Download citation
Download citation
link to html
Pauflerite β-VOSO4 has recently been identified as a one-dimensional S = ½ Heisenberg system, of interest both from a fundamental point of view and a potential material for future spintronics applications. The observation of diffuse scattering in a synthetic β-VOSO4 provides a microscopic interpretation of the underlying correlated disorder, which is linked to the inversion of the short–long V—O distance pairs along VO6 chains, forming a local defect state. Direct Monte Carlo modeling indicates that such defects form thin layers with a positive inter-layer correlation, forming small domains with inverted vanadyl bonding patterns. Two-dimensional defects in anisotropic magnetic systems may perturb, or even destroy, long-range magnetic ordering leading to unusual interactions. In particular, the lack of inversion symmetry in the defect layers opens up the possibility for the Dzyaloshinskii–Moriya interaction (DMI) and, consequently, chiral magnetism localized in the defect planes. The defect β-VOSO4 structure, therefore, opens up new possibilities for the study of low-dimensional magnetic systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622010083/dq5055sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622010083/dq5055Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520622010083/dq5055sup3.pdf
hkl layer reconstructions

CCDC reference: 2213556

Computing details top

Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(I) top
Crystal data top
O5SVDx = 3.283 Mg m3
Mr = 163.00Synchrotron radiation, λ = 0.69027 Å
Orthorhombic, PnmaCell parameters from 2031 reflections
a = 7.3908 (1) Åθ = 3.9–32.9°
b = 6.2864 (1) ŵ = 3.21 mm1
c = 7.0981 (1) ÅT = 293 K
V = 329.79 (1) Å3Cube-like, green
Z = 40.05 × 0.03 × 0.02 mm
F(000) = 316
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
663 independent reflections
Radiation source: synchrotron644 reflections with I > 2σ(I)
Synchrotron monochromatorRint = 0.031
Detector resolution: 5.8140 pixels mm-1θmax = 32.9°, θmin = 3.9°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.298, Tmax = 1.000k = 99
2591 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0372P)2 + 0.3329P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max < 0.001
wR(F2) = 0.069Δρmax = 0.87 e Å3
S = 1.15Δρmin = 0.75 e Å3
663 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
44 parametersExtinction coefficient: 0.024 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.33361 (18)0.25000.26749 (7)0.00686 (19)0.979 (5)
V20.391 (8)0.25000.253 (3)0.00686 (19)0.021 (5)
S10.37713 (7)0.75000.36813 (7)0.00697 (14)
O1A0.3747 (2)0.56303 (18)0.24372 (15)0.0116 (2)
O1B0.5447 (2)0.75000.4805 (2)0.0135 (3)
O1C0.2157 (2)0.75000.4904 (2)0.0127 (3)
O20.1265 (2)0.25000.3323 (2)0.0125 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0044 (5)0.00812 (17)0.0080 (2)0.0000.00067 (15)0.000
V20.0044 (5)0.00812 (17)0.0080 (2)0.0000.00067 (15)0.000
S10.0062 (2)0.0079 (2)0.0068 (2)0.0000.00018 (14)0.000
O1A0.0158 (5)0.0079 (4)0.0110 (5)0.0004 (4)0.0004 (3)0.0017 (3)
O1B0.0080 (6)0.0227 (7)0.0099 (6)0.0000.0031 (5)0.000
O1C0.0086 (6)0.0201 (7)0.0093 (6)0.0000.0020 (5)0.000
O20.0087 (7)0.0164 (7)0.0125 (7)0.0000.0003 (5)0.000
Geometric parameters (Å, º) top
V1—O21.599 (2)V2—O22.04 (6)
V1—O1A1.9983 (12)S1—O1A1.4702 (11)
V1—O1Ai1.9983 (12)S1—O1Av1.4702 (11)
V1—O1Cii1.9999 (17)S1—O1B1.4730 (16)
V1—O1Biii2.0022 (16)S1—O1C1.4755 (16)
V1—O2iv2.277 (2)O1B—V2iii1.95 (2)
V2—O2iv1.84 (6)O1B—V1iii2.0022 (16)
V2—O1Biii1.95 (2)O1C—V1vi1.9999 (17)
V2—O1A1.973 (3)O1C—V2vi2.03 (2)
V2—O1Ai1.973 (3)O2—V2vii1.84 (6)
V2—O1Cii2.03 (2)O2—V1vii2.277 (2)
O2—V1—O1A99.79 (6)O1Biii—V2—O288.1 (17)
O2—V1—O1Ai99.79 (6)O1A—V2—O287.1 (17)
O1A—V1—O1Ai159.96 (11)O1Ai—V2—O287.1 (17)
O2—V1—O1Cii96.23 (9)O1Cii—V2—O283.0 (18)
O1A—V1—O1Cii86.83 (3)O1A—S1—O1Av106.16 (9)
O1Ai—V1—O1Cii86.83 (3)O1A—S1—O1B109.59 (7)
O2—V1—O1Biii99.96 (9)O1Av—S1—O1B109.59 (7)
O1A—V1—O1Biii90.41 (4)O1A—S1—O1C110.10 (7)
O1Ai—V1—O1Biii90.41 (4)O1Av—S1—O1C110.10 (7)
O1Cii—V1—O1Biii163.81 (10)O1B—S1—O1C111.17 (10)
O2—V1—O2iv178.61 (4)S1—O1A—V2140.9 (6)
O1A—V1—O2iv80.16 (6)S1—O1A—V1137.59 (7)
O1Ai—V1—O2iv80.16 (6)V2—O1A—V112.6 (17)
O1Cii—V1—O2iv82.37 (7)S1—O1B—V2iii136.9 (17)
O1Biii—V1—O2iv81.43 (8)S1—O1B—V1iii149.48 (12)
O2iv—V2—O1Biii95 (2)V2iii—O1B—V1iii12.6 (17)
O2iv—V2—O1A92.7 (17)S1—O1C—V1vi136.55 (11)
O1Biii—V2—O1A92.8 (6)S1—O1C—V2vi149.0 (16)
O2iv—V2—O1Ai92.7 (17)V1vi—O1C—V2vi12.4 (16)
O1Biii—V2—O1Ai92.8 (6)V1—O2—V2vii144.0 (7)
O1A—V2—O1Ai172 (3)V1—O2—V20.8 (6)
O2iv—V2—O1Cii93.7 (16)V2vii—O2—V2144.73 (16)
O1Biii—V2—O1Cii171 (3)V1—O2—V1vii145.14 (10)
O1A—V2—O1Cii86.8 (7)V2vii—O2—V1vii1.2 (7)
O1Ai—V2—O1Cii86.8 (7)V2—O2—V1vii145.9 (6)
O2iv—V2—O2176.7 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y, z+1/2; (v) x, y+3/2, z; (vi) x+1/2, y+1, z+1/2; (vii) x1/2, y, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds