metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Aceto­nitrile-κN)penta­carbonyl­tungsten(0)

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: ce.strasser@gmx.net

(Received 29 April 2011; accepted 11 May 2011; online 20 May 2011)

The acetonitrile ligand in the title compound, [W(CH3CN)(CO)5], is coordinated end-on to a penta­carbonyl­tungsten(0) fragment with a W—N bond length of 2.186 (4) Å, completing an octa­hedral coordination environment around the W atom.

Related literature

For other structures with an (alkyl nitrile-κN)penta­carbonyl­tungsten(0) fragment, see: Darensbourg et al. (1992[Darensbourg, D. J., Atnip, E. V. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 4475-4480.]); Reibenspies et al. (1994[Reibenspies, J., Darensbourg, D. & Atnip, E. (1994). Z. Kristallogr. 209, 379-380.]); Jefford et al. (1996[Jefford, V. J., Schriver, M. J. & Zaworotko, M. J. (1996). Can. J. Chem. 74, 107-113.]). For structures with conjugated nitriles, see: Fischer et al. (1993[Fischer, H., Roth, G., Reindl, D. & Troll, C. (1993). J. Organomet. Chem. 454, 133-149.]); Helten et al. (2010[Helten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337-2341.]) and for structures with nitriles that are part of an organometallic complex, see: Busetto et al. (1992[Busetto, L., Bordoni, S., Zanotti, V., Albano, V. G. & Braga, D. (1992). New J. Chem. 16, 693-696.]); Duclos et al. (1999[Duclos, S., Conan, F., Triki, S., Le Mest, Y., Liu-Gonzalez, M. & Sala Pala, J. (1999). Polyhedron, 18, 1935-1939.]); Tang et al. (1999[Tang, Y., Sun, J. & Chen, J. (1999). Organometallics, 18, 2459-2465.]); Trylus et al. (1999[Trylus, K.-H., Kernbach, U., Brüdgam, I. & Fehlhammer, W. P. (1999). Inorg. Chim. Acta, 291, 266-278.]); Cordiner et al. (2006[Cordiner, R. L., Smith, M. E., Batsanov, A. S., Albesa-Jové, D., Hartl, F., Howard, J. A. K. & Low, P. J. (2006). Inorg. Chim. Acta, 359, 946-961.]). For the preparation, see: Strasser et al. (2010[Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458-469.]).

[Scheme 1]

Experimental

Crystal data
  • [W(C2H3N)(CO)5]

  • Mr = 364.95

  • Monoclinic, P 21 /n

  • a = 5.6485 (6) Å

  • b = 13.6231 (15) Å

  • c = 12.8642 (15) Å

  • β = 101.883 (2)°

  • V = 968.69 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.92 mm−1

  • T = 100 K

  • 0.17 × 0.07 × 0.05 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.337, Tmax = 0.549

  • 5297 measured reflections

  • 1973 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.08

  • 1973 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Atwood & Barbour, 2003;[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.] Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The title compound is an important starting material in the synthesis of complexes containing the pentacarbonyltungsten(0) fragment. The nitrile ligand is coordinated end-on to W(CO)5, completing an octahedral coordination geometry at the tungsten atom.

The trans-influence of the acetonitrile ligand is echoed by the comparatively short W1—C11 bond [1.975 (5) Å] compared to the cis-carbonyls [W—C bond lengths 2.023 (5) Å to 2.056 (5) Å].

When the present molecular structure of [W(CH3CN)(CO)5] is compared to other literature examples of (nitrile-κN)pentacarbonyltungsten(0) compounds, surprisingly no significant variations in bond lengths can be observed within the metal–ligand bonds despite different electronic and steric properties of the nitriles used. Related crystal structures reported include the W(CO)5 adducts of alkylnitriles (Reibenspies et al., 1994; Jefford et al., 1996), conjugated nitriles (Fischer et al., 1993; Tang et al., 1999; Cordiner et al., 2006; Helten et al., 2010), α-metal-substituted alkyl nitriles (Busetto et al., 1992; Trylus et al., 1999) as well as deprotonated 2,3,4-tricyanopent-2-enedinitrile (Duclos et al., 1999).

Related literature top

For other structures with an (alkyl nitrile-κN)pentacarbonyltungsten(0) fragment, see: Darensbourg et al. (1992); Reibenspies et al. (1994); Jefford et al. (1996). For structures with conjugated nitriles, see: Fischer et al. (1993); Helten et al. (2010) and for structures with nitriles that are part of an organometallic complex, see: Busetto et al. (1992); Duclos et al. (1999); Tang et al. (1999); Trylus et al. (1999); Cordiner et al. (2006). For the preparation, see: Strasser et al. (2010).

Experimental top

The compound was obtained as a side product after chromatography of a mixture obtained by treating pentacarbonyl[(4-methyl-1,3-thiazol- 2-yl)carbonyl]tungsten(0) with bis(trichloromethyl)carbonate (Strasser et al., 2010). Decomposition of the initial product followed by reaction of the pentacarbonyltungsten fragment with acetonitrile in the mobile phase resulted in formation of the title compound. Crystals of the title compound were formed by layering a dichloromethane solution with hexane.

Refinement top

All H atoms were positioned geometrically (C—H = 0.98 Å) and constrained to ride on their parent atoms; the Uiso(H) values were set at 1.5 times Ueq(C).

The maximum residual electron density of 1.69 e Å-3 is located 0.85 Å next to W1.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, ellipsoids are drawn at the 50% probability level.
(Acetonitrile-κN)pentacarbonyltungsten(0) top
Crystal data top
[W(C2H3N)(CO)5]F(000) = 664
Mr = 364.95Dx = 2.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3152 reflections
a = 5.6485 (6) Åθ = 2.2–26.4°
b = 13.6231 (15) ŵ = 11.92 mm1
c = 12.8642 (15) ÅT = 100 K
β = 101.883 (2)°Prism, light yellow
V = 968.69 (19) Å30.17 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
1973 independent reflections
Radiation source: fine-focus sealed tube1694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.337, Tmax = 0.549k = 1716
5297 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0282P)2 + 0.8554P]
where P = (Fo2 + 2Fc2)/3
1973 reflections(Δ/σ)max = 0.002
128 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[W(C2H3N)(CO)5]V = 968.69 (19) Å3
Mr = 364.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6485 (6) ŵ = 11.92 mm1
b = 13.6231 (15) ÅT = 100 K
c = 12.8642 (15) Å0.17 × 0.07 × 0.05 mm
β = 101.883 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1694 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.549Rint = 0.021
5297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.08Δρmax = 1.69 e Å3
1973 reflectionsΔρmin = 1.08 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.12706 (3)0.623964 (12)0.793281 (13)0.01429 (8)
O10.3950 (6)0.4656 (3)0.6833 (3)0.0283 (8)
O20.1535 (6)0.4537 (2)0.8890 (3)0.0258 (8)
O30.2754 (7)0.6294 (2)0.5820 (3)0.0296 (8)
O40.4077 (6)0.7892 (3)0.6922 (3)0.0304 (9)
O50.5558 (7)0.6182 (2)0.9985 (3)0.0263 (8)
N10.0645 (7)0.7352 (3)0.8667 (3)0.0172 (8)
C10.3065 (9)0.8698 (3)0.9416 (4)0.0247 (11)
H10.47830.86290.90870.037*
H20.24930.93470.92520.037*
H30.28480.86231.01880.037*
C20.1690 (8)0.7948 (3)0.9004 (4)0.0171 (9)
C110.2982 (8)0.5241 (3)0.7252 (4)0.0199 (10)
C120.0548 (8)0.5153 (3)0.8553 (4)0.0183 (9)
C130.1353 (8)0.6289 (3)0.6600 (4)0.0202 (10)
C140.3031 (9)0.7309 (3)0.7303 (4)0.0205 (10)
C150.4008 (8)0.6203 (3)0.9262 (4)0.0191 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01444 (11)0.01441 (11)0.01459 (11)0.00045 (6)0.00428 (8)0.00013 (7)
O10.029 (2)0.0272 (19)0.032 (2)0.0021 (15)0.0142 (17)0.0088 (16)
O20.0288 (19)0.0226 (17)0.030 (2)0.0014 (14)0.0161 (17)0.0021 (15)
O30.0275 (19)0.036 (2)0.0238 (19)0.0018 (16)0.0005 (17)0.0008 (16)
O40.0265 (19)0.033 (2)0.031 (2)0.0066 (16)0.0033 (17)0.0104 (16)
O50.0228 (18)0.032 (2)0.0234 (19)0.0028 (14)0.0031 (16)0.0037 (15)
N10.0175 (19)0.0197 (19)0.0147 (19)0.0014 (15)0.0040 (16)0.0010 (16)
C10.022 (2)0.022 (2)0.033 (3)0.0035 (19)0.011 (2)0.004 (2)
C20.018 (2)0.018 (2)0.014 (2)0.0032 (18)0.0008 (19)0.0012 (18)
C110.017 (2)0.022 (2)0.024 (3)0.0038 (19)0.011 (2)0.001 (2)
C120.020 (2)0.019 (2)0.017 (2)0.0008 (18)0.0091 (19)0.0029 (19)
C130.010 (2)0.025 (2)0.025 (3)0.0002 (18)0.0033 (19)0.002 (2)
C140.018 (2)0.022 (2)0.019 (2)0.000 (2)0.001 (2)0.002 (2)
C150.018 (2)0.019 (2)0.022 (2)0.0039 (18)0.007 (2)0.0045 (19)
Geometric parameters (Å, º) top
W1—N12.186 (4)C1—H10.9800
W1—C111.975 (5)C1—H20.9800
W1—C122.054 (5)C1—H30.9800
W1—C132.023 (5)C11—O11.160 (6)
W1—C142.024 (5)C12—O21.141 (6)
W1—C152.056 (5)C13—O31.143 (6)
N1—C21.140 (6)C14—O41.157 (6)
C1—C21.448 (6)C15—O51.139 (6)
O1—C11—W1178.6 (5)C11—W1—C1489.6 (2)
O2—C12—W1178.8 (4)C11—W1—C1590.0 (2)
O3—C13—W1176.5 (4)C12—W1—C1590.58 (18)
O4—C14—W1177.3 (5)C13—W1—C1290.86 (19)
O5—C15—W1178.6 (4)C13—W1—C1488.38 (19)
N1—C2—C1178.7 (5)C13—W1—C15178.36 (16)
C2—N1—W1176.9 (4)C14—W1—C12179.23 (19)
C11—W1—N1179.26 (18)C14—W1—C1590.18 (18)
C12—W1—N190.02 (16)C2—C1—H1109.5
C13—W1—N190.09 (16)C2—C1—H2109.5
C14—W1—N190.09 (18)C2—C1—H3109.5
C15—W1—N190.70 (16)H1—C1—H2109.5
C11—W1—C1389.2 (2)H1—C1—H3109.5
C11—W1—C1290.32 (19)H2—C1—H3109.5

Experimental details

Crystal data
Chemical formula[W(C2H3N)(CO)5]
Mr364.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.6485 (6), 13.6231 (15), 12.8642 (15)
β (°) 101.883 (2)
V3)968.69 (19)
Z4
Radiation typeMo Kα
µ (mm1)11.92
Crystal size (mm)0.17 × 0.07 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.337, 0.549
No. of measured, independent and
observed [I > 2σ(I)] reflections
5297, 1973, 1694
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.08
No. of reflections1973
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 1.08

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

 

Acknowledgements

We would like to thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusetto, L., Bordoni, S., Zanotti, V., Albano, V. G. & Braga, D. (1992). New J. Chem. 16, 693–696.  CAS Google Scholar
First citationCordiner, R. L., Smith, M. E., Batsanov, A. S., Albesa-Jové, D., Hartl, F., Howard, J. A. K. & Low, P. J. (2006). Inorg. Chim. Acta, 359, 946–961.  CrossRef CAS Google Scholar
First citationDarensbourg, D. J., Atnip, E. V. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 4475–4480.  CrossRef CAS Google Scholar
First citationDuclos, S., Conan, F., Triki, S., Le Mest, Y., Liu-Gonzalez, M. & Sala Pala, J. (1999). Polyhedron, 18, 1935–1939.  CrossRef CAS Google Scholar
First citationFischer, H., Roth, G., Reindl, D. & Troll, C. (1993). J. Organomet. Chem. 454, 133–149.  CrossRef CAS Google Scholar
First citationHelten, H., Beckmann, M., Schnakenburg, G. & Streubel, R. (2010). Eur. J. Inorg. Chem. pp. 2337–2341.  CrossRef Google Scholar
First citationJefford, V. J., Schriver, M. J. & Zaworotko, M. J. (1996). Can. J. Chem. 74, 107–113.  CrossRef CAS Google Scholar
First citationReibenspies, J., Darensbourg, D. & Atnip, E. (1994). Z. Kristallogr. 209, 379–380.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrasser, C. E., Cronje, S. & Raubenheimer, H. G. (2010). New J. Chem. 34, 458–469.  Web of Science CSD CrossRef CAS Google Scholar
First citationTang, Y., Sun, J. & Chen, J. (1999). Organometallics, 18, 2459–2465.  CrossRef CAS Google Scholar
First citationTrylus, K.-H., Kernbach, U., Brüdgam, I. & Fehlhammer, W. P. (1999). Inorg. Chim. Acta, 291, 266–278.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds