metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium di­aqua­bis­(methyl­enedi­phospho­nato-κ2O,O′)cobaltate(II)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: visserhg.sci@ufs.ac.za

(Received 12 November 2009; accepted 26 November 2009; online 16 January 2010)

In the title complex, K2[Co(CH4O6P2)2(H2O)2], the asymmetric unit contains two K+ cations and two half-anions in which the Co atoms lie on inversion centers. The CoII ions assume an octa­hedral CoO6 coordination geometry. In the crystal, a three-dimensional network is formed through O—H⋯O hydrogen-bond inter­actions as well as inter­molecular inter­actions between the K+ cations and neighbouring O atoms.

Related literature

For related structures, see: DeLaMatter et al. (1973[ DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146-1148.]); Jurisson et al. (1983[ Jurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332-1338.]); Barthelet et al. (2002[ Barthelet, K., Riou, D. & Férey, G. (2002). Acta Cryst. C58, m264-m265.]); Stahl et al. (2006[ Stahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112-m115.]); Van der Merwe et al. (2009[ Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.]).

[Scheme 1]

Experimental

Crystal data
  • K2[Co(CH4O6P2)2(H2O)2]

  • Mr = 521.13

  • Triclinic, [P \overline 1]

  • a = 6.4523 (3) Å

  • b = 8.7056 (3) Å

  • c = 13.1930 (5) Å

  • α = 91.334 (2)°

  • β = 93.304 (2)°

  • γ = 93.333 (2)°

  • V = 738.32 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 100 K

  • 0.28 × 0.17 × 0.17 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2004[ Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.635, Tmax = 0.690

  • 13474 measured reflections

  • 3645 independent reflections

  • 3194 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.1096

  • S = 1.23

  • 3645 reflections

  • 235parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

O1—Co1 2.052 (3)
O2—Co1 2.132 (2)
O3—Co1 2.127 (3)
O8—Co2 2.081 (3)
O9—Co2 2.117 (2)
O10—Co2 2.064 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O14i 0.85 (2) 1.83 (2) 2.680 (4) 175 (4)
O3—H3B⋯O6ii 0.86 (2) 1.89 (2) 2.737 (4) 172 (4)
O4—H4⋯O9iii 0.84 (2) 1.81 (2) 2.632 (4) 166 (5)
O7—H7⋯O6iv 0.85 (2) 1.72 (2) 2.570 (4) 177 (5)
O8—H8A⋯O5v 0.85 (2) 1.84 (2) 2.678 (4) 170 (4)
O8—H8B⋯O11vi 0.85 (2) 1.84 (2) 2.687 (4) 176 (5)
O12—H12⋯O11vii 0.85 (1) 1.72 (1) 2.561 (4) 175 (5)
O13—H13⋯O2i 0.84 (2) 1.78 (2) 2.616 (4) 174 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x, y+1, z; (iv) -x+2, -y+2, -z; (v) x, y-1, z; (vi) -x+2, -y, -z+1; (vii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[ Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[ Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[ Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[ Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[ Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[ Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We reported a similar structure recently with the only differences being the cation and the +2 oxidation state of the cobalt ion (Van der Merwe et al.<i/>, 2009).

The CoIII ion in the title complex, K[Co(C2H4O6P)2(H2O)2], is in a slightly distorted octahedral environment with O–Co–O bond angles varying from 83.75 (10) to 96.25 (10)°. All the bonding distance and angles fall within the normal range observed for complexes of this nature. The P-O distances are significantly different for PO and P-OH type bonds and vary from 1.501 (3) to 1.580 (3) Å. This could possibly be an indication that the assignment of positional disorders for the respective CoII complex previously was correct since these difference were not so prominent in the previous structure.

A three-dimensional network is provided by numerous hydrogen bonds and other weak interactions between the potassium ions and the oxygen atoms of the anionic species.

Related literature top

For related structures, see: DeLaMatter et al. (1973); Jurisson et al., 1983; Barthelet et al. (2002); Stahl et al. (2006); Van der Merwe et al. (2009).

Experimental top

CoCl2.6H2O (0,1696 g, 71 mmol) was dissolved in water (7 cm3) and heated to 70°C. Potassium bicarbonate was added to raise the pH to 5,5 after which methylene disphosphonate (0,25 g, 142 mmol), dissolved in water (5 cm3) was added dropwise. The final pH of the solution was adjusted to 1.50 to obtain the CoII salt as described previously (Van der Merwe et al.<i/> 2009). Crystals of the CoIII salt, suitable for X-ray diffraction, was obtained from redissolving and adding H2O2 to the solution.

Refinement top

The aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The hydroxyl and aqua ions were located from the difference Fourier map. The highest residual electron density was located 1.40 Å from O1 and the deepest hole was 0.64 Å from Co1.

Structure description top

We reported a similar structure recently with the only differences being the cation and the +2 oxidation state of the cobalt ion (Van der Merwe et al.<i/>, 2009).

The CoIII ion in the title complex, K[Co(C2H4O6P)2(H2O)2], is in a slightly distorted octahedral environment with O–Co–O bond angles varying from 83.75 (10) to 96.25 (10)°. All the bonding distance and angles fall within the normal range observed for complexes of this nature. The P-O distances are significantly different for PO and P-OH type bonds and vary from 1.501 (3) to 1.580 (3) Å. This could possibly be an indication that the assignment of positional disorders for the respective CoII complex previously was correct since these difference were not so prominent in the previous structure.

A three-dimensional network is provided by numerous hydrogen bonds and other weak interactions between the potassium ions and the oxygen atoms of the anionic species.

For related structures, see: DeLaMatter et al. (1973); Jurisson et al., 1983; Barthelet et al. (2002); Stahl et al. (2006); Van der Merwe et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). The potassium cations and hydrogen atoms have been omitted for clarity.
Dipotassium diaquabis(methylenediphosphonato-κ2O,O')cobaltate(II) top
Crystal data top
K2[Co(CH4O6P2)2(H2O)2]Z = 2
Mr = 521.13F(000) = 522
Triclinic, P1Dx = 2.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4523 (3) ÅCell parameters from 5231 reflections
b = 8.7056 (3) Åθ = 2.1–28.3°
c = 13.1930 (5) ŵ = 2.23 mm1
α = 91.334 (2)°T = 100 K
β = 93.304 (2)°Cuboid, pink
γ = 93.333 (2)°0.28 × 0.17 × 0.17 mm
V = 738.32 (5) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3645 independent reflections
Radiation source: sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 28.4°, θmin = 3.1°
Absorption correction: multi-scan
SADABS (Bruker, 2004)
h = 88
Tmin = 0.635, Tmax = 0.690k = 119
13474 measured reflectionsl = 1617
Refinement top
Refinement on F214 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0164P)2 + 3.9058P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.18Δρmax = 0.95 e Å3
3645 reflectionsΔρmin = 0.55 e Å3
235 parameters
Crystal data top
K2[Co(CH4O6P2)2(H2O)2]γ = 93.333 (2)°
Mr = 521.13V = 738.32 (5) Å3
Triclinic, P1Z = 2
a = 6.4523 (3) ÅMo Kα radiation
b = 8.7056 (3) ŵ = 2.23 mm1
c = 13.1930 (5) ÅT = 100 K
α = 91.334 (2)°0.28 × 0.17 × 0.17 mm
β = 93.304 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3645 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2004)
3194 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.690Rint = 0.036
13474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04014 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.95 e Å3
3645 reflectionsΔρmin = 0.55 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6164 (6)0.3660 (4)0.4121 (3)0.0083 (7)
H2A0.66470.46360.38520.01*
H2B0.49550.38440.45010.01*
O20.7149 (4)0.6643 (3)0.06002 (19)0.0084 (5)
O10.4857 (4)0.6095 (3)0.1386 (2)0.0100 (5)
O40.3898 (4)0.8338 (3)0.2356 (2)0.0093 (5)
O50.7656 (4)0.7614 (3)0.2543 (2)0.0116 (5)
O61.0177 (4)0.7998 (3)0.0450 (2)0.0088 (5)
O80.6907 (4)0.1647 (3)0.4464 (2)0.0137 (6)
O90.4598 (4)0.0840 (3)0.35124 (19)0.0087 (5)
O100.7627 (4)0.1422 (3)0.5352 (2)0.0109 (5)
O111.0208 (4)0.3123 (3)0.4451 (2)0.0091 (5)
O120.8299 (4)0.4173 (3)0.59244 (19)0.0097 (5)
O130.3411 (4)0.3121 (3)0.2569 (2)0.0094 (5)
O140.7069 (4)0.2216 (3)0.2347 (2)0.0105 (5)
P10.80660 (14)0.81239 (10)0.00988 (7)0.00684 (18)
P20.57617 (14)0.76121 (11)0.18262 (7)0.00712 (18)
P30.53703 (14)0.23561 (10)0.30689 (7)0.00681 (18)
P40.81776 (14)0.30133 (11)0.49860 (7)0.00724 (18)
K10.08042 (13)0.57684 (9)0.19914 (6)0.01125 (17)
K20.02621 (13)0.04058 (10)0.31295 (7)0.01350 (18)
Co10.50.500.00676 (15)
Co20.500.50.00634 (15)
O70.8190 (4)0.9319 (3)0.0975 (2)0.0092 (5)
O30.2452 (4)0.6119 (3)0.0684 (2)0.0112 (5)
C10.6299 (6)0.8839 (4)0.0776 (3)0.0079 (7)
H1A0.49940.90060.04040.01*
H1B0.68640.98310.10480.01*
H8B0.778 (6)0.215 (5)0.482 (3)0.02*
H8A0.699 (7)0.185 (5)0.3838 (14)0.02*
H70.877 (7)1.020 (3)0.081 (4)0.02*
H40.433 (8)0.911 (4)0.271 (3)0.02*
H130.332 (8)0.318 (6)0.1935 (15)0.02*
H3B0.175 (7)0.665 (5)0.029 (3)0.02*
H3A0.266 (8)0.661 (5)0.122 (2)0.02*
H120.872 (7)0.5089 (18)0.581 (2)0.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0098 (17)0.0062 (16)0.0087 (16)0.0003 (13)0.0010 (13)0.0003 (13)
O20.0098 (12)0.0077 (12)0.0073 (12)0.0033 (10)0.0005 (10)0.0002 (9)
O10.0146 (13)0.0065 (12)0.0089 (12)0.0016 (10)0.0035 (10)0.0000 (10)
O40.0087 (12)0.0097 (13)0.0092 (12)0.0009 (10)0.0002 (10)0.0023 (10)
O50.0108 (13)0.0146 (13)0.0095 (13)0.0031 (10)0.0004 (10)0.0010 (10)
O60.0082 (12)0.0078 (12)0.0102 (12)0.0004 (9)0.0006 (10)0.0002 (10)
O80.0150 (14)0.0183 (14)0.0087 (13)0.0097 (11)0.0005 (11)0.0010 (11)
O90.0138 (13)0.0062 (12)0.0060 (12)0.0009 (10)0.0005 (10)0.0016 (9)
O100.0088 (12)0.0092 (12)0.0146 (13)0.0013 (10)0.0011 (10)0.0065 (10)
O110.0084 (12)0.0096 (12)0.0092 (12)0.0005 (10)0.0020 (10)0.0003 (10)
O120.0139 (13)0.0077 (12)0.0072 (12)0.0016 (10)0.0002 (10)0.0008 (10)
O130.0109 (13)0.0116 (13)0.0060 (12)0.0023 (10)0.0004 (10)0.0006 (10)
O140.0118 (13)0.0127 (13)0.0075 (12)0.0023 (10)0.0023 (10)0.0021 (10)
P10.0077 (4)0.0062 (4)0.0067 (4)0.0000 (3)0.0006 (3)0.0005 (3)
P20.0080 (4)0.0076 (4)0.0059 (4)0.0014 (3)0.0010 (3)0.0004 (3)
P30.0086 (4)0.0063 (4)0.0057 (4)0.0013 (3)0.0005 (3)0.0006 (3)
P40.0083 (4)0.0063 (4)0.0069 (4)0.0006 (3)0.0010 (3)0.0008 (3)
K10.0112 (4)0.0122 (4)0.0107 (4)0.0026 (3)0.0011 (3)0.0015 (3)
K20.0109 (4)0.0126 (4)0.0167 (4)0.0017 (3)0.0022 (3)0.0013 (3)
Co10.0083 (3)0.0060 (3)0.0061 (3)0.0004 (2)0.0010 (2)0.0001 (2)
Co20.0072 (3)0.0061 (3)0.0058 (3)0.0001 (2)0.0008 (2)0.0007 (2)
O70.0137 (13)0.0055 (12)0.0081 (12)0.0021 (10)0.0003 (10)0.0016 (10)
O30.0123 (13)0.0130 (13)0.0091 (13)0.0030 (10)0.0036 (10)0.0028 (10)
C10.0104 (17)0.0061 (16)0.0077 (16)0.0015 (13)0.0016 (13)0.0017 (13)
Geometric parameters (Å, º) top
C2—P41.803 (4)O13—K13.018 (3)
C2—P31.804 (4)O13—K23.156 (3)
C2—H2A0.97O13—H130.837 (19)
C2—H2B0.97O14—P31.502 (3)
O2—P11.509 (3)O14—K2ii2.829 (3)
O1—Co12.052 (3)P1—O71.575 (3)
O2—Co12.132 (2)P1—C11.795 (4)
O3—Co12.127 (3)P2—C11.806 (4)
O1—P21.503 (3)K1—O12v2.776 (3)
O1—K12.779 (3)K1—O5vi2.780 (3)
O4—P21.581 (3)K1—O6vi2.871 (3)
O4—K12.922 (3)K1—O3vii3.023 (3)
O4—K2i3.235 (3)K1—O2viii3.153 (3)
O4—H40.84 (2)K2—O14vi2.829 (3)
O5—P21.501 (3)K2—O11vi2.909 (3)
O5—K1ii2.780 (3)K2—O10iv2.913 (3)
O5—K2iii2.936 (3)K2—O5ix2.936 (3)
O6—P11.516 (3)K2—O7viii3.076 (3)
O6—K1ii2.871 (3)K2—O4x3.235 (3)
O8—Co22.081 (3)K2—O8vi3.334 (3)
O8—K2ii3.334 (3)Co1—O1viii2.052 (3)
O8—H8B0.854 (19)Co1—O32.126 (3)
O8—H8A0.845 (19)Co1—O3viii2.126 (3)
O9—P31.525 (3)Co1—O2viii2.132 (2)
O9—Co22.117 (2)Co2—O10iv2.064 (3)
O9—K22.816 (3)Co2—O8iv2.081 (3)
O10—P41.508 (3)Co2—O9iv2.117 (2)
O10—Co22.064 (3)O7—K2viii3.076 (3)
O10—K2iv2.913 (3)O7—H70.849 (19)
O11—P41.523 (3)O3—K1vii3.023 (3)
O11—K2ii2.909 (3)O3—H3B0.855 (19)
O12—P41.575 (3)O3—H3A0.851 (19)
O12—K1v2.776 (3)C1—H1A0.97
O12—H120.848 (12)C1—H1B0.97
O13—P31.581 (3)
P4—C2—P3115.32 (19)P2vi—K1—H13153.4 (10)
P4—C2—H2A108.4Co1—K1—H1354.0 (7)
P3—C2—H2A108.4K2i—K1—H13146.4 (9)
P4—C2—H2B108.4O9—K2—O14vi135.52 (8)
P3—C2—H2B108.4O9—K2—O11vi83.20 (8)
H2A—C2—H2B107.5O9—K2—O10iv60.10 (7)
P1—O2—Co1127.62 (15)O9—K2—O5ix130.52 (8)
P2—O1—Co1133.27 (16)O9—K2—O7viii77.74 (7)
P2—O1—K1106.53 (13)O5ix—K2—O7viii91.81 (8)
Co1—O1—K1108.92 (11)O9—K2—O1349.14 (7)
P2—O4—K198.19 (12)O14vi—K2—O1386.68 (8)
P2—O4—H4110 (4)O11vi—K2—O1366.26 (7)
K1—O4—H4148 (4)O10iv—K2—O13107.66 (7)
K2i—O4—H466 (4)O5ix—K2—O13150.33 (8)
Co2—O8—H8B127 (3)O7viii—K2—O1358.52 (7)
K2ii—O8—H8B99 (3)O9—K2—O4x50.98 (7)
Co2—O8—H8A123 (3)O13—K2—O4x82.11 (7)
K2ii—O8—H8A60 (4)O9—K2—O8vi127.53 (8)
H8B—O8—H8A110 (3)O13—K2—O8vi159.31 (8)
P3—O9—Co2130.58 (16)O9—K2—P323.35 (5)
P3—O9—K2109.60 (13)O14vi—K2—P3112.35 (6)
Co2—O9—K2101.82 (10)O11vi—K2—P373.94 (6)
P4—O10—Co2129.21 (16)O10iv—K2—P382.69 (6)
P4—O12—H12115.7 (19)O5ix—K2—P3145.87 (6)
K1v—O12—H1298 (2)O7viii—K2—P366.54 (5)
P3—O13—K1155.08 (15)O13—K2—P325.79 (5)
P3—O13—K293.90 (12)O4x—K2—P364.15 (5)
K1—O13—K2106.16 (8)O8vi—K2—P3147.32 (6)
P3—O13—H13118 (4)O9—K2—P4vi103.51 (6)
K1—O13—H1371 (4)O13—K2—P4vi88.53 (5)
K2—O13—H13107 (4)P3—K2—P4vi97.09 (3)
O2—P1—O6114.49 (15)O9—K2—P3vi143.95 (6)
O2—P1—O7105.55 (15)P3—K2—P3vi124.45 (3)
O6—P1—O7111.05 (15)O1viii—Co1—O1180.00 (7)
O2—P1—C1109.75 (16)O1viii—Co1—O385.70 (11)
O6—P1—C1109.14 (16)O1—Co1—O394.30 (11)
O7—P1—C1106.53 (15)O1—Co1—O3viii85.70 (11)
O5—P2—O1118.26 (16)O3—Co1—O3viii180
O5—P2—O4111.00 (15)O1viii—Co1—O283.75 (10)
O1—P2—O4104.54 (15)O1—Co1—O296.25 (10)
O5—P2—C1109.50 (17)O3—Co1—O290.87 (10)
O1—P2—C1107.35 (16)O3viii—Co1—O289.13 (10)
O4—P2—C1105.35 (15)O1—Co1—O2viii83.75 (10)
O5—P2—K1130.08 (11)O3—Co1—O2viii89.13 (10)
O1—P2—K149.28 (11)O2—Co1—O2viii180
O4—P2—K155.38 (10)O1viii—Co1—K1138.32 (8)
C1—P2—K1120.38 (13)O1—Co1—K141.68 (8)
O14—P3—O9114.63 (15)O3—Co1—K169.01 (7)
O14—P3—O13112.37 (15)O3viii—Co1—K1110.99 (7)
O9—P3—O13107.36 (15)O2—Co1—K1127.38 (7)
O14—P3—C2111.63 (17)O2viii—Co1—K152.62 (7)
O9—P3—C2107.33 (16)O1—Co1—K1viii138.32 (8)
O13—P3—C2102.70 (15)O3—Co1—K1viii110.99 (7)
O14—P3—K2131.70 (12)O2—Co1—K1viii52.62 (7)
O9—P3—K247.05 (10)K1—Co1—K1viii180
O13—P3—K260.31 (10)O10iv—Co2—O10180
C2—P3—K2116.55 (12)O10iv—Co2—O891.42 (11)
O10—P4—O11113.25 (15)O10—Co2—O888.58 (11)
O10—P4—O12108.39 (15)O10—Co2—O8iv91.42 (11)
O11—P4—O12110.21 (15)O8—Co2—O8iv180.00 (14)
O10—P4—C2111.43 (16)O10iv—Co2—O986.68 (10)
O11—P4—C2107.68 (16)O10—Co2—O993.32 (10)
O12—P4—C2105.61 (16)O8—Co2—O989.71 (10)
O1—K1—O450.58 (7)O8iv—Co2—O990.29 (10)
O5vi—K1—O490.83 (8)O10—Co2—O9iv86.68 (10)
O6vi—K1—O471.15 (8)O8—Co2—O9iv90.29 (10)
O12v—K1—O1369.91 (8)O9—Co2—O9iv180.0000 (10)
O1—K1—O1366.27 (8)O10iv—Co2—K248.07 (7)
O5vi—K1—O13146.12 (8)O10—Co2—K2131.93 (7)
O6vi—K1—O13142.50 (8)O8—Co2—K2110.65 (8)
O4—K1—O1399.99 (8)O8iv—Co2—K269.35 (8)
O1—K1—P224.20 (6)O9—Co2—K245.66 (7)
O5vi—K1—P2116.53 (7)O9iv—Co2—K2134.34 (7)
O6vi—K1—P276.27 (6)O10—Co2—K2iv48.07 (7)
O4—K1—P226.43 (5)O8—Co2—K2iv69.35 (8)
O13—K1—P281.17 (6)O9—Co2—K2iv134.34 (7)
O1—K1—Co129.41 (6)K2—Co2—K2iv180.00 (2)
O5vi—K1—Co1146.14 (6)P1—O7—K2viii139.92 (14)
O6vi—K1—Co174.83 (5)P1—O7—H7116 (3)
O4—K1—Co176.27 (5)K2viii—O7—H790 (3)
O13—K1—Co167.68 (5)Co1—O3—K1vii118.88 (11)
O3vii—K1—Co190.27 (5)Co1—O3—H3B117 (3)
O2viii—K1—Co132.50 (5)K1vii—O3—H3B104 (3)
P2—K1—Co151.534 (19)Co1—O3—H3A118 (3)
O1—K1—H1359.5 (10)K1vii—O3—H3A85 (3)
O5vi—K1—H13159.3 (8)H3B—O3—H3A110 (3)
O6vi—K1—H13127.9 (5)P1—C1—P2115.47 (19)
O4—K1—H13102.4 (10)P1—C1—H1A108.4
O13—K1—H1316.1 (4)P2—C1—H1A108.4
O3vii—K1—H1387.6 (9)P1—C1—H1B108.4
O2viii—K1—H1334.1 (4)P2—C1—H1B108.4
P2—K1—H1379.2 (10)H1A—C1—H1B107.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x1, y1, z; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O14viii0.85 (2)1.83 (2)2.680 (4)175 (4)
O3—H3B···O6vi0.86 (2)1.89 (2)2.737 (4)172 (4)
O4—H4···O9i0.84 (2)1.81 (2)2.632 (4)166 (5)
O7—H7···O6xi0.85 (2)1.72 (2)2.570 (4)177 (5)
O8—H8A···O5x0.85 (2)1.84 (2)2.678 (4)170 (4)
O8—H8B···O11xii0.85 (2)1.84 (2)2.687 (4)176 (5)
O12—H12···O11xiii0.85 (1)1.72 (1)2.561 (4)175 (5)
O13—H13···O2viii0.84 (2)1.78 (2)2.616 (4)174 (5)
Symmetry codes: (i) x, y+1, z; (vi) x1, y, z; (viii) x+1, y+1, z; (x) x, y1, z; (xi) x+2, y+2, z; (xii) x+2, y, z+1; (xiii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaK2[Co(CH4O6P2)2(H2O)2]
Mr521.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4523 (3), 8.7056 (3), 13.1930 (5)
α, β, γ (°)91.334 (2), 93.304 (2), 93.333 (2)
V3)738.32 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.23
Crystal size (mm)0.28 × 0.17 × 0.17
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
SADABS (Bruker, 2004)
Tmin, Tmax0.635, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
13474, 3645, 3194
Rint0.036
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.18
No. of reflections3645
No. of parameters235
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—Co12.052 (3)O8—Co22.081 (3)
O2—Co12.132 (2)O9—Co22.117 (2)
O3—Co12.127 (3)O10—Co22.064 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O14i0.851 (19)1.83 (2)2.680 (4)175 (4)
O3—H3B···O6ii0.855 (19)1.89 (2)2.737 (4)172 (4)
O4—H4···O9iii0.84 (2)1.81 (2)2.632 (4)166 (5)
O7—H7···O6iv0.849 (19)1.72 (2)2.570 (4)177 (5)
O8—H8A···O5v0.845 (19)1.84 (2)2.678 (4)170 (4)
O8—H8B···O11vi0.854 (19)1.84 (2)2.687 (4)176 (5)
O12—H12···O11vii0.848 (12)1.716 (13)2.561 (4)175 (5)
O13—H13···O2i0.837 (19)1.78 (2)2.616 (4)174 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+2, y+2, z; (v) x, y1, z; (vi) x+2, y, z+1; (vii) x+2, y+1, z+1.
 

Acknowledgements

The research fund of the University of the Free State is gratefully acknowledged.

References

First citation Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Barthelet, K., Riou, D. & Férey, G. (2002). Acta Cryst. C58, m264–m265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citation Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citation Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146–1148.  CSD CrossRef CAS Web of Science Google Scholar
First citation Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Jurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332–1338.  CSD CrossRef CAS Web of Science Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Stahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112–m115.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citation Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds