Download citation
Download citation
link to html
Hydro­thermal reaction of 4-hydroxy­isophthalic acid and Co(NO3)2·6H2O in water resulted in a new mononuclear cobalt compound, [Co(H2O)6](C8H5O5)2·4H2O. The occurrence of an intricate hydrogen-bond network leads to the formation of a three-dimensional structure. The cation lies on a crystallographic inversion center, while the anion and water molecules are in general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008894/dn6066sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008894/dn6066Isup2.hkl
Contains datablock I

CCDC reference: 214581

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.035
  • wR factor = 0.095
  • Data-to-parameter ratio = 10.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The design and synthesis of new compounds with structures defined through non-covalent connections is currently of great interest because of their potential application in some areas, such as gas storage (Atwood et al., 1999), catalysis (Thomas,1998), molecular transport (Gardner et al., 1995) and biosynthesis (Lippert, 1997). As is already known in the fields of supramolecular chemistry and crystal engineering, hydrogen bonding plays an important role. Many examples of compounds that assemble by hydrogen-bonding interactions have been reported in previous works (Yuan et al., 2002). The great structural diversity of crystal packing results not only from the variability of the organic ligands and the ligand-to-metal connections, but also from the types and fashions of hydrogen bonding and other weak intermolecular interactions (Naumann et al., 2002). Although, 4-hydroxyisophthalic acid, which possesses four carboxylic oxygen atoms and one hydroxyl oxygen atom, is a good candidate to generate rich linking modes, including hydrogen bonding, it has been rarely reported in recent years. Herein we report the preparation and characterization of the first 4-hydroxyisophthalate–cobalt(II) complex, [Co(C8H5O5)2(H2O)6]·4H2O, (I).

An X-ray analysis reveals that the (I) possesses a mononuclear structure. A view of the cobalt ion coordination is shown in Fig. 1, where the metal center is coordinated in an octahedral geometry by six water molecules with Co—O distances ranging from 2.0386 (18) to 2.1371 (18) Å. The 4-hydroxyisophthalate ligand in which only one carboxylic acid group is deprotoned, is not directly coordinated to the cobalt ion but is involved in a hydrogen-bond interaction with it. Different types of hydrogen-bonding interactions are observed (Table 2) in which O atoms may act as donors or acceptors: (a) hydrogen bonds between coordinated water and isolated water molecules, with O···O distances ranging from 2.627 (3) to 2.982 (3) Å; (b) hydrogen bonds between coordinated water molecules and carboxylic acid O atoms, with O···O distances ranging from 2.744 (2) to 3.031 (3) Å; (c) hydrogen bonds between coordinated water and hydroxyl atom O5, with an O···O distance of 2.886 (3) Å; (d) hydrogen bond between isolated water molecules and carboxylic acid oxygen atoms, with O···O distances of 2.754 (3) and 2.865 (3) Å; (e) hydrogen bonds between the hydroxyl and carboxylic acid groups, with an O···O distance of 2.675 (2) Å. These hydrogen-bonding interactions result in a three-dimensional network (Fig. 2).

Experimental top

A mixture of 4-hydroxyisophthalic acid (0.25 mmol, 0.045 g), Co(NO3)2·6H2O (0.2 mmol, 0.05 g) and H2O (20 ml) was sealed in a 25 ml Teflon-lined stainless-steel reator and heated at 433 K for 72 h, and a red solution was obtained. After cooling and evaporating the red solution for two weeks, red crystals were isolated by filtration (yield, 50%).

Refinement top

The H atoms were located in an electron-density difference map. The H atoms of C—H and hydroxyl O—H groups were placed in calculated positions (C—H = 0.96 Å and O—H = 0.82 Å) and were allowed to refine as riding models, with displacement parameters fixed at 120% of those of their parent atoms. The H atoms of the water molecules (free and coordinated) were refined with O—H distances restrained to 0.84 (1) Å and H···H distances restrained to 1.37 (1) Å with displacement parameters fixed at 150% of the attached O atoms. These restraints ensure a reasonable geometry for the water molecules.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the cobalt ion coordination. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title complex, showing the three-dimensional hydrogen-bonding network.
Hexaaquabis(4-hydroxyisophthalato)cobalt(II) tetrahydrate top
Crystal data top
[Co(C8H5O5)2(H2O)6]·4H2OZ = 1
Mr = 601.33F(000) = 313
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1863 (6) ÅCell parameters from 34 reflections
b = 8.5173 (7) Åθ = 2.1–25.0°
c = 9.8959 (7) ŵ = 0.80 mm1
α = 92.088 (1)°T = 293 K
β = 91.424 (1)°Block, red
γ = 90.548 (1)°0.28 × 0.16 × 0.10 mm
V = 605.08 (8) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.857, Tmax = 0.923k = 1010
3102 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2322P]
where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.54 e Å3
14 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C8H5O5)2(H2O)6]·4H2Oγ = 90.548 (1)°
Mr = 601.33V = 605.08 (8) Å3
Triclinic, P1Z = 1
a = 7.1863 (6) ÅMo Kα radiation
b = 8.5173 (7) ŵ = 0.80 mm1
c = 9.8959 (7) ÅT = 293 K
α = 92.088 (1)°0.28 × 0.16 × 0.10 mm
β = 91.424 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2076 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1847 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.923Rint = 0.019
3102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03514 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.54 e Å3
2076 reflectionsΔρmin = 0.43 e Å3
203 parameters
Special details top

Experimental. empirical from equivalent reflections (XEMP in SHELXTL; Siemens, 1994)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50001.00000.02648 (16)
O10.1015 (3)0.3432 (2)0.40678 (18)0.0401 (5)
H10.03970.42470.40090.060*
OW10.2519 (3)0.1236 (3)0.1004 (2)0.0565 (6)
HW1A0.254 (5)0.034 (3)0.142 (4)0.085*
HW1B0.159 (4)0.124 (4)0.046 (3)0.085*
O20.0788 (3)0.3815 (2)0.62732 (18)0.0409 (5)
OW20.0166 (3)0.2883 (3)0.0519 (2)0.0469 (5)
HW2A0.078 (4)0.342 (4)0.001 (3)0.070*
HW2B0.086 (4)0.259 (4)0.115 (2)0.070*
O30.3804 (3)0.3555 (2)0.38148 (18)0.0393 (5)
O40.2847 (3)0.16327 (19)0.23697 (16)0.0339 (4)
O50.3719 (3)0.3212 (2)0.63382 (18)0.0416 (5)
H50.38830.36600.56310.062*
O60.4793 (3)0.2650 (2)1.0299 (2)0.0407 (5)
H6A0.556 (4)0.202 (3)0.996 (3)0.061*
H6B0.438 (4)0.227 (3)1.101 (2)0.061*
O70.2503 (3)0.4795 (2)0.87847 (18)0.0393 (4)
H7A0.259 (5)0.449 (4)0.7975 (15)0.059*
H7B0.181 (5)0.553 (4)0.888 (3)0.059*
O80.3296 (3)0.5436 (2)1.16465 (17)0.0340 (4)
H8A0.301 (4)0.6371 (15)1.181 (3)0.051*
H8B0.339 (5)0.495 (3)1.2368 (18)0.051*
C10.1221 (3)0.2977 (3)0.5342 (2)0.0287 (5)
C20.1972 (3)0.1373 (3)0.5573 (2)0.0265 (5)
C30.2296 (3)0.0411 (3)0.4507 (2)0.0258 (5)
H30.21070.08080.36260.031*
C40.2898 (3)0.1139 (3)0.4720 (2)0.0249 (5)
C50.3194 (3)0.2170 (3)0.3556 (2)0.0292 (5)
C60.3162 (3)0.1722 (3)0.6056 (2)0.0295 (5)
C70.2848 (4)0.0751 (3)0.7138 (2)0.0370 (6)
H70.30440.11380.80210.044*
C80.2253 (4)0.0766 (3)0.6901 (2)0.0339 (6)
H80.20320.14000.76270.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0321 (3)0.0258 (3)0.0218 (3)0.00166 (18)0.00285 (18)0.00369 (17)
O10.0594 (13)0.0296 (9)0.0312 (10)0.0120 (9)0.0071 (9)0.0001 (7)
OW10.0534 (14)0.0512 (13)0.0632 (15)0.0030 (11)0.0020 (11)0.0235 (11)
O20.0571 (12)0.0332 (10)0.0327 (10)0.0143 (9)0.0000 (8)0.0107 (8)
OW20.0396 (11)0.0552 (13)0.0461 (12)0.0059 (9)0.0052 (9)0.0118 (10)
O30.0600 (12)0.0244 (9)0.0336 (10)0.0112 (8)0.0004 (8)0.0049 (7)
O40.0497 (11)0.0287 (9)0.0235 (9)0.0044 (8)0.0036 (8)0.0033 (7)
O50.0631 (13)0.0314 (10)0.0299 (9)0.0161 (9)0.0003 (9)0.0012 (7)
O60.0516 (12)0.0299 (10)0.0420 (11)0.0020 (8)0.0173 (9)0.0097 (8)
O70.0448 (11)0.0459 (11)0.0270 (9)0.0009 (9)0.0053 (8)0.0018 (8)
O80.0467 (11)0.0314 (9)0.0245 (8)0.0010 (8)0.0075 (8)0.0036 (7)
C10.0290 (12)0.0276 (12)0.0298 (13)0.0000 (9)0.0021 (10)0.0050 (10)
C20.0272 (12)0.0248 (11)0.0278 (12)0.0010 (9)0.0005 (9)0.0057 (9)
C30.0277 (12)0.0267 (12)0.0228 (11)0.0006 (9)0.0006 (9)0.0006 (9)
C40.0248 (11)0.0251 (11)0.0251 (12)0.0014 (9)0.0013 (9)0.0043 (9)
C50.0311 (12)0.0280 (12)0.0287 (13)0.0002 (10)0.0030 (10)0.0042 (10)
C60.0309 (13)0.0267 (12)0.0307 (13)0.0031 (10)0.0008 (10)0.0010 (10)
C70.0504 (16)0.0386 (14)0.0219 (12)0.0093 (12)0.0023 (11)0.0016 (10)
C80.0406 (14)0.0361 (14)0.0253 (12)0.0065 (11)0.0012 (10)0.0087 (10)
Geometric parameters (Å, º) top
Co—O62.0386 (18)O6—H6B0.841 (10)
Co—O82.0873 (17)O7—H7A0.837 (10)
Co—O72.1371 (18)O7—H7B0.81 (3)
Co—O7i2.1371 (18)O8—H8A0.835 (10)
O1—C11.310 (3)O8—H8B0.838 (10)
O1—H10.8200C1—C21.472 (3)
OW1—HW1A0.85 (2)C2—C31.383 (3)
OW1—HW1B0.85 (3)C2—C81.404 (3)
O2—C11.230 (3)C3—C41.392 (3)
OW2—HW2A0.84 (3)C3—H30.9300
OW2—HW2B0.835 (10)C4—C61.404 (3)
O3—C51.270 (3)C4—C51.492 (3)
O4—C51.263 (3)C6—C71.398 (4)
O5—C61.344 (3)C7—C81.367 (4)
O5—H50.8200C7—H70.9300
O6—H6A0.84 (3)C8—H80.9300
O6—Co—O6i180.0O1—C1—C2114.8 (2)
O6—Co—O8i90.38 (7)C3—C2—C8119.0 (2)
O6—Co—O889.62 (7)C3—C2—C1121.2 (2)
O6—Co—O788.04 (8)C8—C2—C1119.7 (2)
O6i—Co—O791.96 (8)C2—C3—C4121.6 (2)
O8i—Co—O793.09 (8)C2—C3—H3119.2
O8—Co—O786.91 (8)C4—C3—H3119.2
C1—O1—H1109.5C3—C4—C6118.4 (2)
HW1A—OW1—HW1B107 (2)C3—C4—C5120.8 (2)
HW2A—OW2—HW2B110.1 (17)C6—C4—C5120.8 (2)
C6—O5—H5109.5O4—C5—O3123.1 (2)
Co—O6—H6A121 (2)O4—C5—C4119.2 (2)
Co—O6—H6B123 (2)O3—C5—C4117.7 (2)
H6A—O6—H6B109.0 (16)O5—C6—C7118.1 (2)
Co—O7—H7A118 (2)O5—C6—C4121.7 (2)
Co—O7—H7B114 (2)C7—C6—C4120.2 (2)
H7A—O7—H7B113 (3)C8—C7—C6120.2 (2)
Co—O8—H8A117 (2)C8—C7—H7119.9
Co—O8—H8B123 (2)C6—C7—H7119.9
H8A—O8—H8B110.0 (16)C7—C8—C2120.6 (2)
O2—C1—O1122.6 (2)C7—C8—H8119.7
O2—C1—C2122.5 (2)C2—C8—H8119.7
O2—C1—C2—C3174.4 (2)C6—C4—C5—O34.3 (4)
O1—C1—C2—C34.3 (3)C3—C4—C6—O5179.2 (2)
O2—C1—C2—C81.4 (4)C5—C4—C6—O51.2 (4)
O1—C1—C2—C8179.9 (2)C3—C4—C6—C70.9 (4)
C8—C2—C3—C40.2 (4)C5—C4—C6—C7178.9 (2)
C1—C2—C3—C4176.0 (2)O5—C6—C7—C8179.0 (2)
C2—C3—C4—C60.5 (3)C4—C6—C7—C81.1 (4)
C2—C3—C4—C5178.5 (2)C6—C7—C8—C20.8 (4)
C3—C4—C5—O41.8 (4)C3—C2—C8—C70.4 (4)
C6—C4—C5—O4176.2 (2)C1—C2—C8—C7176.3 (2)
C3—C4—C5—O3177.7 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.862.675 (2)173
O5—H5···O30.821.802.527 (2)148
O6—H6A···OW1iii0.84 (3)1.82 (3)2.627 (3)161 (3)
O6—H6B···O4iv0.84 (1)1.86 (1)2.674 (2)164 (3)
O7—H7A···O50.84 (1)2.10 (2)2.886 (3)156 (3)
O7—H7A···O2v0.84 (1)2.59 (3)3.031 (3)115 (3)
O7—H7B···OW2vi0.81 (3)2.05 (3)2.847 (3)167 (3)
O8—H8A···OW1vi0.84 (1)2.25 (2)2.982 (3)147 (2)
O8—H8B···O3iv0.84 (1)1.92 (1)2.744 (2)169 (3)
OW2—HW2A···O7vii0.84 (3)2.12 (3)2.952 (3)175 (3)
OW2—HW2B···O4viii0.84 (1)2.04 (3)2.865 (3)167 (4)
OW1—HW1A···O40.85 (2)1.90 (2)2.754 (3)174 (4)
OW1—HW1B···OW20.85 (3)2.07 (3)2.759 (3)138 (3)
Symmetry codes: (ii) x, y1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x, y, z+1; (viii) x, y, z.

Experimental details

Crystal data
Chemical formula[Co(C8H5O5)2(H2O)6]·4H2O
Mr601.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1863 (6), 8.5173 (7), 9.8959 (7)
α, β, γ (°)92.088 (1), 91.424 (1), 90.548 (1)
V3)605.08 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.28 × 0.16 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
3102, 2076, 1847
Rint0.019
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.07
No. of reflections2076
No. of parameters203
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.43

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994, SHELXTL (Siemens, 1994), SHELXTL, ORTEP-3 (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
Co—O62.0386 (18)O2—C11.230 (3)
Co—O82.0873 (17)O3—C51.270 (3)
Co—O72.1371 (18)O4—C51.263 (3)
O1—C11.310 (3)O5—C61.344 (3)
O6—Co—O8i90.38 (7)O2—C1—O1122.6 (2)
O6—Co—O889.62 (7)O2—C1—C2122.5 (2)
O6—Co—O788.04 (8)O1—C1—C2114.8 (2)
O6i—Co—O791.96 (8)O4—C5—O3123.1 (2)
O8i—Co—O793.09 (8)O4—C5—C4119.2 (2)
O8—Co—O786.91 (8)O3—C5—C4117.7 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.862.675 (2)173
O5—H5···O30.821.802.527 (2)148
O6—H6A···OW1iii0.84 (3)1.82 (3)2.627 (3)161 (3)
O6—H6B···O4iv0.84 (1)1.86 (1)2.674 (2)164 (3)
O7—H7A···O50.84 (1)2.10 (2)2.886 (3)156 (3)
O7—H7A···O2v0.84 (1)2.59 (3)3.031 (3)115 (3)
O7—H7B···OW2vi0.81 (3)2.05 (3)2.847 (3)167 (3)
O8—H8A···OW1vi0.84 (1)2.25 (2)2.982 (3)147 (2)
O8—H8B···O3iv0.84 (1)1.92 (1)2.744 (2)169 (3)
OW2—HW2A···O7vii0.84 (3)2.12 (3)2.952 (3)175 (3)
OW2—HW2B···O4viii0.84 (1)2.04 (3)2.865 (3)167 (4)
OW1—HW1A···O40.85 (2)1.90 (2)2.754 (3)174 (4)
OW1—HW1B···OW20.85 (3)2.07 (3)2.759 (3)138 (3)
Symmetry codes: (ii) x, y1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x, y, z+1; (viii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds