Download citation
Download citation
link to html
The X-ray crystallographic study of the title compound, C24H20ClN3OS, clearly demonstrates that 1,3-dipolar cycloaddition occurs at the C=N double bond of the 1,5-benzodiazepine.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006761/dn6029sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006761/dn6029Isup2.hkl
Contains datablock I

CCDC reference: 185794

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.067
  • wR factor = 0.130
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
CRYSC_01 Alert C The word below has not been recognised as a standard identifier. incolore CRYSC_01 Alert C No recognised colour has been given for crystal colour.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Il a été montré que l'addition d'un nouvel hétérocycle, ou de plusieurs, à un hétérocycle azoté à sept chaînons augmente notablement l'activité biologique du composé synthétisé (Bartsch & Erker, 1988; Bellantuono et al., 1980). Notre équipe possède une longue expérience de la synthèse de ce type de molécules (Baouid et al., 1996, 2000; El Hazazi et al., 2000; Benelbaghdadi et al., 1998; Hasnaoui et al., 1991) ayant des structures homologues à celles des composés biologiquement actifs. Nous rapportons ici le comportement du chlorure d'arylcarbohydroxamoyle (Liu et al., 1980; Grundmann & Dean, 1965) en présence de la triéthylamine vis à vis de la 2-méthylthio-4-phényl-3H-[1,5]benzodiazépine (Cortès et al., 1991; Nardi et al., 1973). Cette réaction de condensation dipolaire conduit à un seul monocycloadduit. Les données spectrales de RMN 1H et 13C et de spectroscopie de masse du produit synthétisé nous indiquent qu'on a réalisé une monocondensation résultant de l'addition du dipôle sur l'une des deux doubles liaisons C2—N1 ou C6—N7, mais ces analyses spectrales ne nous permettent pas de distinguer les deux structures isomères du cycloadduit. Une étude cristallographique du monocristal préparé à partir du cycloadduit obtenu nous a conduit à la structure exacte du produit obtenu. Celui-ci résulte de l'addition du dipôle sur la double liaison C6—N7 substituée par le groupement phényle pour aboutir au 1-(3-chloro-4-tolyl)-5-méthylthio-3a-phényl-3a,11-dihydro-4H- [1,2,4]oxadiazolo[5,4-d][1,5]benzodiazépine, [composé (I)]. Par conséquent, on peut conclure que cette réaction de cycloaddition dipolaire-1,3 e s t totalement péri et régiosélective puisque la condensation a été effectuée sur la double liaison C6—N7 substituée par le groupement phényle et non plus sur la double liaison C2—N1 substituée par le groupement méthylthio quelque soit la quantité du dipôle utilisée. Le sens de l'addition est unique car le pôle négatif du dipôle est lié au carbone C6 du site dipolarophile et le pôle positif est lié à l'azote N7. Le coeur de la molécule est composé du tricycle formé par la benzodiazépine et le cycle oxazodiazolo et sur lequel sont fixés les cycles phényl et chlorotosyl et le bras méthylthio. Le cycle à 7 chaînons comporte un fragment plan N7/C8/C13/N14 (déviation standard: 0,004 Å), coplanaire avec le cycle C8–C13 (déviation standard: 0,017 Å) et un fragment gauche décrit par les deux angles de torsion N14—C4—C5—C6 [46,5(3)°] et C4—C5—C6—N7 [-73.7 (3)°]. Le cycle oxazodiazolo présente une conformation enveloppe, l'atome C4 est situé à -0,226 (4) Å du plan C1/N2/O3/N14 (déviation standard: 0,011 Å) contenant la double liaison C1—N2 [1.282 (3) Å]. Le bras méthylthio est situé dans le plan de la double liaison C6—N7: déviation standard du plan C5/C6/N7/C8/S29/C30: 0.015 Å.

Experimental top

A une solution bien agitée de la 2-méthylthio-4-phényl-3H-[1,5]benzodiazépine (0.5 g, 1.88 mmol) dans 5 ml du chloroforme, on ajoute lentement une solution de triéthylamine (3.76 mmol) contenue dans 3 ml du même solvant. Le mélange est porté à reflux sous atmosphère d'azote. Après 45 min, une solution de chlorure d'arylcarbohydroxamoyle (0.77 g, 3.76 mmol) dans 5 ml de chlorofome est ajoutée lentement. Le mélange réactionnel est agité à reflux pendant 24 h. Après refroidissement à température ambiante et traitement du mélange réactionnel, le résidu obtenu est chromatographié sur gel de silice avec un gradient d'éluant hexane–acétate d'éthyle (95:5). Le produit purifié est recristallisé dans l'hexane-dichlorométhane (9:1) pour conduire au composé étudié. P·F. = 431–433 K.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson,1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Dessin ORTEPIII (Burnett & Johnson, 1996) de la molécule. Les ellipsoides de vibration des atomes ont une probabilité de 50%.
1-(3-Chloro-4-tolyl)-5-méthylthio-3a-phényl-3a,11-dihydro-4H-[1,2,4] oxadiazolo[5,4-d][1,5]benzodiazépine top
Crystal data top
C24H20ClN3OSF(000) = 904
Mr = 433.94Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15172 reflections
a = 8.6890 (4) Åθ = 2.6–26.5°
b = 18.8253 (9) ŵ = 0.30 mm1
c = 13.3728 (7) ÅT = 293 K
β = 103.470 (3)°Plaquette, incolore
V = 2127.3 (2) Å30.30 × 0.15 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3328 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
Graphite monochromatorθmax = 26.5°, θmin = 2.6°
ϕ scansh = 610
15172 measured reflectionsk = 823
4363 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0156P)2 + 2.3746P]
where P = (Fo2 + 2Fc2)/3
4363 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C24H20ClN3OSV = 2127.3 (2) Å3
Mr = 433.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6890 (4) ŵ = 0.30 mm1
b = 18.8253 (9) ÅT = 293 K
c = 13.3728 (7) Å0.30 × 0.15 × 0.08 mm
β = 103.470 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3328 reflections with I > 2σ(I)
15172 measured reflectionsRint = 0.071
4363 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.11Δρmax = 0.21 e Å3
4363 reflectionsΔρmin = 0.50 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl210.39539 (16)0.09042 (6)0.28030 (11)0.1103 (5)
S290.59974 (11)0.38304 (5)0.01191 (6)0.0567 (3)
O30.4435 (2)0.43868 (10)0.19588 (15)0.0417 (5)
N20.4347 (3)0.36584 (11)0.22417 (18)0.0380 (5)
N70.8168 (3)0.35223 (12)0.15741 (17)0.0371 (5)
N140.6693 (2)0.40861 (10)0.31285 (16)0.0304 (5)
C10.5658 (3)0.35152 (13)0.2878 (2)0.0319 (6)
C40.6010 (3)0.46516 (13)0.23785 (19)0.0330 (6)
C50.6903 (3)0.47009 (14)0.1526 (2)0.0379 (6)
H5A0.63060.49940.09730.046*
H5B0.79180.49280.17920.046*
C60.7168 (3)0.39806 (14)0.1106 (2)0.0363 (6)
C80.9066 (3)0.37064 (13)0.2564 (2)0.0332 (6)
C91.0693 (3)0.35951 (16)0.2795 (2)0.0434 (7)
H91.11640.33920.23070.052*
C101.1609 (3)0.37824 (17)0.3739 (3)0.0494 (8)
H101.26970.37100.38820.059*
C111.0936 (3)0.40755 (16)0.4475 (2)0.0484 (8)
H111.15680.42070.51090.058*
C120.9318 (3)0.41755 (14)0.4273 (2)0.0386 (6)
H120.88590.43700.47730.046*
C130.8381 (3)0.39865 (13)0.33255 (19)0.0307 (6)
C150.5904 (3)0.28129 (13)0.3384 (2)0.0329 (6)
C160.6910 (3)0.27090 (14)0.4338 (2)0.0396 (6)
H160.75560.30780.46520.048*
C170.6964 (4)0.20602 (15)0.4828 (2)0.0430 (7)
H170.76520.20030.54690.052*
C180.6035 (3)0.14955 (14)0.4401 (2)0.0419 (7)
C190.5088 (4)0.16013 (15)0.3425 (3)0.0510 (8)
C200.5013 (4)0.22420 (15)0.2921 (2)0.0479 (7)
H200.43620.22910.22660.057*
C220.6040 (4)0.08160 (16)0.4987 (3)0.0562 (8)
H22A0.70110.07780.55020.084*
H22B0.59480.04210.45230.084*
H22C0.51630.08140.53110.084*
C230.5845 (3)0.53579 (14)0.2897 (2)0.0352 (6)
C240.4984 (4)0.53763 (17)0.3648 (2)0.0486 (7)
H240.45600.49590.38400.058*
C250.4751 (4)0.60060 (18)0.4111 (3)0.0579 (9)
H250.41740.60100.46160.069*
C260.5363 (4)0.66296 (17)0.3834 (3)0.0576 (9)
H260.51910.70550.41440.069*
C270.6220 (4)0.66184 (16)0.3104 (3)0.0571 (9)
H270.66440.70380.29170.068*
C280.6467 (4)0.59843 (15)0.2634 (2)0.0470 (7)
H280.70590.59830.21380.056*
C300.6518 (5)0.2944 (2)0.0390 (3)0.0753 (12)
H30A0.76370.29170.03370.113*
H30B0.59620.28150.10740.113*
H30C0.62330.26230.00940.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl210.1182 (10)0.0566 (6)0.1231 (10)0.0409 (6)0.0391 (8)0.0080 (6)
S290.0687 (6)0.0550 (5)0.0365 (4)0.0190 (4)0.0076 (4)0.0069 (4)
O30.0336 (10)0.0346 (10)0.0495 (12)0.0008 (8)0.0054 (9)0.0037 (9)
N20.0325 (12)0.0331 (12)0.0463 (14)0.0003 (10)0.0046 (10)0.0004 (10)
N70.0393 (12)0.0369 (12)0.0343 (12)0.0059 (10)0.0068 (10)0.0004 (10)
N140.0302 (11)0.0253 (10)0.0341 (11)0.0006 (9)0.0043 (9)0.0035 (9)
C10.0303 (13)0.0326 (13)0.0336 (14)0.0001 (11)0.0089 (11)0.0012 (11)
C40.0324 (13)0.0298 (13)0.0336 (14)0.0013 (11)0.0010 (11)0.0027 (11)
C50.0462 (16)0.0313 (14)0.0337 (14)0.0045 (12)0.0042 (12)0.0039 (11)
C60.0401 (15)0.0386 (15)0.0293 (13)0.0027 (12)0.0060 (11)0.0032 (11)
C80.0327 (13)0.0297 (13)0.0359 (14)0.0010 (11)0.0051 (11)0.0060 (11)
C90.0335 (14)0.0484 (17)0.0489 (17)0.0033 (13)0.0109 (13)0.0075 (14)
C100.0272 (14)0.0581 (19)0.059 (2)0.0026 (14)0.0020 (13)0.0103 (16)
C110.0382 (16)0.0507 (18)0.0475 (17)0.0083 (14)0.0074 (13)0.0004 (14)
C120.0402 (15)0.0376 (15)0.0359 (14)0.0033 (12)0.0045 (12)0.0009 (12)
C130.0278 (13)0.0274 (13)0.0347 (14)0.0016 (10)0.0027 (11)0.0060 (10)
C150.0328 (13)0.0297 (13)0.0389 (15)0.0013 (11)0.0141 (11)0.0004 (11)
C160.0449 (16)0.0322 (14)0.0411 (16)0.0054 (12)0.0084 (13)0.0010 (12)
C170.0494 (17)0.0402 (16)0.0390 (16)0.0014 (13)0.0095 (13)0.0036 (13)
C180.0440 (16)0.0330 (14)0.0526 (18)0.0002 (13)0.0193 (14)0.0032 (13)
C190.0466 (17)0.0353 (15)0.067 (2)0.0121 (13)0.0052 (16)0.0010 (15)
C200.0469 (17)0.0404 (16)0.0496 (18)0.0054 (14)0.0024 (14)0.0026 (14)
C220.070 (2)0.0375 (16)0.065 (2)0.0034 (16)0.0246 (18)0.0087 (15)
C230.0353 (14)0.0323 (14)0.0339 (14)0.0057 (11)0.0001 (11)0.0003 (11)
C240.0457 (17)0.0457 (17)0.0558 (19)0.0005 (14)0.0144 (15)0.0046 (15)
C250.0528 (19)0.061 (2)0.063 (2)0.0091 (16)0.0183 (17)0.0167 (17)
C260.061 (2)0.0431 (18)0.061 (2)0.0130 (16)0.0018 (17)0.0164 (16)
C270.075 (2)0.0323 (16)0.058 (2)0.0004 (15)0.0036 (18)0.0022 (14)
C280.0616 (19)0.0350 (15)0.0444 (17)0.0006 (14)0.0119 (15)0.0003 (13)
C300.090 (3)0.063 (2)0.062 (2)0.020 (2)0.005 (2)0.0243 (19)
Geometric parameters (Å, º) top
Cl21—C191.733 (3)C15—C161.382 (4)
S29—C61.738 (3)C15—C201.384 (4)
S29—C301.789 (3)C16—C171.382 (4)
O3—N21.429 (3)C16—H160.9300
O3—C41.442 (3)C17—C181.376 (4)
N2—C11.282 (3)C17—H170.9300
N7—C61.280 (3)C18—C191.385 (4)
N7—C81.414 (3)C18—C221.500 (4)
N14—C11.391 (3)C19—C201.376 (4)
N14—C131.441 (3)C20—H200.9300
N14—C41.488 (3)C22—H22A0.9600
C1—C151.478 (3)C22—H22B0.9600
C4—C231.521 (4)C22—H22C0.9600
C4—C51.525 (4)C23—C281.376 (4)
C5—C61.506 (4)C23—C241.385 (4)
C5—H5A0.9700C24—C251.374 (4)
C5—H5B0.9700C24—H240.9300
C8—C91.390 (4)C25—C261.375 (5)
C8—C131.397 (4)C25—H250.9300
C9—C101.372 (4)C26—C271.360 (5)
C9—H90.9300C26—H260.9300
C10—C111.372 (5)C27—C281.389 (4)
C10—H100.9300C27—H270.9300
C11—C121.380 (4)C28—H280.9300
C11—H110.9300C30—H30A0.9600
C12—C131.383 (4)C30—H30B0.9600
C12—H120.9300C30—H30C0.9600
C6—S29—C30102.88 (15)C15—C16—C17120.5 (3)
N2—O3—C4109.46 (17)C15—C16—H16119.8
C1—N2—O3106.5 (2)C17—C16—H16119.8
C6—N7—C8117.2 (2)C18—C17—C16122.3 (3)
C1—N14—C13121.1 (2)C18—C17—H17118.9
C1—N14—C4104.85 (19)C16—C17—H17118.9
C13—N14—C4116.46 (19)C17—C18—C19116.3 (3)
N2—C1—N14115.0 (2)C17—C18—C22120.8 (3)
N2—C1—C15120.2 (2)C19—C18—C22122.9 (3)
N14—C1—C15124.3 (2)C20—C19—C18122.5 (3)
O3—C4—N14102.03 (19)C20—C19—Cl21118.1 (2)
O3—C4—C23107.3 (2)C18—C19—Cl21119.3 (2)
N14—C4—C23112.5 (2)C19—C20—C15120.2 (3)
O3—C4—C5109.4 (2)C19—C20—H20119.9
N14—C4—C5110.8 (2)C15—C20—H20119.9
C23—C4—C5114.0 (2)C18—C22—H22A109.5
C6—C5—C4111.9 (2)C18—C22—H22B109.5
C6—C5—H5A109.2H22A—C22—H22B109.5
C4—C5—H5A109.2C18—C22—H22C109.5
C6—C5—H5B109.2H22A—C22—H22C109.5
C4—C5—H5B109.2H22B—C22—H22C109.5
H5A—C5—H5B107.9C28—C23—C24118.3 (3)
N7—C6—C5124.7 (2)C28—C23—C4123.2 (3)
N7—C6—S29122.2 (2)C24—C23—C4118.4 (2)
C5—C6—S29113.02 (19)C25—C24—C23120.6 (3)
C9—C8—C13118.5 (2)C25—C24—H24119.7
C9—C8—N7118.9 (3)C23—C24—H24119.7
C13—C8—N7122.6 (2)C24—C25—C26120.6 (3)
C10—C9—C8120.5 (3)C24—C25—H25119.7
C10—C9—H9119.7C26—C25—H25119.7
C8—C9—H9119.7C27—C26—C25119.4 (3)
C11—C10—C9120.7 (3)C27—C26—H26120.3
C11—C10—H10119.7C25—C26—H26120.3
C9—C10—H10119.7C26—C27—C28120.4 (3)
C10—C11—C12119.9 (3)C26—C27—H27119.8
C10—C11—H11120.0C28—C27—H27119.8
C12—C11—H11120.0C23—C28—C27120.7 (3)
C11—C12—C13120.0 (3)C23—C28—H28119.7
C11—C12—H12120.0C27—C28—H28119.7
C13—C12—H12120.0S29—C30—H30A109.5
C12—C13—C8120.3 (2)S29—C30—H30B109.5
C12—C13—N14119.4 (2)H30A—C30—H30B109.5
C8—C13—N14120.3 (2)S29—C30—H30C109.5
C16—C15—C20118.1 (2)H30A—C30—H30C109.5
C16—C15—C1122.8 (2)H30B—C30—H30C109.5
C20—C15—C1118.9 (2)
N14—C4—C5—C646.5 (3)C4—C5—C6—N773.7 (3)

Experimental details

Crystal data
Chemical formulaC24H20ClN3OS
Mr433.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6890 (4), 18.8253 (9), 13.3728 (7)
β (°) 103.470 (3)
V3)2127.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15172, 4363, 3328
Rint0.071
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.130, 1.11
No. of reflections4363
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.50

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson,1996), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds