Download citation
Download citation
link to html
In the title compound, C8H10NO2+·Cl-, the asymmetric unit consists of a protonated DL-phenyl­glycine cation and a chloride anion. The crystal structure consists of alternating layers of hydro­phobic and hydro­philic zones of phenyl­glycinium along the c axis. The chloride anions are located between hydro­phobic zones, forming hydrogen bonds with N and O atoms of the cations, in hydro­philic zones. These ions are linked by cation-cation and cation-anion hydrogen bonds. This three-dimensional complex network of hydrogen bonds reinforces the cohesion of the ionic structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806003023/dn6303sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806003023/dn6303Isup2.hkl
Contains datablock I

CCDC reference: 298435

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.030
  • wR factor = 0.116
  • Data-to-parameter ratio = 18.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 Cl
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

(I) top
Crystal data top
C8H10NO2+·ClF(000) = 784
Mr = 187.62Dx = 1.446 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 20517 reflections
a = 7.303 (2) Åθ = 1.9–27.6°
b = 11.005 (2) ŵ = 0.4 mm1
c = 21.447 (4) ÅT = 296 K
V = 1723.7 (7) Å3Prism, colourless
Z = 80.13 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.6°, θmin = 1.9°
φ scans, and ω scans with κ offsetsh = 99
20517 measured reflectionsk = 1411
1979 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.3984P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1979 reflectionsΔρmax = 0.32 e Å3
109 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24540 (5)0.62877 (3)0.926359 (19)0.03243 (17)
O10.22347 (16)0.55882 (10)0.94637 (6)0.0314 (3)
O20.45649 (18)0.43732 (13)0.91952 (6)0.0430 (4)
H20.51900.49670.92860.065*
N10.0165 (2)0.36896 (12)0.94555 (7)0.0308 (3)
H1A0.00220.37420.98650.046*
H1B0.08730.30510.93740.046*
H1C0.07130.43630.93210.046*
C20.1391 (2)0.34440 (14)0.84314 (7)0.0233 (3)
C10.1623 (2)0.35436 (14)0.91314 (7)0.0244 (3)
H10.22120.28000.92840.029*
C30.0697 (2)0.44071 (14)0.80843 (7)0.0281 (4)
H30.02930.51080.82830.034*
C70.1954 (2)0.23959 (14)0.81299 (8)0.0290 (4)
H70.23970.17440.83610.035*
C50.1203 (2)0.32736 (17)0.71439 (7)0.0327 (4)
H50.11590.32210.67110.039*
C40.0609 (2)0.43167 (16)0.74397 (8)0.0332 (4)
H40.01500.49600.72060.040*
C80.2836 (2)0.46209 (15)0.92932 (7)0.0252 (3)
C60.1861 (2)0.23127 (16)0.74877 (8)0.0334 (4)
H60.22430.16070.72880.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0310 (3)0.0298 (3)0.0365 (3)0.00346 (15)0.00030 (16)0.00309 (15)
O10.0343 (7)0.0231 (6)0.0367 (6)0.0017 (5)0.0043 (5)0.0026 (5)
O20.0275 (7)0.0431 (8)0.0585 (8)0.0034 (6)0.0040 (6)0.0187 (6)
N10.0324 (8)0.0284 (7)0.0316 (7)0.0073 (6)0.0072 (6)0.0041 (5)
C20.0227 (7)0.0230 (7)0.0242 (7)0.0043 (6)0.0009 (6)0.0013 (6)
C10.0267 (8)0.0217 (8)0.0249 (7)0.0003 (6)0.0015 (6)0.0001 (6)
C30.0296 (8)0.0242 (8)0.0306 (8)0.0006 (6)0.0021 (6)0.0015 (6)
C70.0340 (9)0.0224 (8)0.0306 (8)0.0012 (6)0.0008 (7)0.0002 (6)
C50.0307 (8)0.0429 (10)0.0244 (8)0.0059 (8)0.0022 (6)0.0023 (7)
C40.0321 (8)0.0345 (9)0.0330 (9)0.0016 (7)0.0073 (7)0.0061 (7)
C80.0264 (8)0.0287 (9)0.0206 (7)0.0020 (6)0.0011 (6)0.0004 (6)
C60.0351 (9)0.0320 (9)0.0331 (8)0.0000 (7)0.0025 (7)0.0098 (7)
Geometric parameters (Å, º) top
O1—C81.208 (2)C1—H10.9800
O2—C81.308 (2)C3—C41.388 (2)
O2—H20.8200C3—H30.9300
N1—C11.488 (2)C7—C61.382 (2)
N1—H1A0.8900C7—H70.9300
N1—H1B0.8900C5—C61.376 (3)
N1—H1C0.8900C5—C41.381 (3)
C2—C71.385 (2)C5—H50.9300
C2—C31.391 (2)C4—H40.9300
C2—C11.515 (2)C6—H60.9300
C1—C81.520 (2)
C8—O2—H2109.5C4—C3—H3120.2
C1—N1—H1A109.5C2—C3—H3120.2
C1—N1—H1B109.5C6—C7—C2120.39 (15)
H1A—N1—H1B109.5C6—C7—H7119.8
C1—N1—H1C109.5C2—C7—H7119.8
H1A—N1—H1C109.5C6—C5—C4120.15 (15)
H1B—N1—H1C109.5C6—C5—H5119.9
C7—C2—C3119.55 (14)C4—C5—H5119.9
C7—C2—C1119.33 (14)C5—C4—C3120.18 (15)
C3—C2—C1121.06 (14)C5—C4—H4119.9
N1—C1—C2111.88 (13)C3—C4—H4119.9
N1—C1—C8108.69 (12)O1—C8—O2125.66 (15)
C2—C1—C8110.37 (12)O1—C8—C1122.97 (15)
N1—C1—H1108.6O2—C8—C1111.29 (13)
C2—C1—H1108.6C5—C6—C7120.02 (16)
C8—C1—H1108.6C5—C6—H6120.0
C4—C3—C2119.69 (15)C7—C6—H6120.0
C7—C2—C1—N1118.51 (16)C6—C5—C4—C30.9 (3)
C3—C2—C1—N164.33 (18)C2—C3—C4—C50.2 (2)
C7—C2—C1—C8120.33 (16)N1—C1—C8—O123.3 (2)
C3—C2—C1—C856.84 (19)C2—C1—C8—O199.77 (17)
C7—C2—C3—C41.3 (2)N1—C1—C8—O2159.70 (13)
C1—C2—C3—C4175.90 (15)C2—C1—C8—O277.26 (17)
C3—C2—C7—C61.2 (2)C4—C5—C6—C71.0 (3)
C1—C2—C7—C6175.99 (15)C2—C7—C6—C50.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.892.583.3475 (18)145
N1—H1A···O1i0.892.312.879 (2)122
N1—H1B···Cl1ii0.892.313.1906 (17)173
N1—H1C···Cl10.892.473.3375 (17)164
O2—H2···Cl1iii0.822.253.0332 (16)159
C1—H1···O1iv0.982.503.433 (2)159
C5—H5···O2v0.932.603.338 (2)137
Symmetry codes: (i) x, y+1, z+2; (ii) x1/2, y1/2, z; (iii) x+1, y, z; (iv) x+1/2, y1/2, z; (v) x1/2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds