Download citation
Download citation
link to html
The structure of the title compound, [Fe4(C7H4S3)(C18H15P)(CO)11], obtained by heating the tetranuclear complex Fe4S3C19O12H4 with an excess of triphenylphosphine in acetone at 328 K, shows that PPh3 has replaced one carbonyl on the less hindered Fe atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001545/dn6053sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001545/dn6053Isup2.hkl
Contains datablock I

CCDC reference: 204663

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.038
  • wR factor = 0.055
  • Data-to-parameter ratio = 13.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

L'intérêt des complexes organométalliques se situe surtout dans la synthèse organique (Alper et al., 1978), de la synthèse bioinorganique (Jaouen et al., 1993), et dans des processus catalytiques (Tolman et al., 1972). Le remplacement du carbonyle par d'autres ligands isoélectroniques L [L = P(OMe)3, PPh3, t-BuNC, etc.] dans les complexes des métaux de transition constitue l'une des réactions fondamentales de la chimie organométallique. Les réactions de remplacement du monoxyde de carbone catalysés par transfert d'électrons dans des complexes polynucléaires du fer à ligands soufrés ont déjà été étudiées (Darchen et al., 1982). Dans la plupart des cas, la substitution induite à l'électrode conduit aux mêmes résultats que ceux obtenus par voie thermique (Darchen et al., 1983), toutefois pour certains substrats on observe une activation différente des carbonyles suivant la voie de synthèse utilisée. Ainsi dans le complexe non symétrique (µ-ROCS) (µ-MeS)(Fe2(CO)6 (Patin et al., 1980, 1981) le ligand P(OMe)3 occupe la position située dans le prolongement de la liaison Fe—Fe lorsqu'il est introduit par voie thermique (Patin et al., 1989). Afin d'étudier la stéréospécificité et la régioselectivité du remplacement des carbonyles par d'autres ligands plus donneurs L [L = P(Ph)3 ou P(OMe)3], une étude par diffraction des rayons X sur le complexe monosubstitué (Fe4S3C36O11PH19) est réalisée.

Le complexe TN (Bird et al., 1981) contient deux motifs binucléaires A et B différents et trois sites métalliques non équivalents qui font de ce complexe un substrat de choix pour l'étude de la régiosélectivité et la stéréosélectivité du remplacement de carbonyles. Les deux motifs binucléaires sont analogues à ceux observés dans les complexes (µ-ROCS)(µ-MeS)(Fe2(CO)6) où la régiosélectivité de la substitution de carbonyles semble être dépendante du mode d'activation (Jahrani, 1994). Le complexe (Fe4S3C36O11PH19) contient deux motifs binucléaires A et B différents, liés entre eux par le ligand C6SCS2. le motif A est pseudosymétrique et le squelette Fe2(CO)6 est doublement ponté par les deux atomes de soufre S1 et S2 du ligand. Le motif B est asymétrique, seul l'atome S3 du ligand ponte les deux atomes de fer alors que S2 qui ponte le motif A est uniquement lié à l'atome Fe4 du motif B. Cette structure montre que la substitution du carbonyle par la triphenylphosphine a lieu spécifiquement sur le motif B asymétyrique, le moins encombré, ponté par CS2 en position équatoriale par rapport à la liaison Fe3—Fe4 [Fe3—Fe4—P = 99.86 (3)°]. L'allongement de la liaison métallique Fe3—Fe4 de 0.057 Å par rapport au complexe non substitué TN est certainement lié á l'effet σ donneur du ligand PPh3.

Experimental top

Le complexe tétranucléaire (Fe4S3C36O11PH19) est préparé sous activation thermique du TN, où un carbonyle est substitué par le ligand triphenylphosphine, 6,64 × 10−4 moles de TN et 1,2 × 10−3 moles de PPh3 sont dissouts dans l'acétone et chauffés á 328 K pendant 8 h sous azote et à l'abri de la lumière. Le solvant est distillé et le résidu est séparé par chromatographie préparative sur plaque (éluant: éther de pétrole/éther éthylique 9:1). Le complexe monosubstitué (Fe4S3C36O11PH19) est récupéré aprés lavage du gel de silice à l'acétone puis recristallisé dans un mélange éther /hexane 1:1, on obtient des cristaux rouges prismatiques.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Dessin ORTEP-3 (Farrugia, 1997) de la molécule. Pour la clarté du dessin, les atomes de carbone des groupes phényles ont été omis á l'exception des carbones directement attachés á l'atome de phosphore. Les ellipsoides de vibration des atomes ont une probabilité de 50%.
(I) top
Crystal data top
[Fe4C7H4S3)(C18H15P)(CO)11]F(000) = 1960
Mr = 978.09Dx = 1.644 Mg m3
Monoclinic, P21/nMelting point: 210 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.725 (5) ÅCell parameters from 28122 reflections
b = 17.954 (5) Åθ = 5.8–25.0°
c = 22.885 (5) ŵ = 1.70 mm1
β = 98.488 (5)°T = 293 K
V = 3952 (2) Å3Prism, red
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
6888 independent reflections
Radiation source: fine-focus sealed tube3440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ scansθmax = 25.0°, θmin = 5.8°
Absorption correction: part of the refinement model (ΔF)
(Walker et al., 1983)
h = 1111
Tmin = 0.618, Tmax = 0.887k = 2120
28122 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.0114P)2]
where P = (Fo2 + 2Fc2)/3
6888 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe4C7H4S3)(C18H15P)(CO)11]V = 3952 (2) Å3
Mr = 978.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.725 (5) ŵ = 1.70 mm1
b = 17.954 (5) ÅT = 293 K
c = 22.885 (5) Å0.3 × 0.2 × 0.1 mm
β = 98.488 (5)°
Data collection top
Nonius KappaCCD
diffractometer
6888 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Walker et al., 1983)
3440 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.887Rint = 0.090
28122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.80Δρmax = 0.27 e Å3
6888 reflectionsΔρmin = 0.34 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe40.90139 (5)0.17834 (3)0.248179 (18)0.03719 (15)
Fe10.62253 (6)0.15000 (3)0.37526 (2)0.05023 (17)
Fe20.87380 (6)0.12435 (3)0.41937 (2)0.05073 (17)
Fe30.75163 (5)0.30460 (3)0.244372 (19)0.04130 (15)
S20.80901 (9)0.18365 (5)0.33473 (3)0.0394 (2)
S30.96675 (9)0.29290 (5)0.28665 (4)0.0420 (3)
P0.98556 (9)0.18803 (5)0.16136 (4)0.0394 (3)
S10.73890 (10)0.21262 (6)0.45284 (4)0.0524 (3)
C10.8318 (3)0.28204 (18)0.33123 (13)0.0358 (9)
C251.1060 (4)0.1121 (2)0.15215 (13)0.0429 (10)
C160.6090 (4)0.2424 (2)0.22538 (14)0.0474 (11)
C150.6536 (4)0.3828 (2)0.26191 (15)0.0475 (11)
C311.0831 (3)0.2724 (2)0.15365 (15)0.0411 (10)
O171.1486 (3)0.09584 (16)0.30067 (11)0.0790 (10)
C30.7797 (3)0.30588 (19)0.43480 (15)0.0409 (9)
C171.0519 (4)0.1268 (2)0.27916 (14)0.0501 (11)
C20.8220 (3)0.3306 (2)0.38203 (15)0.0403 (9)
O180.7113 (3)0.06126 (15)0.19742 (11)0.0653 (8)
O160.5136 (3)0.20565 (15)0.21135 (11)0.0709 (9)
C180.7877 (4)0.1071 (2)0.21690 (15)0.0434 (10)
C140.7616 (4)0.3405 (2)0.17219 (18)0.0606 (12)
C291.1428 (7)0.0204 (3)0.14401 (19)0.0876 (15)
H291.10750.06870.14210.105*
C361.0556 (4)0.3212 (2)0.10631 (16)0.0576 (11)
H360.98670.30930.07500.069*
C321.1873 (4)0.2925 (2)0.19956 (15)0.0513 (11)
H321.20850.26100.23190.062*
O140.7620 (3)0.36722 (17)0.12699 (12)0.0947 (11)
C90.4918 (4)0.2180 (3)0.34995 (17)0.0628 (13)
C190.8650 (4)0.1785 (2)0.09213 (15)0.0463 (10)
O150.5844 (3)0.43111 (17)0.27232 (11)0.0740 (9)
C110.8569 (5)0.0688 (3)0.48308 (19)0.0805 (15)
C70.8549 (3)0.4060 (2)0.37819 (15)0.0470 (10)
H70.88410.42330.34370.056*
C120.9075 (4)0.0434 (3)0.37975 (17)0.0585 (12)
O80.5403 (3)0.0287 (2)0.29125 (14)0.1073 (13)
C261.2441 (5)0.1223 (3)0.15142 (15)0.0647 (12)
H261.28080.17020.15330.078*
O120.9285 (3)0.00926 (17)0.35405 (13)0.0847 (10)
C331.2592 (4)0.3585 (3)0.1977 (2)0.0699 (13)
H331.32880.37120.22850.084*
O90.4092 (3)0.2624 (2)0.33605 (13)0.0945 (11)
C200.9145 (4)0.1604 (2)0.04107 (18)0.0813 (15)
H201.00980.15500.04160.098*
C50.8018 (4)0.4302 (3)0.47450 (18)0.0669 (13)
H50.79310.46320.50510.080*
C60.8462 (4)0.4557 (2)0.42323 (19)0.0578 (11)
H60.86960.50550.41940.069*
C301.0549 (5)0.0402 (3)0.14719 (16)0.0717 (13)
H300.96000.03210.14600.086*
C40.7708 (4)0.3567 (3)0.48015 (15)0.0572 (12)
H40.74310.34010.51510.069*
C80.5743 (4)0.0767 (3)0.32267 (19)0.0677 (13)
C210.8255 (6)0.1500 (3)0.01166 (19)0.109 (2)
H210.86080.13760.04600.130*
C281.2810 (7)0.0084 (4)0.14379 (19)0.0890 (17)
H281.34030.04840.14080.107*
C341.2276 (5)0.4054 (3)0.1502 (3)0.0860 (15)
H341.27510.45020.14920.103*
C271.3313 (5)0.0614 (4)0.14790 (18)0.0869 (17)
H271.42600.06910.14840.104*
C240.7246 (4)0.1868 (2)0.08941 (16)0.0585 (12)
H240.68820.19940.12350.070*
C230.6354 (5)0.1770 (2)0.0371 (2)0.0793 (14)
H230.54020.18340.03620.095*
C351.1276 (5)0.3867 (3)0.1047 (2)0.0794 (14)
H351.10790.41840.07230.095*
C220.6857 (7)0.1582 (3)0.0125 (2)0.0906 (18)
H220.62510.15070.04740.109*
O110.8466 (4)0.0314 (2)0.52244 (14)0.1293 (15)
O100.4696 (4)0.07306 (19)0.45847 (14)0.1048 (12)
O131.1658 (4)0.1685 (2)0.44833 (16)0.1305 (15)
C100.5300 (5)0.1039 (3)0.42688 (17)0.0691 (14)
C131.0517 (5)0.1533 (2)0.43836 (17)0.0714 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe40.0357 (3)0.0350 (3)0.0406 (3)0.0017 (3)0.0044 (2)0.0004 (2)
Fe10.0482 (4)0.0498 (4)0.0536 (3)0.0023 (3)0.0103 (3)0.0094 (3)
Fe20.0560 (4)0.0505 (4)0.0449 (3)0.0113 (3)0.0051 (3)0.0070 (3)
Fe30.0411 (3)0.0373 (4)0.0451 (3)0.0040 (3)0.0051 (2)0.0024 (3)
S20.0396 (6)0.0370 (6)0.0413 (5)0.0021 (5)0.0050 (4)0.0028 (5)
S30.0370 (6)0.0398 (7)0.0496 (6)0.0028 (5)0.0080 (4)0.0036 (5)
P0.0344 (6)0.0422 (7)0.0406 (5)0.0017 (5)0.0024 (4)0.0032 (5)
S10.0559 (7)0.0580 (8)0.0445 (6)0.0079 (6)0.0117 (5)0.0039 (5)
C10.036 (2)0.032 (2)0.040 (2)0.0001 (18)0.0069 (16)0.0012 (17)
C250.039 (3)0.046 (3)0.045 (2)0.001 (2)0.0091 (18)0.0085 (19)
C160.054 (3)0.044 (3)0.043 (2)0.010 (2)0.003 (2)0.0033 (19)
C150.045 (3)0.043 (3)0.053 (2)0.002 (2)0.0005 (19)0.004 (2)
C310.035 (2)0.047 (3)0.042 (2)0.006 (2)0.0060 (18)0.0006 (19)
O170.068 (2)0.094 (3)0.074 (2)0.0378 (19)0.0060 (16)0.0192 (17)
C30.042 (2)0.037 (3)0.043 (2)0.007 (2)0.0054 (18)0.007 (2)
C170.050 (3)0.056 (3)0.045 (2)0.006 (2)0.009 (2)0.009 (2)
C20.031 (2)0.043 (3)0.046 (2)0.004 (2)0.0022 (18)0.008 (2)
O180.061 (2)0.054 (2)0.0802 (19)0.0143 (16)0.0093 (15)0.0144 (15)
O160.049 (2)0.064 (2)0.093 (2)0.0086 (17)0.0093 (16)0.0143 (16)
C180.042 (3)0.039 (3)0.051 (2)0.006 (2)0.0108 (19)0.001 (2)
C140.064 (3)0.054 (3)0.067 (3)0.021 (2)0.021 (2)0.014 (2)
C290.115 (5)0.045 (4)0.116 (4)0.013 (4)0.062 (4)0.004 (3)
C360.065 (3)0.052 (3)0.056 (3)0.013 (3)0.008 (2)0.006 (2)
C320.044 (3)0.052 (3)0.059 (3)0.009 (2)0.011 (2)0.007 (2)
O140.124 (3)0.098 (3)0.070 (2)0.049 (2)0.0397 (19)0.0398 (19)
C90.051 (3)0.068 (4)0.069 (3)0.001 (3)0.008 (2)0.011 (2)
C190.047 (3)0.049 (3)0.040 (2)0.001 (2)0.001 (2)0.0077 (19)
O150.068 (2)0.063 (2)0.090 (2)0.0192 (18)0.0064 (16)0.0214 (17)
C110.091 (4)0.092 (4)0.066 (3)0.049 (3)0.034 (3)0.031 (3)
C70.045 (3)0.047 (3)0.048 (2)0.003 (2)0.0033 (19)0.007 (2)
C120.063 (3)0.048 (3)0.063 (3)0.003 (3)0.006 (2)0.011 (2)
O80.128 (3)0.099 (3)0.098 (3)0.057 (2)0.030 (2)0.026 (2)
C260.049 (3)0.064 (3)0.079 (3)0.004 (3)0.001 (2)0.029 (2)
O120.107 (3)0.052 (2)0.096 (2)0.000 (2)0.0200 (18)0.0054 (18)
C330.059 (3)0.082 (4)0.071 (3)0.028 (3)0.014 (2)0.019 (3)
O90.074 (2)0.114 (3)0.094 (2)0.035 (2)0.0081 (18)0.0229 (19)
C200.057 (3)0.133 (5)0.053 (3)0.009 (3)0.001 (2)0.021 (3)
C50.082 (4)0.060 (4)0.057 (3)0.010 (3)0.005 (2)0.021 (3)
C60.066 (3)0.038 (3)0.066 (3)0.003 (2)0.001 (2)0.011 (2)
C300.070 (3)0.054 (4)0.101 (3)0.005 (3)0.047 (3)0.001 (3)
C40.057 (3)0.070 (4)0.044 (2)0.007 (3)0.008 (2)0.010 (2)
C80.066 (3)0.068 (4)0.070 (3)0.020 (3)0.014 (2)0.010 (3)
C210.101 (5)0.166 (6)0.052 (3)0.021 (4)0.013 (3)0.036 (3)
C280.088 (5)0.088 (5)0.092 (3)0.041 (4)0.017 (3)0.022 (3)
C340.086 (4)0.061 (4)0.117 (5)0.040 (3)0.034 (3)0.009 (3)
C270.052 (3)0.103 (5)0.101 (4)0.017 (4)0.007 (3)0.043 (4)
C240.052 (3)0.065 (3)0.055 (3)0.005 (2)0.007 (2)0.004 (2)
C230.065 (3)0.089 (4)0.074 (3)0.004 (3)0.023 (3)0.001 (3)
C350.091 (4)0.063 (4)0.087 (4)0.012 (3)0.022 (3)0.021 (3)
C220.104 (5)0.092 (4)0.061 (4)0.002 (3)0.036 (3)0.014 (3)
O110.177 (4)0.135 (3)0.090 (2)0.081 (3)0.065 (2)0.066 (2)
O100.113 (3)0.109 (3)0.102 (2)0.028 (2)0.046 (2)0.030 (2)
O130.060 (3)0.125 (3)0.195 (4)0.001 (2)0.019 (3)0.055 (3)
C100.071 (4)0.077 (4)0.064 (3)0.003 (3)0.022 (2)0.015 (3)
C130.062 (4)0.070 (4)0.077 (3)0.013 (3)0.007 (3)0.016 (2)
Geometric parameters (Å, º) top
Fe4—C181.771 (4)C15—O151.144 (4)
Fe4—C171.787 (4)C31—C361.389 (4)
Fe4—P2.2645 (11)C31—C321.395 (4)
Fe4—S32.2901 (11)O17—C171.140 (4)
Fe4—S22.2946 (11)C3—C41.394 (4)
Fe4—Fe32.6890 (10)C3—C21.404 (4)
Fe1—C101.790 (5)C2—C71.396 (4)
Fe1—C91.795 (5)O18—C181.154 (4)
Fe1—C81.798 (5)C14—O141.141 (3)
Fe1—S22.2385 (13)C29—C281.362 (6)
Fe1—S12.2592 (11)C29—C301.393 (5)
Fe1—Fe22.5443 (14)C36—C351.372 (5)
Fe2—C121.769 (5)C32—C331.380 (5)
Fe2—C111.794 (5)C9—O91.144 (4)
Fe2—C131.798 (5)C19—C241.366 (4)
Fe2—S22.2185 (10)C19—C201.367 (4)
Fe2—S12.2619 (12)C11—O111.140 (4)
Fe3—C151.777 (5)C7—C61.376 (4)
Fe3—C161.783 (4)C12—O121.147 (4)
Fe3—C141.789 (4)O8—C81.139 (4)
Fe3—C12.065 (3)C26—C271.394 (5)
Fe3—S32.1816 (14)C33—C341.373 (5)
S2—C11.783 (3)C20—C211.390 (5)
S3—C11.788 (3)C5—C41.363 (5)
P—C311.810 (4)C5—C61.387 (5)
P—C251.829 (4)C21—C221.365 (6)
P—C191.835 (3)C28—C271.343 (6)
S1—C31.783 (4)C34—C351.359 (5)
C1—C21.467 (4)C24—C231.383 (4)
C25—C261.358 (5)C23—C221.342 (5)
C25—C301.383 (5)O10—C101.140 (4)
C16—O161.145 (4)O13—C131.133 (4)
C18—Fe4—C17102.27 (17)Fe1—S2—Fe4142.26 (4)
C18—Fe4—P89.18 (12)C1—S3—Fe361.76 (10)
C17—Fe4—P90.40 (12)C1—S3—Fe486.33 (11)
C18—Fe4—S3157.69 (12)Fe3—S3—Fe473.89 (3)
C17—Fe4—S398.50 (12)C31—P—C25104.96 (18)
P—Fe4—S398.77 (4)C31—P—C19105.73 (16)
C18—Fe4—S294.49 (12)C25—P—C1999.78 (16)
C17—Fe4—S294.65 (12)C31—P—Fe4114.36 (11)
P—Fe4—S2172.98 (4)C25—P—Fe4111.37 (12)
S3—Fe4—S275.68 (4)C19—P—Fe4118.87 (14)
C18—Fe4—Fe3107.02 (12)C3—S1—Fe1112.84 (11)
C17—Fe4—Fe3149.00 (12)C3—S1—Fe2114.81 (13)
P—Fe4—Fe399.85 (3)Fe1—S1—Fe268.50 (4)
S3—Fe4—Fe351.21 (3)C2—C1—S2122.0 (2)
S2—Fe4—Fe373.36 (3)C2—C1—S3121.7 (2)
C10—Fe1—C997.25 (19)S2—C1—S3103.89 (17)
C10—Fe1—C889.78 (19)C2—C1—Fe3125.9 (2)
C9—Fe1—C8100.32 (19)S2—C1—Fe3101.88 (15)
C10—Fe1—S2156.24 (14)S3—C1—Fe368.53 (11)
C9—Fe1—S2105.14 (14)C26—C25—C30118.0 (4)
C8—Fe1—S293.88 (14)C26—C25—P123.6 (4)
C10—Fe1—S187.36 (14)C30—C25—P118.5 (3)
C9—Fe1—S199.44 (13)O16—C16—Fe3176.2 (3)
C8—Fe1—S1160.24 (14)O15—C15—Fe3176.5 (4)
S2—Fe1—S181.30 (4)C36—C31—C32117.3 (3)
C10—Fe1—Fe2101.63 (13)C36—C31—P124.1 (3)
C9—Fe1—Fe2147.54 (13)C32—C31—P118.4 (3)
C8—Fe1—Fe2105.88 (14)C4—C3—C2119.4 (4)
S2—Fe1—Fe254.82 (4)C4—C3—S1113.7 (3)
S1—Fe1—Fe255.80 (3)C2—C3—S1126.8 (3)
C12—Fe2—C1190.34 (19)O17—C17—Fe4177.4 (4)
C12—Fe2—C1396.74 (19)C7—C2—C3117.4 (3)
C11—Fe2—C1399.5 (2)C7—C2—C1118.9 (3)
C12—Fe2—S289.84 (12)C3—C2—C1123.7 (3)
C11—Fe2—S2158.13 (15)O18—C18—Fe4178.3 (4)
C13—Fe2—S2102.20 (14)O14—C14—Fe3175.3 (4)
C12—Fe2—S1155.48 (14)C28—C29—C30119.3 (5)
C11—Fe2—S189.24 (13)C35—C36—C31121.5 (4)
C13—Fe2—S1107.51 (14)C33—C32—C31121.0 (4)
S2—Fe2—S181.68 (4)O9—C9—Fe1177.3 (4)
C12—Fe2—Fe1100.67 (13)C24—C19—C20117.6 (3)
C11—Fe2—Fe1103.00 (14)C24—C19—P122.4 (3)
C13—Fe2—Fe1151.31 (14)C20—C19—P120.0 (3)
S2—Fe2—Fe155.56 (3)O11—C11—Fe2177.7 (4)
S1—Fe2—Fe155.70 (3)C6—C7—C2122.8 (4)
C15—Fe3—C1697.21 (17)O12—C12—Fe2179.6 (4)
C15—Fe3—C1491.57 (17)C25—C26—C27120.4 (4)
C16—Fe3—C1498.44 (17)C34—C33—C32119.7 (4)
C15—Fe3—C194.39 (14)C19—C20—C21121.4 (4)
C16—Fe3—C1106.34 (14)C4—C5—C6120.1 (4)
C14—Fe3—C1153.53 (16)C7—C6—C5118.7 (4)
C15—Fe3—S3119.19 (11)C25—C30—C29121.2 (4)
C16—Fe3—S3135.10 (12)C5—C4—C3121.6 (4)
C14—Fe3—S3105.38 (13)O8—C8—Fe1176.8 (4)
C1—Fe3—S349.71 (9)C22—C21—C20119.2 (4)
C15—Fe3—Fe4164.89 (11)C27—C28—C29119.8 (5)
C16—Fe3—Fe483.02 (12)C35—C34—C33120.5 (5)
C14—Fe3—Fe4103.36 (12)C28—C27—C26121.2 (5)
C1—Fe3—Fe471.20 (9)C19—C24—C23121.4 (4)
S3—Fe3—Fe454.90 (3)C22—C23—C24120.2 (5)
C1—S2—Fe2119.57 (10)C34—C35—C36120.1 (4)
C1—S2—Fe1113.55 (11)C23—C22—C21120.1 (4)
Fe2—S2—Fe169.62 (4)O10—C10—Fe1178.0 (4)
C1—S2—Fe486.30 (11)O13—C13—Fe2176.1 (4)
Fe2—S2—Fe4129.55 (5)
P—Fe4—Fe3—C15165.0 (5)P—Fe4—Fe3—C1146.83 (10)
P—Fe4—Fe3—C16103.23 (11)P—Fe4—Fe3—S393.39 (5)
P—Fe4—Fe3—C146.18 (14)

Experimental details

Crystal data
Chemical formula[Fe4C7H4S3)(C18H15P)(CO)11]
Mr978.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.725 (5), 17.954 (5), 22.885 (5)
β (°) 98.488 (5)
V3)3952 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker et al., 1983)
Tmin, Tmax0.618, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
28122, 6888, 3440
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.055, 0.80
No. of reflections6888
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SIR97 (Altomare et al., 1998), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Fe4—P2.2645 (11)Fe2—S22.2185 (10)
Fe4—S32.2901 (11)Fe2—S12.2619 (12)
Fe4—S22.2946 (11)Fe3—C12.065 (3)
Fe4—Fe32.6890 (10)Fe3—S32.1816 (14)
Fe1—S22.2385 (13)S1—C31.783 (4)
Fe1—S12.2592 (11)C1—C21.467 (4)
Fe1—Fe22.5443 (14)
P—Fe4—S398.77 (4)P—Fe4—Fe399.85 (3)
P—Fe4—S2172.98 (4)S3—Fe4—Fe351.21 (3)
S3—Fe4—S275.68 (4)S2—Fe4—Fe373.36 (3)
P—Fe4—Fe3—C15165.0 (5)P—Fe4—Fe3—C1146.83 (10)
P—Fe4—Fe3—C16103.23 (11)P—Fe4—Fe3—S393.39 (5)
P—Fe4—Fe3—C146.18 (14)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds