Download citation
Download citation
link to html
The title compound, C9H10O5S, crystallizes with two independent mol­ecules in the asymmetric unit. Hydro­gen bonding between these planar mol­ecules gives rise to dimeric species, which produce a crystal structure composed of sheets, stacked parallel to the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015379/dn6004sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015379/dn6004Isup2.hkl
Contains datablock I

CCDC reference: 175373

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.084
  • wR factor = 0.268
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
DIFMX_01 Alert B The maximum difference density is > 0.1*ZMAX*1.00 _refine_diff_density_max given = 1.728 Test value = 1.600 PLAT_030 Alert B Refined Extinction parameter within range .... 2.22 Sigma
Yellow Alert Alert Level C:
DIFMX_02 Alert C The minimum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. RFACR_01 Alert C The value of the weighted R factor is > 0.25 Weighted R factor given 0.268
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The title compound, (I), crystallizes with two chemically equivalent but crystallographically independent molecules in the asymmetric unit and is shown, along with the atom numbering scheme, in Fig. 1.

The structure is composed of a thiophene ring substituted in the 2-position by an ethyl ester, in the 3-position by a hydroxyl group and in the 5- position by a methyl ester. This arrangement produces a virtually planar molecule with only the methyl and ethyl H atoms deviating from the plane. Maximum deviations from the heavy-atom plane are 0.124 (C7) and 0.195 Å (O6) for molecules A and B, respectively. All bond lengths and angles fall into accepted ranges reported from an assessment of the Cambridge Structural Database (Allen & Kennard, 1993; Orpen et al., 1992). Pertinent non-bonded interactions are detailed in Table 1. Intramolecular hydrogen bonds exist in molecule a between O3—H3A···O1 and concordantly between O8—H8···O6 in molecule B. These intramolecular interactions are bifurcated, as strong intermolecular hydrogen bonds between O3—H3A···O6 and O8—H8···O1 allow dimeric association of the two independent molecules. These dimer units produce a crystal structure composed of sheets, stacked parallel to the c axis.

Experimental top

2-Ethyl 5-methyl 3-hydroxythiophene-2,5-dicarboxylate, (I), was formed from the reaction of ethyl thioglycolate, (II), with dimethylacetylene dicarboxylate (DMAD) in the presence of DBU. The reaction proceeds via a Michael addition of (II) to DMAD, followed by an in situ Dieckmann cyclization. This reaction was originally observed in an attempted non-classical Wittig reaction of (II) with DMAD and PPh3 (Evans et al., 2001).

Refinement top

The quality of the crystal was poor, showing crazed faces, which produced a diffraction pattern with split reflections. The integration of the reflections was performed with a large box size and small spot size, in order to attempt to measure only one component of the splitting, however,in such a bad case, some intensities will inevitably be enhanced or reduced. This severely affected the refinement and final structure as demonstrated by the statistics of fit, residual density, etc. H atoms were included in idealized positions with coordinates and displacement parameters allowed to ride on those of the parent atom.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids).
(I) top
Crystal data top
C9H10O5SZ = 4
Mr = 230.23F(000) = 480
Triclinic, P1Dx = 1.478 Mg m3
a = 7.6602 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.120 (2) ÅCell parameters from 9463 reflections
c = 12.572 (3) Åθ = 2.9–27.5°
α = 94.09 (3)°µ = 0.31 mm1
β = 102.64 (3)°T = 120 K
γ = 95.77 (3)°Block, colourless
V = 1034.8 (4) Å30.2 × 0.18 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4585 independent reflections
Radiation source: Nonius FR591 rotating anode3689 reflections with I > 2σ(I)
Detector resolution: 9.091 pixels mm-1Rint = 0.067
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.940, Tmax = 0.982k = 1414
11567 measured reflectionsl = 1615
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1293P)2 + 5.7167P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.085(Δ/σ)max = 0.02
wR(F2) = 0.268Δρmax = 1.73 e Å3
S = 1.05Δρmin = 0.70 e Å3
4585 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
277 parametersExtinction coefficient: 0.020 (9)
0 restraints
Crystal data top
C9H10O5Sγ = 95.77 (3)°
Mr = 230.23V = 1034.8 (4) Å3
Triclinic, P1Z = 4
a = 7.6602 (15) ÅMo Kα radiation
b = 11.120 (2) ŵ = 0.31 mm1
c = 12.572 (3) ÅT = 120 K
α = 94.09 (3)°0.2 × 0.18 × 0.06 mm
β = 102.64 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4585 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3689 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.982Rint = 0.067
11567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 1.05Δρmax = 1.73 e Å3
4585 reflectionsΔρmin = 0.70 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1020 (6)0.8616 (4)0.1125 (3)0.0173 (9)
C20.0445 (6)0.7823 (4)0.0168 (3)0.0182 (9)
C30.0531 (6)0.6743 (4)0.0314 (3)0.0179 (9)
H30.10370.61120.02520.021*
C40.0665 (6)0.6711 (4)0.1389 (3)0.0173 (9)
C50.2018 (6)0.9802 (4)0.1200 (4)0.0196 (9)
C60.3425 (7)1.1587 (4)0.2326 (4)0.0250 (10)
H6A0.26591.21760.19660.03*
H6B0.44781.15590.19920.03*
C70.4038 (7)1.1955 (5)0.3553 (4)0.0288 (11)
H7A0.29821.20090.38660.043*
H7B0.47781.27460.3680.043*
H7C0.4751.13450.39010.043*
C80.1540 (6)0.5754 (4)0.1913 (4)0.0213 (9)
C90.3363 (9)0.3880 (5)0.1654 (5)0.0362 (13)
H9A0.24550.34960.21480.054*
H9B0.4050.32740.10690.054*
H9C0.41820.42130.20650.054*
C100.4102 (6)1.1500 (4)0.2462 (3)0.0177 (9)
C110.4792 (6)1.2216 (4)0.1474 (4)0.0200 (9)
C120.5760 (6)1.3324 (4)0.1600 (4)0.0189 (9)
H120.63141.39250.10150.023*
C130.5797 (6)1.3420 (4)0.2679 (4)0.0193 (9)
C140.3042 (6)1.0322 (4)0.2554 (4)0.0184 (9)
C150.1275 (7)0.8674 (5)0.3723 (4)0.0281 (11)
H15A0.01850.87620.34360.034*
H15B0.19580.80780.33120.034*
C160.0748 (7)0.8243 (5)0.4930 (4)0.0268 (10)
H16A0.00430.88270.53270.04*
H16B0.00220.74480.50380.04*
H16C0.18360.81740.52090.04*
C170.6773 (6)1.4418 (4)0.3094 (4)0.0205 (9)
C180.7694 (7)1.5099 (5)0.4642 (4)0.0287 (11)
H18A0.71831.5870.45980.043*
H18B0.76221.48260.5410.043*
H18C0.89581.52140.4240.043*
O10.2456 (5)1.0210 (3)0.0414 (3)0.0259 (8)
O20.2403 (5)1.0387 (3)0.2207 (3)0.0232 (7)
O30.0755 (5)0.8058 (3)0.0820 (2)0.0217 (7)
H3A0.13260.87530.07690.033*
O40.1432 (5)0.5783 (3)0.2892 (3)0.0247 (7)
O50.2478 (5)0.4852 (3)0.1179 (3)0.0247 (7)
O60.2804 (5)0.9828 (3)0.1758 (3)0.0266 (8)
O70.2387 (4)0.9840 (3)0.3593 (2)0.0212 (7)
O80.4581 (5)1.1940 (3)0.0480 (3)0.0249 (7)
H80.39611.1260.05410.037*
O90.7556 (5)1.5338 (3)0.2526 (3)0.0296 (8)
O100.6700 (5)1.4204 (3)0.4169 (3)0.0247 (7)
S10.03654 (14)0.79934 (10)0.22139 (8)0.0179 (3)
S20.46669 (15)1.21826 (10)0.35415 (9)0.0192 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.022 (2)0.018 (2)0.0128 (19)0.0020 (16)0.0061 (16)0.0016 (16)
C20.020 (2)0.022 (2)0.0127 (19)0.0031 (17)0.0043 (16)0.0024 (16)
C30.016 (2)0.022 (2)0.015 (2)0.0003 (16)0.0030 (15)0.0030 (16)
C40.017 (2)0.021 (2)0.0162 (19)0.0035 (16)0.0058 (15)0.0067 (16)
C50.022 (2)0.024 (2)0.015 (2)0.0050 (17)0.0082 (17)0.0019 (17)
C60.030 (2)0.020 (2)0.023 (2)0.0005 (18)0.0021 (19)0.0019 (18)
C70.031 (3)0.035 (3)0.023 (2)0.009 (2)0.011 (2)0.001 (2)
C80.019 (2)0.022 (2)0.022 (2)0.0014 (17)0.0055 (17)0.0014 (18)
C90.057 (4)0.022 (3)0.033 (3)0.010 (2)0.025 (3)0.002 (2)
C100.021 (2)0.020 (2)0.0140 (19)0.0025 (17)0.0061 (16)0.0045 (16)
C110.021 (2)0.024 (2)0.016 (2)0.0057 (17)0.0045 (16)0.0065 (17)
C120.018 (2)0.019 (2)0.020 (2)0.0020 (16)0.0051 (16)0.0013 (17)
C130.020 (2)0.017 (2)0.022 (2)0.0028 (16)0.0062 (17)0.0008 (17)
C140.016 (2)0.023 (2)0.016 (2)0.0001 (16)0.0059 (16)0.0004 (17)
C150.034 (3)0.025 (2)0.023 (2)0.010 (2)0.007 (2)0.0014 (19)
C160.030 (3)0.032 (3)0.016 (2)0.004 (2)0.0002 (18)0.0015 (19)
C170.018 (2)0.023 (2)0.022 (2)0.0042 (17)0.0081 (17)0.0046 (18)
C180.031 (3)0.028 (3)0.031 (3)0.002 (2)0.014 (2)0.008 (2)
O10.0350 (19)0.0261 (18)0.0184 (16)0.0022 (14)0.0125 (14)0.0022 (13)
O20.0281 (17)0.0228 (17)0.0187 (16)0.0003 (13)0.0065 (13)0.0018 (13)
O30.0272 (17)0.0230 (17)0.0144 (15)0.0027 (13)0.0056 (12)0.0026 (12)
O40.0312 (18)0.0253 (18)0.0187 (16)0.0008 (14)0.0088 (13)0.0051 (13)
O50.0353 (19)0.0210 (17)0.0183 (16)0.0067 (14)0.0127 (14)0.0007 (13)
O60.0335 (19)0.0273 (18)0.0181 (16)0.0041 (14)0.0079 (14)0.0012 (14)
O70.0227 (16)0.0242 (17)0.0152 (15)0.0031 (13)0.0034 (12)0.0026 (12)
O80.0329 (18)0.0270 (18)0.0144 (15)0.0048 (14)0.0082 (13)0.0025 (13)
O90.035 (2)0.0220 (18)0.0336 (19)0.0047 (14)0.0157 (16)0.0015 (15)
O100.0290 (18)0.0246 (17)0.0218 (16)0.0026 (13)0.0100 (14)0.0062 (13)
S10.0195 (6)0.0206 (6)0.0142 (5)0.0018 (4)0.0055 (4)0.0017 (4)
S20.0202 (6)0.0225 (6)0.0151 (5)0.0009 (4)0.0056 (4)0.0032 (4)
Geometric parameters (Å, º) top
C1—C21.399 (6)C10—C141.453 (6)
C1—C51.442 (6)C10—S21.716 (4)
C1—S11.724 (4)C11—O81.348 (5)
C2—O31.353 (5)C11—C121.410 (6)
C2—C31.395 (6)C12—C131.375 (6)
C3—C41.380 (6)C12—H120.95
C3—H30.95C13—C171.466 (6)
C4—C81.471 (6)C13—S21.719 (5)
C4—S11.714 (5)C14—O61.214 (6)
C5—O11.213 (6)C14—O71.343 (5)
C5—O21.339 (5)C15—O71.456 (6)
C6—O21.459 (6)C15—C161.512 (6)
C6—C71.523 (7)C15—H15A0.99
C6—H6A0.99C15—H15B0.99
C6—H6B0.99C16—H16A0.98
C7—H7A0.98C16—H16B0.98
C7—H7B0.98C16—H16C0.98
C7—H7C0.98C17—O91.225 (6)
C8—O41.214 (6)C17—O101.343 (6)
C8—O51.344 (6)C18—O101.433 (6)
C9—O51.451 (6)C18—H18A0.98
C9—H9A0.98C18—H18B0.98
C9—H9B0.98C18—H18C0.98
C9—H9C0.98O3—H3A0.84
C10—C111.394 (6)O8—H80.84
C2—C1—C5125.0 (4)O8—C11—C12120.8 (4)
C2—C1—S1111.0 (3)C10—C11—C12113.0 (4)
C5—C1—S1124.0 (3)C13—C12—C11111.1 (4)
O3—C2—C3121.8 (4)C13—C12—H12124.5
O3—C2—C1124.7 (4)C11—C12—H12124.5
C3—C2—C1113.5 (4)C12—C13—C17125.6 (4)
C4—C3—C2111.1 (4)C12—C13—S2113.4 (3)
C4—C3—H3124.4C17—C13—S2120.9 (3)
C2—C3—H3124.4O6—C14—O7124.1 (4)
C3—C4—C8129.8 (4)O6—C14—C10122.4 (4)
C3—C4—S1113.5 (3)O7—C14—C10113.6 (4)
C8—C4—S1116.7 (3)O7—C15—C16107.9 (4)
O1—C5—O2124.3 (4)O7—C15—H15A110.1
O1—C5—C1122.1 (4)C16—C15—H15A110.1
O2—C5—C1113.6 (4)O7—C15—H15B110.1
O2—C6—C7106.2 (4)C16—C15—H15B110.1
O2—C6—H6A110.5H15A—C15—H15B108.4
C7—C6—H6A110.5C15—C16—H16A109.5
O2—C6—H6B110.5C15—C16—H16B109.5
C7—C6—H6B110.5H16A—C16—H16B109.5
H6A—C6—H6B108.7C15—C16—H16C109.5
C6—C7—H7A109.5H16A—C16—H16C109.5
C6—C7—H7B109.5H16B—C16—H16C109.5
H7A—C7—H7B109.5O9—C17—O10124.2 (4)
C6—C7—H7C109.5O9—C17—C13123.9 (4)
H7A—C7—H7C109.5O10—C17—C13111.9 (4)
H7B—C7—H7C109.5O10—C18—H18A109.5
O4—C8—O5124.1 (4)O10—C18—H18B109.5
O4—C8—C4123.8 (4)H18A—C18—H18B109.5
O5—C8—C4112.1 (4)O10—C18—H18C109.5
O5—C9—H9A109.5H18A—C18—H18C109.5
O5—C9—H9B109.5H18B—C18—H18C109.5
H9A—C9—H9B109.5C5—O2—C6115.6 (4)
O5—C9—H9C109.5C2—O3—H3A109.5
H9A—C9—H9C109.5C8—O5—C9114.3 (4)
H9B—C9—H9C109.5C14—O7—C15115.3 (3)
C11—C10—C14123.7 (4)C11—O8—H8109.5
C11—C10—S2111.6 (3)C17—O10—C18116.2 (4)
C14—C10—S2124.7 (3)C4—S1—C190.9 (2)
O8—C11—C10126.1 (4)C10—S2—C1391.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.842.12.791 (5)140
O3—H3A···O60.842.192.873 (5)138
O8—H8···O10.842.162.845 (5)138
O8—H8···O60.842.112.795 (5)139

Experimental details

Crystal data
Chemical formulaC9H10O5S
Mr230.23
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.6602 (15), 11.120 (2), 12.572 (3)
α, β, γ (°)94.09 (3), 102.64 (3), 95.77 (3)
V3)1034.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.2 × 0.18 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.940, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11567, 4585, 3689
Rint0.067
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.268, 1.05
No. of reflections4585
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 0.70

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1993).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.842.12.791 (5)139.7
O3—H3A···O60.842.192.873 (5)137.8
O8—H8···O10.842.162.845 (5)138.3
O8—H8···O60.842.112.795 (5)138.9
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds