Download citation
Download citation
link to html
In the title compound, C5H9N52+·2ClO4·H2O, the structure can be described as alternating layers of C5H9N52+ and ClO4 ions along the a axis. Layers of adeninium cations and perchlorate anions are linked by strong anion–cation and anion–water hydrogen bonds via the sandwiched water mol­ecules. This three-dimensional complex network of hydrogen bonds (N—H...O) reinforces the cohesion of the ionic structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007906/dn6064sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007906/dn6064Isup2.hkl
Contains datablock I

CCDC reference: 214613

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in solvent or counterion
  • R factor = 0.036
  • wR factor = 0.105
  • Data-to-parameter ratio = 22.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 8.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Structure elucidation of components of nucleic acids and their derivatives are of interest, because of their widespread biological occurrence (Richards et al., 1972; Perutz & Ten Eyck, 1972). Adenine is one of the precursors of DNA and RNA nucleotides, along with cytosine, guanine, thymine, and uracil. The cystal structures of adenine hydrochloride hemihydrate (Cunane & Taylor, 1997), adenine hydrobromide hemihydrate (Langer & Huml, 1978a), adenine dihydrochloride (Kistenmacher & Shigematsu, 1974), adeninium dinitrate (Hardgrove et al., 1983), adeninium phosphate (Langer et al., 1979), adeninium sulfate (Langer & Huml, 1978b), and adeninium hemisulfate hydrate (Langer et al., 1978) have been reported. In several crystal structures of compounds with organic bases, amino acides and inorganic acids, the structural cohesion is assured by strong hydrogen bonds, as was observed in m-carboxyphenylammonium nitrate (Benali-Cherif, Cherouana et al., 2002) and L-histidinium dinitrate (Benali-Cherif, Benguedouar et al., 2002), phosphoric: m-carboxyphenylammonium phosphate (Benali-Cherif, Bendheif et al., 2002) and p-carboxyphenylammonium dihydrogenmonophosphate monohydrate (Benali-Cherif, Abouimrane et al., 2002), guaninium dinitrate dihydrate (Bouchouit et al., 2002), guaninium sulfate monohydrate (Cherouana et al., 2003) and L-valinium monohydrogenphosphite (Bendheif et al., 2003). The main purpose of the present study is to examine the hydrogen bonding engineered in the crystals of diprotonated adeninium diperchlorate hydrate, (I), at 120 K.

The strucure determination reveals that imidazolyl and pyrimidine rings are coplanar. The perchlorate ions are slightly disordered at 120 K, but remains tetrahedral in shape with Cl—O distances and O—Cl—O angles ranging from 1.4413 (11) to 1.471 (5) Å and 107.9 (3) to 121.6 (2)°. Two imino groups of imidazolyl and pyrimidine moieties of adenine base are protonated at positions N1 and N7 as already reported in various crystal structures containing adenine cations (adeninium sulfate, adenine dihydrochloride and adeninium dinitrate). This is evident from the increase in the ring angle at the site of protonation, namely N1 and N7. The internal angles at N1 and N7 [C6—N1—C2 = 124.02 (15)° and C8—N7—C5 = 108.31 (14)°] have increased from the reported 119.8° and 104.4° values in the unprotonated adenine (Voet & Rich, 1970). The diprotonated adenenium cation and perchlorate anion are linked by hydrogen bonds (Table 2 and Fig. 2). N1, N6, N7 and N9 atoms are involved in the strongest intramolecular and intermolecular N—H···O hydrogen bonds with perchlorate anions. We also observed that the water molecule forms five hydrogen bonds with the adeninium and perchlorate ions, in two modes, as donnor with perchlorate anion and adeninium ion respectively and as acceptor with the adeninium ion (Table 2).

Experimental top

The title compound was obtained as colorless crystals, after few days, by slow evaporation from an aqueous solution of adenine and perchloric acid in stoichiometric ratio of 1:2.

Refinement top

In the initial refinement of the title compound, atom O5 of one perchlorate anion showed large anisotropy of apparent thermal motion. The final refinement was carried out with a model in which O5 is distributed on two sites with equal occupancy (O5A and O5B) to simulate a disorder that occurs by a twist around the Cl2—O5 arm.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrujia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view of title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. PLUTON (Spek, 1990) view of the ionic structure, showing the imediate hydrogen-bonded surroundings of anions and cation.
(I) top
Crystal data top
C5H7N52+·2ClO42·H2OZ = 2
Mr = 354.07F(000) = 360
Triclinic, P1Dx = 1.903 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7777 (2) ÅCell parameters from 14891 reflections
b = 8.5114 (2) Åθ = 2.0–33.1°
c = 11.0871 (3) ŵ = 0.59 mm1
α = 88.703 (2)°T = 120 K
β = 70.074 (2)°Needle, colorless
γ = 64.789 (2)°0.3 × 0.2 × 0.1 mm
V = 617.78 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3520 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 33.1°, θmin = 2.0°
ϕ scansh = 1011
14891 measured reflectionsk = 1113
4647 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
4647 reflections(Δ/σ)max = 0.003
207 parametersΔρmax = 0.48 e Å3
4 restraintsΔρmin = 0.60 e Å3
Crystal data top
C5H7N52+·2ClO42·H2Oγ = 64.789 (2)°
Mr = 354.07V = 617.78 (3) Å3
Triclinic, P1Z = 2
a = 7.7777 (2) ÅMo Kα radiation
b = 8.5114 (2) ŵ = 0.59 mm1
c = 11.0871 (3) ÅT = 120 K
α = 88.703 (2)°0.3 × 0.2 × 0.1 mm
β = 70.074 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3520 reflections with I > 2σ(I)
14891 measured reflectionsRint = 0.030
4647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0364 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.48 e Å3
4647 reflectionsΔρmin = 0.60 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.33276 (5)0.30700 (4)0.04545 (3)0.01462 (8)
Cl20.09320 (6)0.73038 (4)0.47966 (3)0.02185 (10)
O10.39018 (18)0.40062 (16)0.05868 (12)0.0285 (3)
O30.51275 (15)0.16082 (13)0.05086 (10)0.0184 (2)
O60.17584 (18)0.55024 (14)0.50410 (11)0.0275 (3)
O40.19887 (17)0.24322 (14)0.02364 (12)0.0240 (2)
O80.22430 (17)0.74387 (15)0.35731 (12)0.0262 (3)
O20.22803 (17)0.42359 (14)0.16684 (11)0.0268 (3)
O1W0.22631 (17)0.41867 (14)0.72967 (11)0.0186 (2)
N10.47554 (17)0.20666 (15)0.32794 (11)0.0148 (2)
H10.34920.25540.37850.018*
N70.94493 (17)0.20159 (14)0.18786 (11)0.0126 (2)
H70.93620.29850.19980.015*
O70.10692 (17)0.77912 (17)0.47463 (12)0.0360 (3)
N30.75792 (18)0.25921 (14)0.20731 (11)0.0144 (2)
N91.07032 (17)0.01574 (14)0.12476 (11)0.0136 (2)
H91.15690.02490.08910.016*
N60.47791 (19)0.06836 (16)0.34398 (13)0.0208 (3)
H6A0.34880.01940.38830.025*
H6B0.54410.18080.32660.025*
C50.7845 (2)0.03561 (16)0.22907 (12)0.0122 (2)
C81.1134 (2)0.18642 (17)0.12718 (13)0.0143 (3)
H81.24320.27970.09120.017*
C40.8640 (2)0.08223 (17)0.18914 (12)0.0120 (2)
C60.5737 (2)0.02835 (17)0.30290 (13)0.0139 (2)
C20.5652 (2)0.31327 (18)0.27776 (14)0.0161 (3)
H20.48230.43370.29530.019*
O5A0.0368 (9)0.8396 (9)0.5939 (6)0.0414 (13)0.50
O5B0.1143 (8)0.8443 (9)0.5674 (6)0.0388 (12)0.50
H1W0.188 (3)0.451 (3)0.6707 (16)0.047 (5)*
H2W0.232 (3)0.482 (2)0.7765 (18)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01297 (15)0.01232 (14)0.01924 (16)0.00603 (12)0.00618 (12)0.00278 (11)
Cl20.0274 (2)0.01333 (15)0.01695 (17)0.00175 (14)0.00851 (14)0.00041 (12)
O10.0299 (6)0.0332 (6)0.0342 (7)0.0219 (6)0.0163 (5)0.0212 (5)
O30.0132 (5)0.0140 (5)0.0227 (5)0.0015 (4)0.0062 (4)0.0000 (4)
O60.0281 (6)0.0142 (5)0.0262 (6)0.0011 (5)0.0049 (5)0.0058 (4)
O40.0218 (6)0.0228 (5)0.0377 (6)0.0153 (5)0.0161 (5)0.0086 (5)
O80.0205 (6)0.0276 (6)0.0338 (7)0.0146 (5)0.0092 (5)0.0129 (5)
O20.0211 (6)0.0190 (5)0.0283 (6)0.0017 (5)0.0085 (5)0.0076 (4)
O1W0.0207 (5)0.0140 (5)0.0222 (5)0.0091 (4)0.0071 (4)0.0013 (4)
N10.0101 (5)0.0123 (5)0.0176 (5)0.0035 (4)0.0018 (4)0.0010 (4)
N70.0120 (5)0.0084 (5)0.0150 (5)0.0031 (4)0.0041 (4)0.0014 (4)
O70.0138 (5)0.0369 (7)0.0374 (7)0.0019 (5)0.0008 (5)0.0173 (6)
N30.0139 (5)0.0104 (5)0.0179 (5)0.0045 (4)0.0058 (4)0.0019 (4)
N90.0108 (5)0.0130 (5)0.0163 (5)0.0059 (4)0.0032 (4)0.0023 (4)
N60.0129 (6)0.0144 (5)0.0292 (7)0.0063 (5)0.0007 (5)0.0026 (5)
C50.0118 (6)0.0104 (5)0.0130 (6)0.0040 (5)0.0040 (5)0.0011 (4)
C80.0132 (6)0.0124 (6)0.0155 (6)0.0041 (5)0.0053 (5)0.0013 (5)
C40.0112 (6)0.0111 (5)0.0131 (6)0.0045 (5)0.0044 (5)0.0005 (4)
C60.0123 (6)0.0133 (6)0.0153 (6)0.0054 (5)0.0046 (5)0.0023 (5)
C20.0164 (6)0.0104 (6)0.0201 (7)0.0044 (5)0.0071 (5)0.0015 (5)
O5A0.068 (4)0.0272 (17)0.029 (2)0.013 (3)0.028 (3)0.0019 (16)
O5B0.065 (4)0.0194 (14)0.032 (3)0.008 (2)0.032 (3)0.0016 (16)
Geometric parameters (Å, º) top
Cl1—O11.4413 (11)N7—C81.3138 (17)
Cl1—O31.4426 (10)N7—C51.3784 (16)
Cl1—O21.4437 (11)N3—C21.3033 (18)
Cl1—O41.4480 (11)N3—C41.3534 (16)
Cl2—O5A1.410 (6)N9—C81.3465 (17)
Cl2—O81.4293 (12)N9—C41.3736 (17)
Cl2—O61.4483 (11)N6—C61.3090 (18)
Cl2—O71.4511 (13)C5—C41.3802 (18)
Cl2—O5B1.483 (6)C5—C61.4145 (19)
N1—C61.3605 (17)O5A—O5B0.592 (7)
N1—C21.3681 (17)
O1—Cl1—O3109.82 (7)C8—N7—C5108.34 (11)
O1—Cl1—O2109.39 (7)C2—N3—C4112.31 (11)
O3—Cl1—O2109.11 (6)C8—N9—C4108.09 (11)
O1—Cl1—O4109.38 (7)N7—C5—C4107.23 (11)
O3—Cl1—O4109.56 (6)N7—C5—C6133.46 (12)
O2—Cl1—O4109.57 (7)C4—C5—C6119.25 (12)
O5A—Cl2—O8121.7 (2)N7—C8—N9109.88 (12)
O5A—Cl2—O6107.8 (3)N3—C4—N9126.97 (12)
O8—Cl2—O6109.12 (7)N3—C4—C5126.55 (12)
O5A—Cl2—O799.8 (2)N9—C4—C5106.45 (11)
O8—Cl2—O7108.92 (7)N6—C6—N1122.11 (13)
O6—Cl2—O7108.68 (8)N6—C6—C5125.55 (13)
O5A—Cl2—O5B23.4 (3)N1—C6—C5112.34 (12)
O8—Cl2—O5B100.2 (2)N3—C2—N1125.09 (13)
O6—Cl2—O5B110.7 (3)O5B—O5A—Cl285.3 (12)
O7—Cl2—O5B118.7 (2)O5A—O5B—Cl271.3 (11)
C6—N1—C2124.11 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.862.162.909 (2)146
N1—H1···O60.862.463.025 (2)124
N7—H7···O1Wii0.861.912.686 (2)150
N7—H7···O2iii0.862.402.963 (2)123
N9—H9···O4iv0.862.092.849 (2)146
N9—H9···O3v0.862.332.868 (2)121
N6—H6A···O7i0.862.222.941 (2)141
N6—H6B···O1Wii0.861.972.799 (2)161
O1W—H1W···O60.80 (1)2.03 (1)2.798 (2)160 (2)
O1W—H2W···N3vi0.78 (1)2.25 (2)2.907 (2)142 (2)
O1W—H2W···O1vii0.78 (1)2.47 (2)3.002 (2)127 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+2, y, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N52+·2ClO42·H2O
Mr354.07
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.7777 (2), 8.5114 (2), 11.0871 (3)
α, β, γ (°)88.703 (2), 70.074 (2), 64.789 (2)
V3)617.78 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14891, 4647, 3520
Rint0.030
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.10
No. of reflections4647
No. of parameters207
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.60

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrujia, 1997) and PLUTON (Spek, 1990), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
Cl1—O11.4413 (11)Cl2—O71.4511 (13)
Cl1—O31.4426 (10)Cl2—O5B1.483 (6)
Cl1—O21.4437 (11)N1—C61.3605 (17)
Cl1—O41.4480 (11)N1—C21.3681 (17)
Cl2—O5A1.410 (6)N7—C81.3138 (17)
Cl2—O81.4293 (12)N7—C51.3784 (16)
Cl2—O61.4483 (11)
O1—Cl1—O3109.82 (7)O5A—Cl2—O799.8 (2)
O1—Cl1—O2109.39 (7)O8—Cl2—O7108.92 (7)
O3—Cl1—O2109.11 (6)O6—Cl2—O7108.68 (8)
O1—Cl1—O4109.38 (7)O8—Cl2—O5B100.2 (2)
O3—Cl1—O4109.56 (6)O6—Cl2—O5B110.7 (3)
O2—Cl1—O4109.57 (7)O7—Cl2—O5B118.7 (2)
O5A—Cl2—O8121.7 (2)C6—N1—C2124.11 (12)
O5A—Cl2—O6107.8 (3)C8—N7—C5108.34 (11)
O8—Cl2—O6109.12 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.862.162.909 (2)146
N1—H1···O60.862.463.025 (2)124
N7—H7···O1Wii0.861.912.686 (2)150
N7—H7···O2iii0.862.402.963 (2)123
N9—H9···O4iv0.862.092.849 (2)146
N9—H9···O3v0.862.332.868 (2)121
N6—H6A···O7i0.862.222.941 (2)141
N6—H6B···O1Wii0.861.972.799 (2)161
O1W—H1W···O60.80 (1)2.03 (1)2.798 (2)160 (2)
O1W—H2W···N3vi0.78 (1)2.25 (2)2.907 (2)142 (2)
O1W—H2W···O1vii0.78 (1)2.47 (2)3.002 (2)127 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+2, y, z; (vi) x+1, y+1, z+1; (vii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds