Download citation
Download citation
link to html
In the asymmetric unit of the title compound, C5H7N5O2+·2NO3-·2H2O, the guanine base is diprotonated and cocrystallizes with two nitrate anions and two water mol­ecules. The structure is a layered one, and in each layer all H atoms bonded to O and N atoms are involved in a two-dimensional hydrogen-bonding network. Short contacts are observed between parallel layers and ensure the cohesion of the crystals.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020676/dn6043sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020676/dn6043Isup2.hkl
Contains datablock I

CCDC reference: 202339

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.124
  • Data-to-parameter ratio = 10.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_353 Alert C Long N-H Bond (0.87A) N(7) - H(7) = 1.02 Ang. PLAT_353 Alert C Long N-H Bond (0.87A) N(9) - H(9) = 1.01 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Guanine is a purine base, is a constituent of nucleotides and as such pairs with cytosine in the helical structure of DNA. A number of purine and pyrimidine analogs are effective metabolic inhibitors with useful chemotherapeutic activity (Roy-Burman, 1970; Balis, 1968; Hitchings et al., 1963). This kind of hydrogen bonding in hybrid compounds appears in several binding sites in biological mechanisms of action, for example N—H···O hydrogen bonds between guanine rings and phosphate ions are involved in the active-site inhibitor-binding mechanism in the ternary complex of calf spleen purine nucleoside phosphorylase, it also provides a new starting point for the design of inhibitors of PNP for therapeutic and other applications (Luic et al., 2001). The crystal structures of guanine picrate monohydrate and thioguanine picrate monohydrate (Bugg et al., 1975), and guaninium dichloride (Matkovic-Calogovic et al., 1999) have been reported previously. This work is part of a series of structural studies on hybrid compounds based on organic matrix and inorganic acids; other examples are m-carboxyphenylammonium nitrate (Benali-Cherif & Cherouana et al., 2002), p-carboxyphenylammonium dihydrogenmonophosphate monohydrate (Benali-Cherif, Abouimrane et al., 2002) and L-histidinium dinitrate (Benali-Cherif, Benguedouar et al., 2002). The main purpose of the present study is to look at the hydrogen bonding engineered in the crystals of guanine and nitric acid, the imino groups of the pyrimidine and imidazolyl portions (atoms N3 and N7, respectively) in guanine are protonated, each resulting C5H7N5O2+ dication is surrounded by three nitrate anions and a water molecule (Fig. 1). Protonated N atoms are involved in the strongest hydrogen bonds, indeed atoms N3 and N7 are hydrogen bonded through intermolecular interactions to nitrate [N3—H3···O22 = 2.737 (2) Å] and water O atoms [N7—H7···O2w = 2.566 (2) Å]. The guanine base is doubly linked to a single nitrate anion via intramolecular hydrogen bonds [N1—H1···O21 = 2.8417 (19) Å and N2—H22···O23 = 2.884 (2) Å], while N9 atom of the imidazolyl portion is hydrogen bonded to a nitrate anion by an intermolecular interaction [N9—H9···O12 = 2.741 (2) Å], we also observe close contacts between atoms C8 and O11 [C8—H8···O11 = 3.267 (2) Å]. Atom O1w of water molecule plays an important role in the three-dimensional network of hydrogen bonding. In a layer, atom O1w is bound to two nitrate anions [O1w—H12···O12 = 2.853 (2) Å and O1w—H11···O23 = 2.989 (2) Å] on one hand, and on the other hand to the second molecule of water [O2w—H23···O1w = 2.643 (2) Å]. In each layer, anions, cations and water molecules constitute a two-dimensional network of hydrogen bonding (Fig. 2). The crystal packing (Fig. 3) is constituted by arrangement of parallel layers along the b axis. This packing is stabilized by short contacts, the strongest being observed between atoms C2 and O1w [C2···O1w = 3.070(?)Å]. The torsion angles around atoms C4 and C5 [N9—C4—N3—C2 = 178.79 (15)° and N1—C6—C5—N7 = −176.71 (16)°] show clearly that the purine base geometry is not affected by protonation of atoms N3 and N7, thus the imidazolyl and pyrimidine rings are coplanar.

Experimental top

Guaninium dinitrate dihydrate was prepared from a solution of 1 mmol guanine and 2 mmol nitric acid in 10 ml water. Colorless crystals were formed upon slow evaporation of the solution over a period of two weeks.

Refinement top

All H atoms were refined isotropically at localized positions.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) view with the atomic labelling scheme, showing the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis, showing a two-dimensional network of hydrogen bonds.
[Figure 3] Fig. 3. An ORTEP-3 (Farrugia, 1997) diagram of the layered packing in (I), viewed down the b axis.
(I) top
Crystal data top
C5H7N5O2+·2NO3·2H2OF(000) = 648
Mr = 313.21Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8447 reflections
a = 6.6340 (4) Åθ = 3.1–26.4°
b = 11.9800 (5) ŵ = 0.16 mm1
c = 15.8040 (3) ÅT = 293 K
β = 91.01 (2)°Prism, colorless
V = 1255.83 (10) Å30.60 × 0.45 × 0.40 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2103 reflections with I > 2σ(I))
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
ϕ scansh = 78
8447 measured reflectionsk = 1414
2447 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.124All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.049P)2 + 0.3341P]
where P = (Fo2 + 2Fc2)/3
2447 reflections(Δ/σ)max = 0.020
234 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H7N5O2+·2NO3·2H2OV = 1255.83 (10) Å3
Mr = 313.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6340 (4) ŵ = 0.16 mm1
b = 11.9800 (5) ÅT = 293 K
c = 15.8040 (3) Å0.60 × 0.45 × 0.40 mm
β = 91.01 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2103 reflections with I > 2σ(I))
8447 measured reflectionsRint = 0.049
2447 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 1.07Δρmax = 0.19 e Å3
2447 reflectionsΔρmin = 0.22 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O120.1344 (3)0.53124 (11)0.39602 (9)0.0631 (4)
O110.0230 (3)0.61145 (14)0.28256 (10)0.0734 (5)
O130.0589 (3)0.43204 (13)0.28621 (9)0.0674 (4)
N110.0710 (2)0.52604 (13)0.32016 (9)0.0485 (4)
O2W0.1403 (3)0.43654 (12)0.13177 (11)0.0760 (6)
O1W0.2164 (2)0.75207 (13)0.45477 (10)0.0599 (4)
N90.1856 (2)0.31258 (12)0.44269 (8)0.0401 (3)
N210.3793 (2)0.61465 (12)0.63401 (8)0.0415 (3)
C40.2657 (2)0.27262 (12)0.51618 (10)0.0356 (3)
N30.3334 (2)0.33209 (12)0.58462 (8)0.0384 (3)
N70.1877 (2)0.13073 (12)0.43414 (9)0.0448 (3)
C60.3424 (2)0.09195 (14)0.58112 (11)0.0425 (4)
N10.4020 (2)0.16197 (12)0.64958 (9)0.0431 (4)
O230.3629 (2)0.71799 (10)0.63284 (9)0.0578 (4)
C80.1391 (3)0.22351 (14)0.39439 (11)0.0451 (4)
O60.3555 (2)0.00821 (11)0.58649 (9)0.0603 (4)
O210.4429 (2)0.56608 (11)0.69824 (8)0.0591 (4)
N20.4731 (3)0.32712 (15)0.71854 (10)0.0509 (4)
C20.4041 (2)0.27413 (13)0.65179 (10)0.0387 (4)
C50.2695 (2)0.15926 (13)0.51179 (10)0.0395 (4)
O220.3339 (3)0.55972 (11)0.57020 (9)0.0737 (5)
H230.156 (4)0.376 (3)0.1051 (18)0.083 (8)*
H240.077 (4)0.432 (2)0.179 (2)0.078 (8)*
H120.180 (4)0.683 (3)0.436 (2)0.089 (9)*
H110.259 (4)0.761 (2)0.507 (2)0.082 (8)*
H80.080 (3)0.2267 (17)0.3423 (14)0.049 (5)*
H10.451 (4)0.128 (2)0.6937 (17)0.067 (6)*
H70.167 (4)0.053 (2)0.4097 (17)0.073 (7)*
H210.473 (3)0.403 (2)0.7170 (14)0.059 (6)*
H90.164 (4)0.393 (2)0.4254 (16)0.078 (7)*
H220.530 (4)0.292 (2)0.7619 (16)0.065 (7)*
H30.338 (3)0.407 (2)0.5823 (14)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O120.0969 (11)0.0459 (7)0.0455 (7)0.0012 (7)0.0228 (7)0.0042 (6)
O110.0946 (12)0.0618 (9)0.0634 (9)0.0129 (8)0.0140 (8)0.0242 (7)
O130.0939 (11)0.0568 (9)0.0507 (8)0.0069 (7)0.0251 (7)0.0022 (6)
N110.0498 (8)0.0523 (9)0.0432 (8)0.0030 (7)0.0065 (6)0.0107 (7)
O2W0.1257 (15)0.0380 (8)0.0627 (9)0.0062 (8)0.0455 (10)0.0022 (6)
O1W0.0749 (10)0.0481 (8)0.0566 (9)0.0034 (7)0.0043 (7)0.0105 (7)
N90.0475 (7)0.0358 (7)0.0368 (7)0.0041 (6)0.0044 (5)0.0042 (5)
N210.0508 (8)0.0358 (7)0.0376 (7)0.0026 (5)0.0064 (6)0.0039 (5)
C40.0369 (7)0.0328 (8)0.0372 (8)0.0035 (6)0.0011 (6)0.0044 (6)
N30.0473 (7)0.0309 (7)0.0368 (7)0.0047 (5)0.0034 (5)0.0060 (5)
N70.0528 (8)0.0365 (7)0.0448 (7)0.0024 (6)0.0055 (6)0.0018 (6)
C60.0460 (8)0.0327 (8)0.0487 (9)0.0052 (6)0.0015 (7)0.0078 (7)
N10.0500 (8)0.0366 (7)0.0425 (8)0.0048 (6)0.0034 (6)0.0128 (6)
O230.0868 (10)0.0328 (6)0.0533 (8)0.0001 (6)0.0162 (7)0.0048 (5)
C80.0513 (9)0.0442 (9)0.0396 (9)0.0041 (7)0.0054 (7)0.0004 (7)
O60.0814 (9)0.0313 (6)0.0681 (9)0.0065 (6)0.0069 (7)0.0095 (6)
O210.0911 (10)0.0428 (7)0.0425 (7)0.0022 (6)0.0237 (6)0.0030 (5)
N20.0652 (10)0.0437 (9)0.0432 (8)0.0046 (7)0.0114 (7)0.0043 (6)
C20.0411 (8)0.0379 (8)0.0371 (8)0.0048 (6)0.0005 (6)0.0071 (6)
C50.0429 (8)0.0339 (8)0.0417 (8)0.0030 (6)0.0005 (6)0.0026 (6)
O220.1369 (15)0.0387 (7)0.0443 (7)0.0020 (8)0.0343 (8)0.0065 (5)
Geometric parameters (Å, º) top
O12—N111.265 (2)N3—C21.3459 (19)
O11—N111.223 (2)N3—H30.90 (3)
O13—N111.249 (2)N7—C81.314 (2)
O2W—H230.84 (3)N7—C51.376 (2)
O2W—H240.86 (3)N7—H71.02 (3)
O1W—H120.91 (3)C6—O61.206 (2)
O1W—H110.87 (3)C6—N11.420 (2)
N9—C81.345 (2)C6—C51.437 (2)
N9—C41.356 (2)N1—C21.344 (2)
N9—H91.01 (3)N1—H10.87 (3)
N21—O221.2369 (18)C8—H80.90 (2)
N21—O211.2376 (18)N2—C21.307 (2)
N21—O231.2429 (18)N2—H210.91 (3)
C4—C51.360 (2)N2—H220.88 (3)
C4—N31.365 (2)
O11—N11—O13122.10 (16)C5—N7—H7127.9 (15)
O11—N11—O12119.92 (17)O6—C6—N1121.03 (15)
O13—N11—O12117.98 (14)O6—C6—C5129.40 (17)
H23—O2W—H24116 (3)N1—C6—C5109.57 (14)
H12—O1W—H11120 (3)C2—N1—C6127.80 (14)
C8—N9—C4106.77 (13)C2—N1—H1116.6 (17)
C8—N9—H9124.9 (15)C6—N1—H1115.4 (17)
C4—N9—H9128.3 (15)N7—C8—N9110.35 (15)
O22—N21—O21119.55 (14)N7—C8—H8124.7 (13)
O22—N21—O23119.85 (14)N9—C8—H8125.0 (13)
O21—N21—O23120.60 (13)C2—N2—H21117.7 (14)
N9—C4—C5108.43 (14)C2—N2—H22122.1 (15)
N9—C4—N3127.81 (13)H21—N2—H22120 (2)
C5—C4—N3123.76 (14)N2—C2—N1120.64 (15)
C2—N3—C4117.45 (14)N2—C2—N3119.88 (15)
C2—N3—H3122.4 (15)N1—C2—N3119.47 (15)
C4—N3—H3119.9 (15)C4—C5—N7106.63 (14)
C8—N7—C5107.81 (14)C4—C5—C6121.84 (15)
C8—N7—H7124.3 (15)N7—C5—C6131.49 (15)
C8—N9—C4—C50.66 (18)C4—N3—C2—N11.2 (2)
C8—N9—C4—N3179.39 (16)N9—C4—C5—N70.63 (18)
N9—C4—N3—C2178.79 (15)N3—C4—C5—N7179.41 (14)
C5—C4—N3—C21.3 (2)N9—C4—C5—C6178.57 (14)
O6—C6—N1—C2177.04 (16)N3—C4—C5—C61.5 (2)
C5—C6—N1—C23.3 (2)C8—N7—C5—C40.36 (19)
C5—N7—C8—N90.05 (19)C8—N7—C5—C6178.03 (17)
C4—N9—C8—N70.44 (19)O6—C6—C5—C4179.75 (18)
C6—N1—C2—N2176.53 (16)N1—C6—C5—C40.7 (2)
C6—N1—C2—N33.8 (3)O6—C6—C5—N72.9 (3)
C4—N3—C2—N2179.11 (15)N1—C6—C5—N7176.71 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N(1)—H(1)···O(21)i0.87 (3)1.98 (3)2.8417 (19)174 (2)
N(3)—H(3)···O(22)0.90 (2)1.84 (2)2.737 (2)176 (2)
N(7)—H(7)···O(2W)ii1.02 (2)1.55 (2)2.566 (2)177 (2)
N(9)—H(9)···O(12)1.01 (2)1.73 (2)2.741 (2)178 (1)
N(9)—H(9)···O(13)1.01 (2)2.34 (3)2.966 (2)119 (2)
O(1W)—H(11)···O(23)0.87 (3)2.16 (3)2.989 (2)159 (2)
O(1W)—H(12)···O(12)0.91 (4)1.95 (4)2.853 (2)174 (2)
N(2)—H(21)···O(21)0.91 (2)1.99 (2)2.887 (2)171 (2)
N(2)—H(22)···O(23)i0.88 (3)2.00 (3)2.884 (2)174 (3)
O(2W)—H(23)···O(1W)ii0.84 (3)1.80 (3)2.643 (2)174 (3)
O(2W)—H(24)···O(13)0.85 (3)1.91 (3)2.756 (2)176 (2)
C(8)—H(8)···O(11)ii0.91 (2)2.49 (2)3.267 (2)144 (2)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N5O2+·2NO3·2H2O
Mr313.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.6340 (4), 11.9800 (5), 15.8040 (3)
β (°) 91.01 (2)
V3)1255.83 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.60 × 0.45 × 0.40
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I))] reflections
8447, 2447, 2103
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.07
No. of reflections2447
No. of parameters234
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N(1)—H(1)···O(21)i0.87 (3)1.98 (3)2.8417 (19)174 (2)
N(3)—H(3)···O(22)0.90 (2)1.84 (2)2.737 (2)176 (2)
N(7)—H(7)···O(2W)ii1.02 (2)1.55 (2)2.566 (2)177 (2)
N(9)—H(9)···O(12)1.01 (2)1.73 (2)2.741 (2)178.4 (14)
N(9)—H(9)···O(13)1.01 (2)2.34 (3)2.966 (2)118.8 (18)
O(1W)—H(11)···O(23)0.87 (3)2.16 (3)2.989 (2)159 (2)
O(1W)—H(12)···O(12)0.91 (4)1.95 (4)2.853 (2)174 (2)
N(2)—H(21)···O(21)0.91 (2)1.99 (2)2.887 (2)171 (2)
N(2)—H(22)···O(23)i0.88 (3)2.00 (3)2.884 (2)174 (3)
O(2W)—H(23)···O(1W)ii0.84 (3)1.80 (3)2.643 (2)174 (3)
O(2W)—H(24)···O(13)0.85 (3)1.91 (3)2.756 (2)176 (2)
C(8)—H(8)···O(11)ii0.91 (2)2.49 (2)3.267 (2)143.5 (17)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds