3—H32125 (6)
O3—K1—O3v107.41 (13)H31—O3—H3298 (9)
O3iii—K1—O3v127.12 (10)S1—N1—Br1109.5 (3)
O2iv—K1—O3v67.58 (15)S1—N1—K183.6 (2)
O1—K1—O3v98.14 (14)Br1—N1—K175.12 (18)
O1i—K1—N1120.12 (14)C6—C1—C2121.5 (6)
O2ii—K1—N189.06 (15)C6—C1—S1120.7 (5)
O3—K1—N1159.76 (16)C2—C1—S1117.8 (5)
O3iii—K1—N1110.52 (14)C1—C2—C3118.9 (6)
O2iv—K1—N1103.80 (15)C1—C2—H2120.6
O1—K1—N146.50 (13)C3—C2—H2120.6
O3v—K1—N152.68 (13)C2—C3—C4118.7 (7)
O1i—K1—Br198.17 (12)C2—C3—H3120.7
O2ii—K1—Br1114.30 (12)C4—C3—H3120.7
O3—K1—Br1147.31 (12)C5—C4—C3122.0 (7)
O3iii—K1—Br1135.01 (11)C5—C4—Cl1119.6 (6)
O2iv—K1—Br180.94 (11)C3—C4—Cl1118.4 (6)
O1—K1—Br159.70 (10)C4—C5—C6118.8 (7)
O3v—K1—Br159.85 (9)C4—C5—H5120.6
N1—K1—Br131.60 (9)C6—C5—H5120.6
O2—S1—O1114.6 (3)C1—C6—C5120.1 (7)
O2—S1—N1105.0 (3)C1—C6—H6120.0
O1—S1—N1114.9 (3)C5—C6—H6120.0
N1—Br1—K1—O1i137.2 (2)O3iii—K1—O3—K1v125.32 (11)
N1—Br1—K1—O2ii39.8 (2)O2iv—K1—O3—K1v55.11 (13)
N1—Br1—K1—O3141.5 (3)O1—K1—O3—K1v149.3 (3)
N1—Br1—K1—O3iii47.2 (2)O3v—K1—O3—K1v0.0
N1—Br1—K1—O2iv136.1 (2)N1—K1—O3—K1v9.7 (4)
N1—Br1—K1—O155.1 (2)Br1—K1—O3—K1v60.9 (2)
N1—Br1—K1—O3v66.8 (2)O2—S1—N1—Br1177.0 (3)
O2—S1—O1—K1iii27.2 (5)O1—S1—N1—Br156.3 (4)
N1—S1—O1—K1iii148.9 (3)C1—S1—N1—Br161.5 (4)
C1—S1—O1—K1iii91.5 (4)O2—S1—N1—K1111.3 (2)
O2—S1—O1—K1101.4 (3)O1—S1—N1—K115.5 (3)
N1—S1—O1—K120.3 (4)C1—S1—N1—K1133.2 (2)
C1—S1—O1—K1139.9 (3)K1—Br1—N1—S177.5 (3)
O1i—K1—O1—S1148.80 (19)O1i—K1—N1—S161.2 (3)
O2ii—K1—O1—S161.4 (3)O2ii—K1—N1—S1103.5 (2)
O3—K1—O1—S1150.6 (3)O3—K1—N1—S1144.3 (4)
O3iii—K1—O1—S1126.4 (3)O3iii—K1—N1—S134.2 (2)
O2iv—K1—O1—S164.8 (4)O2iv—K1—N1—S1157.0 (2)
O3v—K1—O1—S10.1 (3)O1—K1—N1—S19.74 (19)
N1—K1—O1—S111.4 (2)O3v—K1—N1—S1155.9 (3)
Br1—K1—O1—S147.7 (2)Br1—K1—N1—S1112.2 (3)
O1i—K1—O1—K1iii68.3 (3)O1i—K1—N1—Br151.0 (2)
O2ii—K1—O1—K1iii81.47 (19)O2ii—K1—N1—Br1144.32 (18)
O3—K1—O1—K1iii7.7 (4)O3—K1—N1—Br1103.5 (4)
O3iii—K1—O1—K1iii16.46 (16)O3iii—K1—N1—Br1146.39 (17)
O2iv—K1—O1—K1iii152.3 (2)O2iv—K1—N1—Br144.9 (2)
O3v—K1—O1—K1iii142.81 (15)O1—K1—N1—Br1102.4 (2)
N1—K1—O1—K1iii154.3 (3)O3v—K1—N1—Br191.9 (2)
Br1—K1—O1—K1iii169.3 (2)O2—S1—C1—C6112.9 (6)
O1—S1—O2—K1ii88.7 (6)O1—S1—C1—C610.0 (6)
N1—S1—O2—K1ii38.3 (6)N1—S1—C1—C6133.7 (6)
C1—S1—O2—K1ii154.2 (5)O2—S1—C1—C268.3 (6)
O1—S1—O2—K1vi66.9 (5)O1—S1—C1—C2168.8 (5)
N1—S1—O2—K1vi166.1 (4)N1—S1—C1—C245.1 (6)
C1—S1—O2—K1vi50.2 (5)C6—C1—C2—C30.4 (10)
O1i—K1—O3—K1i16.53 (16)S1—C1—C2—C3179.2 (5)
O2ii—K1—O3—K1i176.5 (2)C1—C2—C3—C41.2 (11)
O3iii—K1—O3—K1i103.2 (2)C2—C3—C4—C51.6 (11)
O2iv—K1—O3—K1i76.40 (17)C2—C3—C4—Cl1176.9 (6)
O1—K1—O3—K1i79.2 (3)C3—C4—C5—C61.1 (11)
O3v—K1—O3—K1i131.51 (17)Cl1—C4—C5—C6177.4 (6)
N1—K1—O3—K1i141.2 (4)C2—C1—C6—C50.1 (10)
Br1—K1—O3—K1i70.6 (3)S1—C1—C6—C5178.6 (5)
O1i—K1—O3—K1v148.04 (15)C4—C5—C6—C10.2 (11)
O2ii—K1—O3—K1v52.01 (12)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x, y+3/2, z+1/2; (iv) x, y, z1; (v) x+1, y+1, z1; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1v0.82 (2)2.25 (5)3.005 (8)152 (8)
O3—H32···N1vii0.82 (2)2.16 (3)2.967 (8)166 (9)
Symmetry codes: (v) x+1, y+1, z1; (vii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaK+·C6H4BrClNO2S·H2O
Mr326.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.596 (1), 10.188 (1), 6.7649 (7)
β (°) 99.947 (9)
V3)1058.73 (17)
Z4
Radiation typeMo Kα
µ (mm1)4.70
Crystal size (mm)0.34 × 0.34 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.298, 0.333
No. of measured, independent and
observed [I > 2σ(I)] reflections
3796, 2147, 1984
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.156, 1.19
No. of reflections2147
No. of parameters134
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.22, 0.95

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.82 (2)2.25 (5)3.005 (8)152 (8)
O3—H32···N1ii0.82 (2)2.16 (3)2.967 (8)166 (9)
Symmetry codes: (i) x+1, y+1, z1; (ii) x+1, y+1/2, z1/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a grant under the UGC–BSR one-time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011a). Acta Cryst. E67, m918.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Shakuntala, K. (2011b). Acta Cryst. E67, m926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1647–m1648.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Usha, K. M. (2003). Z. Naturforsch. Teil A, 58, 351–356.  CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds