Download citation
Download citation
link to html
In lamotrigine [systematic name: 6-(2,3-dichloro­phen­yl)-1,2,4-triazine-3,5-diamine], C9H7Cl2N5, (I), the asymmetric unit contains one lamotrigine base mol­ecule. In lamotriginium chloride [systematic name: 3,5-diamino-6-(2,3-dichloro­phen­yl)-1,2,4-triazin-2-ium chloride], C9H8Cl2N5+·Cl, (II), the asymmetric unit contains one lamotriginium cation and one chloride anion, while in lamotriginium nitrate, C9H8Cl2N5+·NO3, (III), the asymmetric unit contains two crystallographically independent lamotriginium cations and two nitrate anions. In all three structures, N—H...N hydrogen bonds form an R22(8) dimer. In (I) and (II), hydro­philic layers are sandwiched between hydro­phobic layers in the crystal packing. In all three structures, hydrogen bonds lead to the formation of a supra­molecular hydrogen-bonded network. The significance of this study lies in its illustration of the differences between the supra­molecular aggregation in the lamotrigine base and in its chloride and nitrate salts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109030960/dn3123sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030960/dn3123Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030960/dn3123IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030960/dn3123IIIsup4.hkl
Contains datablock III

CCDC references: 749719; 749720; 749721

Comment top

Lamotrigine [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine] is an antiepileptic drug used in the treatment of epilepsy and bipolar disorder. The US Food and Drug Administration approved lamotrigine (marketed as Lamictal by GlaxoSmithKline) for the treatment of epilepsy in 1994, and for bipolar I disorder in 2003. Chemically unrelated to other antiepileptics, lamotrigine has relatively few side effects and does not require blood monitoring. The formation of multicomponent ionic crystals, or salts, is of fundamental importance to the development of most active pharmaceutical ingredients (APIs), where the approach is used for both purification and physical-property optimization. Salt formation is generally used to increase or decrease solubility, to improve stability or toxicity, or to reduce the hygroscopicity of APIs (Gould, 1986; Stahl & Wermuth, 2002). Chlorides, nitrates and sulfates etc. are the most frequently occurring counterions of salts of drug molecules. The unit-cell dimensions [a = 6.386 (3), b = 10.467 (3) and c = 14.856 (4) Å, and β = 100.774 (3)°, monoclinic space group Aa (Janes et al., 1989)] of the lamotrigine base have been reported, but no coordinates were deposited in the Cambridge Structural Database (Allen, 2002; refcode EFEMUX). The earlier reported unit cell appears to differ significantly from that found here. This paper reports the crystal structure of lamotrigine, (I), for the first time, and the crystal structures of two of its salts, the chloride, (II), and nitrate, (III).

The asymmetric unit of (I) contains one lamotrigine base, while the asymmetric unit of (II) comprises one lamotriginium cation and one chloride anion and that of (III) contains two lamotriginium cations (A and B) and two nitrate anions (1 and 2). In both (II) and (III), protonation occurs at atom N2 of the triazine ring.

In all three structures, the individual rings are almost planar, with maximum deviations from the least-squares planes of the phenyl rings of 0.001 (2) Å in (I), 0.019 (4) Å in (II), and 0.018 (4) in cation A and 0.007 (4) Å in cation B of (III), and maximum deviations from the least-squares planes of the triazine rings of 0.028 (2) Å in (I), 0.007 (3) Å in (II), and 0.036 (4) in cation A and 0.016 (4) Å in cation B of (III).

The dihedral angles between the rings are 69.8 (1)° in (I), 73.5 (1)° in (II), and 73.2 (1) (cation A) and 67.4 (1)° (cation B) in (III). The orientation of the phenyl ring with respect to the triazine ring can be seen from the torsion angles C2—C1—C7—N1 and C2—C1—C7—C9 (Table 1). An r.m.s. overlay of the triazine rings of the three structures (Fig. 4) clearly shows the tilt of the dichlorophenyl rings. It is well known from the previously reported lamotrigine structures (Potter et al., 1999; Janes & Palmer, 1995a,b) that the corresponding dihedral angles are generally observed in the range 50–80°. This relatively large value of the dihedral angle may be due to the presence of substitutents on the ortho positions with respect to the central C—C bond. However, in the crystal structure of 5-(p-chlorophenyl)-1,2,4-triazine (Atwood et al., 1974), the twist is much smaller [dihedral angle 9.3 (1)°] in the absence of such hindrance.

The molecular geometry of the three compounds, in terms of bond lengths and angles (Table 1), is in good agreement with the related lamotrigine structures lamotrigine [lamotriginium?] isethionate [isothionate?] (Potter et al., 1999), lamotriginium benzoate dimethylformamide (Sridhar & Ravikumar, 2005) and lamotriginium hydrogen phthalate dimethylformamide (Sridhar & Ravikumar, 2007). The N—N and four C—N bond distances of the triazine ring are similar for all three structures and are intermediate between the expected single- (1.45 and 1.47 Å) and double- (1.20 and 1.27 Å) bond distances (Allen et al., 1987).

In (I) and (II), the crystal structures are stabilized by N—H···N and N—H···Cl hydrogen bonds, and in (III) by N—H···N and N—H···O hydrogen bonds. Interestingly, in (I) all the N atoms of the triazine ring participate in hydrogen bonding, while in (II) and (III), all N atoms except atom N1 are involved in hydrogen bonding. In all three structures, lamotrigine–lamotrigine dimers are formed by N—H···N hydrogen bonds [R22(8) motif (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995)]. In (I), the dimer is formed between atom N3 and its inversion-related atom N4, while in (II) and (III) the dimer is formed between atoms N5 and N4 of the triazine rings. Interestingly, in (III), it is formed between the two independent lamotriginium cations through a double intramolecular N—H···N hydrogen bond.

In (I), adjacent lamotrigine–lamotrigine dimers are interlinked by double N—H···N hydrogen bonds [R33(9) motif; Table 2], leading to one-dimensional supramolecular polymeric ribbons (Fig. 5). These polymeric ribbons are further interlinked by an N—H···Cl hydrogen bond involving atom N5 of the triazine ring and its glide-related atom Cl2 of the dichlorophenyl ring, leading to the formation of a dimer of R22(16)-type motif.

The three N—H···N hydrogen bonds form alternate R22(8) and R33(9) motifs, which in turn produce an R44(14) motif and aggregate into a one-dimensional hydrogen-bonded polymeric ribbon running along the crystallographic a axis. These polymeric ribbons are further interlinked by N—H···Cl hydrogen-bond dimers with an R44(16) motif, thereby leading to the formation of a supramolecular three-dimensional hydrogen-bonded network. In the crystal packing, the triazine rings are sandwiched between the dichlorophenyl rings.

The chloride ion of (II) is involved in four N—H···Cl hydrogen bonds (Table 3). The chloride ion forms intramolecular N—H···Cl hydrogen bonds with atoms N2 and N3, generating an R21(6) motif, and also intermolecular N—H···Cl hydrogen bonds with atoms N3 and N5, generating two R32(8) motifs (Fig. 6).

Each centrosymmetric R22(8) dimer is flanked by two symmetry-related Cl- anions at (-x + 1, y + 1/2, -z + 3/2) and (x, -y + 1/2, z + 1/2), thereby generating an R32(8) motif. Thus, the combination of intermolecular N—H···Cl and N—H···N hydrogen bonds produces an R42(16) motif. The R22(8) and R32(8) motifs are arranged alternately and form hydrogen-bonded columns in the crystal packing. Each hydrogen-bonded column is further interlinked to its adjacent columns by double N—H···Cl hydrogen bonds, thereby generating an infinite two-dimensional supramolecular hydrogen-bonded sheet with alternate cations and anions parallel to the (100) plane (Fig. 6). Furthermore, in the crystal packing, hydrophilic layers around a = 1/2 are sandwiched between hydrophobic layers about a = 1/4 and 3/4.

In (III), all the O atoms of the two nitrate anions participate in the hydrogen-bonding networks (Table 4). Atoms N5A, N2B, N3B and N5B are involved in three-centred hydrogen-bonding patterns (Jeffrey & Saenger, 1991). Nitrate anion 1 is involved in six hydrogen bonds, while anion 2 is involved in five hydrogen bonds with the cation pairs. Nitrate anion 2 and its inversion-related anion act as bridging units and interconnect the lamotriginium–lamotriginium dimer pairs, which in turn generate R12(4), R42(8) and R22(8) motifs and form hydrogen-bonded columns. Each column is arranged in a hexameric hydrogen-bonded network consisting of two sets of alternate cation and anion pairs (Fig. 7). Furthermore, this hexameric hydrogen-bonded network is interconnected by intramolecular N—H···O hydrogen bonds involving atoms N2B and N3B of the lamotriginium cation and atoms O1 and O2 of nitrate anion 1, thereby generating R13(3), R12(4) and R22(8) motifs. In addition, inversion-related nitrate anions link the hexameric hydrogen-bonded columns through atoms N5A and N3B of the cation pairs.

In (III), the combination of N—H···N and N—H···O hydrogen bonds involving the cation pair, two nitrate anions and their symmetry-related anions leads to an infinite two-dimensional supramolecular hydrogen-bonded network parallel to the (011) plane. No specific hydrophilic and hydrophobic layers are observed in (III). It is very interesting to note that in (II) and (III), the two Cl atoms of the lamotriginium cations are not involved in any interactions. A short interatomic contact is observed between atom Cl2A of the lamotriginium cation and atom O2 of the nitrate anion [Cl2A ···O2 = 2.946 (5) Å; symmetry code (-x + 1, -y + 1, -z + 1)], which is a consequence of the dense packing of the moieties induced by the complex hydrogen bonding.

Experimental top

To obtain crystals of (I) suitable for X-ray study, lamotrigine (Source and purity?) was dissolved in methanol and the solution allowed to evaporate slowly. Crystals of (II) and (III) were obtained by slow evaporation from aqueous solutions of 1:1 stoichiometric ratio, of lamotrigine and hydrochloric acid for (II) and of lamotrigine and nitric acid for (III).

Refinement top

All the N-bound H atoms were located in difference Fourier maps and their positions and isotropic displacement parameters were located [Refined?]. All other H atoms were located in a difference density map but were positioned geometrically and included as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). In (III), N3A—H4, N5A—H6, N2B—H7, N3B—H8, N5B—H10 and N5B—H11 distances were restrained to a set value of 0.89 (1) Å. The highest unassigned peak is located 0.96 Å from atom H4A in (III).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of the structure of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. An r.m.s. overlay of (I), (II) (r.m.s deviation = 0.045 Å), cation A of (III) (r.m.s deviation = 0.055 Å) and cation B of (III) (r.m.s deviation = 0.048 Å), showing the difference in the dichlorophenyl ring orientations by superposition of the triazine ring. For clarity, the Cl anion in (II), the two nitrate anions in (III) and all H atoms have been omitted.
[Figure 5] Fig. 5. A packing diagram for (I), viewed down the b axis, showing how the hydrogen-bonded triazine rings are sandwiched between the dichlorophenyl rings. Dashed lines indicate N—H···N hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in the hydrogen bonding are labelled. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z - 1/2; (ii) -x + 3/2, -y + 3/2, -z; (iii) x, -y + 1, z + 1/2; (iv) -x + 2, y, -z + 1/2.]
[Figure 6] Fig. 6. A packing diagram for (II), viewed down the b axis, showing the how the hydrophilic layer around a = 1/2 is sandwiched between the hydrophobic layers about a = 1/4 and 3/4. Dashed lines indicate N—H···N and N—H···Cl hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in the hydrogen bonding are labelled. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x + 1, -y + 1, -z + 2; (iii) x, -y + 1/2, z + 1/2.]
[Figure 7] Fig. 7. A packing diagram for (III), viewed down the c axis, showing the infinite two-dimensional supramolecular hydrogen-bonded network parallel to the (011) plane. Dashed lines indicate N—H···N and N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in the hydrogen bonding are labelled. [Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x + 2, -y + 1, -z + 1; (iii) x - 1, y, z.]
(I) 6-(2,3-dichlorophenyl)-1,2,4-triazine-3,5-diamine top
Crystal data top
C9H7Cl2N5F(000) = 1040
Mr = 256.10Dx = 1.607 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8111 reflections
a = 19.136 (3) Åθ = 2.3–28.0°
b = 8.6409 (12) ŵ = 0.59 mm1
c = 13.5549 (18) ÅT = 294 K
β = 109.172 (2)°Block, colourless
V = 2117.0 (5) Å30.21 × 0.11 × 0.07 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1785 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 2222
9654 measured reflectionsk = 1010
1869 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0489P)2 + 1.6016P]
where P = (Fo2 + 2Fc2)/3
1869 reflections(Δ/σ)max = 0.002
161 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H7Cl2N5V = 2117.0 (5) Å3
Mr = 256.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.136 (3) ŵ = 0.59 mm1
b = 8.6409 (12) ÅT = 294 K
c = 13.5549 (18) Å0.21 × 0.11 × 0.07 mm
β = 109.172 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1785 reflections with I > 2σ(I)
9654 measured reflectionsRint = 0.019
1869 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
1869 reflectionsΔρmin = 0.20 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90356 (9)0.18792 (19)0.02977 (11)0.0323 (3)
C20.97759 (9)0.19888 (18)0.09308 (11)0.0322 (3)
C31.01725 (9)0.06717 (19)0.13631 (12)0.0343 (4)
C40.98390 (10)0.07678 (19)0.11757 (13)0.0395 (4)
H41.01060.16490.14680.047*
C50.91100 (11)0.0891 (2)0.05540 (14)0.0435 (4)
H50.88850.18580.04280.052*
C60.87094 (10)0.0419 (2)0.01153 (13)0.0387 (4)
H60.82180.03220.03050.046*
C70.85971 (8)0.32755 (19)0.01719 (11)0.0321 (3)
C80.78227 (9)0.57302 (18)0.10430 (12)0.0320 (3)
C90.83559 (8)0.43671 (18)0.04445 (12)0.0321 (3)
N10.83969 (8)0.34528 (17)0.11885 (10)0.0379 (3)
N20.79947 (8)0.46909 (17)0.16605 (10)0.0389 (3)
N30.74525 (9)0.69972 (19)0.14875 (13)0.0435 (4)
H3N0.7302 (12)0.710 (3)0.211 (2)0.054 (6)*
H4N0.7319 (11)0.764 (3)0.1111 (17)0.048 (6)*
N40.79845 (7)0.56192 (15)0.00028 (10)0.0323 (3)
N50.84784 (10)0.4120 (2)0.14622 (12)0.0493 (4)
H5N0.8311 (11)0.472 (3)0.1809 (16)0.047 (6)*
H6N0.8731 (13)0.334 (3)0.1748 (17)0.056 (6)*
Cl11.02059 (2)0.37772 (5)0.11260 (3)0.04626 (16)
Cl21.10963 (2)0.07839 (5)0.21190 (3)0.04507 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (8)0.0368 (8)0.0253 (7)0.0002 (7)0.0134 (6)0.0038 (6)
C20.0391 (8)0.0335 (8)0.0258 (7)0.0026 (6)0.0130 (6)0.0033 (6)
C30.0396 (9)0.0411 (9)0.0237 (7)0.0038 (7)0.0124 (6)0.0006 (6)
C40.0543 (10)0.0358 (9)0.0323 (9)0.0051 (7)0.0195 (8)0.0011 (6)
C50.0570 (11)0.0345 (9)0.0452 (10)0.0083 (8)0.0254 (8)0.0069 (7)
C60.0411 (9)0.0416 (9)0.0351 (8)0.0035 (7)0.0150 (7)0.0067 (7)
C70.0332 (8)0.0371 (8)0.0254 (7)0.0008 (6)0.0089 (6)0.0016 (6)
C80.0321 (8)0.0362 (8)0.0255 (7)0.0055 (6)0.0065 (6)0.0006 (6)
C90.0324 (8)0.0382 (8)0.0242 (7)0.0013 (6)0.0072 (6)0.0007 (6)
N10.0463 (8)0.0411 (8)0.0259 (6)0.0013 (6)0.0113 (6)0.0026 (6)
N20.0490 (8)0.0421 (8)0.0235 (6)0.0020 (6)0.0090 (6)0.0007 (6)
N30.0566 (9)0.0425 (9)0.0288 (8)0.0087 (7)0.0104 (7)0.0065 (7)
N40.0361 (7)0.0345 (7)0.0249 (6)0.0011 (5)0.0081 (5)0.0010 (5)
N50.0682 (11)0.0558 (10)0.0238 (7)0.0284 (9)0.0149 (7)0.0048 (7)
Cl10.0458 (3)0.0374 (3)0.0474 (3)0.00772 (17)0.0043 (2)0.00096 (17)
Cl20.0420 (3)0.0557 (3)0.0320 (2)0.01011 (18)0.00471 (18)0.00203 (17)
Geometric parameters (Å, º) top
C1—C61.393 (2)C7—N11.312 (2)
C1—C21.398 (2)C7—C91.433 (2)
C1—C71.488 (2)C8—N31.335 (2)
C2—C31.387 (2)C8—N21.340 (2)
C2—Cl11.7298 (16)C8—N41.351 (2)
C3—C41.383 (2)C9—N41.325 (2)
C3—Cl21.7305 (17)C9—N51.338 (2)
C4—C51.377 (3)N1—N21.350 (2)
C4—H40.9300N3—H3N0.80 (2)
C5—C61.387 (3)N3—H4N0.85 (2)
C5—H50.9300N5—H5N0.83 (2)
C6—H60.9300N5—H6N0.85 (3)
C6—C1—C2118.36 (15)N1—C7—C9119.77 (14)
C6—C1—C7120.10 (14)N1—C7—C1118.22 (13)
C2—C1—C7121.54 (14)C9—C7—C1121.91 (13)
C3—C2—C1120.50 (14)N3—C8—N2118.05 (15)
C3—C2—Cl1120.12 (12)N3—C8—N4115.87 (15)
C1—C2—Cl1119.32 (12)N2—C8—N4126.08 (15)
C4—C3—C2120.33 (15)N4—C9—N5118.85 (15)
C4—C3—Cl2118.63 (13)N4—C9—C7120.12 (14)
C2—C3—Cl2121.01 (13)N5—C9—C7120.99 (15)
C5—C4—C3119.72 (16)C7—N1—N2120.96 (13)
C5—C4—H4120.1C8—N2—N1116.98 (13)
C3—C4—H4120.1C8—N3—H3N121.4 (16)
C4—C5—C6120.37 (16)C8—N3—H4N119.1 (14)
C4—C5—H5119.8H3N—N3—H4N119 (2)
C6—C5—H5119.8C9—N4—C8115.86 (13)
C5—C6—C1120.71 (16)C9—N5—H5N121.1 (15)
C5—C6—H6119.6C9—N5—H6N118.7 (15)
C1—C6—H6119.6H5N—N5—H6N120 (2)
C6—C1—C2—C30.1 (2)C6—C1—C7—C9107.69 (18)
C7—C1—C2—C3179.75 (13)C2—C1—C7—C972.0 (2)
C6—C1—C2—Cl1177.32 (11)N1—C7—C9—N45.6 (2)
C7—C1—C2—Cl12.99 (19)C1—C7—C9—N4178.08 (14)
C1—C2—C3—C40.2 (2)N1—C7—C9—N5172.17 (17)
Cl1—C2—C3—C4177.48 (12)C1—C7—C9—N54.2 (2)
C1—C2—C3—Cl2178.22 (11)C9—C7—N1—N23.1 (2)
Cl1—C2—C3—Cl20.98 (18)C1—C7—N1—N2179.60 (14)
C2—C3—C4—C50.2 (2)N3—C8—N2—N1177.19 (15)
Cl2—C3—C4—C5178.30 (12)N4—C8—N2—N13.3 (2)
C3—C4—C5—C60.0 (3)C7—N1—N2—C81.0 (2)
C4—C5—C6—C10.2 (3)N5—C9—N4—C8174.33 (15)
C2—C1—C6—C50.2 (2)C7—C9—N4—C83.5 (2)
C7—C1—C6—C5179.53 (15)N3—C8—N4—C9179.57 (14)
C6—C1—C7—N168.7 (2)N2—C8—N4—C90.9 (2)
C2—C1—C7—N1111.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N1i0.80 (2)2.54 (2)3.284 (2)155 (2)
N3—H4N···N4ii0.85 (2)2.33 (2)3.178 (2)176.7 (19)
N5—H5N···N2iii0.83 (2)2.40 (2)3.152 (2)151.3 (19)
N5—H6N···Cl2iv0.85 (3)2.65 (2)3.4121 (18)151 (2)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+3/2, y+3/2, z; (iii) x, y+1, z+1/2; (iv) x+2, y, z+1/2.
(II) 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium chloride top
Crystal data top
C9H8Cl2N5+·ClF(000) = 592
Mr = 292.55Dx = 1.618 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2719 reflections
a = 16.664 (5) Åθ = 2.5–26.8°
b = 5.5139 (17) ŵ = 0.75 mm1
c = 13.392 (4) ÅT = 294 K
β = 102.588 (5)°Block, colourless
V = 1201.0 (6) Å30.19 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1645 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.058
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
ω scansh = 1919
10623 measured reflectionsk = 66
2119 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.5312P]
where P = (Fo2 + 2Fc2)/3
2119 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8Cl2N5+·ClV = 1201.0 (6) Å3
Mr = 292.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.664 (5) ŵ = 0.75 mm1
b = 5.5139 (17) ÅT = 294 K
c = 13.392 (4) Å0.19 × 0.12 × 0.07 mm
β = 102.588 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1645 reflections with I > 2σ(I)
10623 measured reflectionsRint = 0.058
2119 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.45 e Å3
2119 reflectionsΔρmin = 0.21 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21676 (18)0.3960 (6)0.9622 (2)0.0346 (7)
C20.16292 (18)0.5422 (6)0.8953 (2)0.0347 (7)
C30.10250 (19)0.6702 (6)0.9294 (2)0.0418 (8)
C40.0939 (2)0.6449 (7)1.0288 (3)0.0498 (9)
H40.05340.73121.05160.060*
C50.1454 (2)0.4920 (7)1.0944 (3)0.0498 (9)
H50.13810.47021.16070.060*
C60.2077 (2)0.3706 (6)1.0624 (2)0.0427 (8)
H60.24360.27201.10780.051*
C70.28538 (18)0.2693 (6)0.9280 (2)0.0337 (7)
C80.40791 (18)0.0504 (6)0.8620 (2)0.0358 (7)
C90.37029 (18)0.3494 (5)0.9584 (2)0.0332 (7)
N10.26640 (15)0.0880 (5)0.8662 (2)0.0388 (6)
N20.32909 (16)0.0200 (5)0.8340 (2)0.0404 (7)
H2N0.315 (2)0.129 (7)0.789 (3)0.066 (13)*
N30.4632 (2)0.0745 (6)0.8269 (2)0.0492 (8)
N40.43016 (14)0.2373 (5)0.92572 (18)0.0353 (6)
H3N0.446 (2)0.184 (7)0.784 (3)0.056 (12)*
H4N0.516 (2)0.030 (6)0.841 (2)0.044 (10)*
N50.38916 (19)0.5389 (5)1.0188 (2)0.0452 (7)
H5N0.440 (2)0.587 (6)1.034 (2)0.039 (9)*
H6N0.351 (2)0.615 (6)1.042 (3)0.048 (10)*
Cl10.17094 (5)0.56486 (16)0.76934 (6)0.0467 (3)
Cl20.03727 (7)0.8640 (2)0.84802 (8)0.0719 (4)
Cl30.35241 (5)0.43520 (15)0.67219 (6)0.0443 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (16)0.0362 (17)0.0338 (17)0.0001 (13)0.0045 (13)0.0054 (13)
C20.0343 (16)0.0380 (18)0.0318 (17)0.0024 (14)0.0071 (13)0.0035 (13)
C30.0382 (18)0.0435 (19)0.0418 (19)0.0082 (15)0.0046 (14)0.0018 (15)
C40.046 (2)0.059 (2)0.048 (2)0.0083 (17)0.0161 (16)0.0112 (18)
C50.059 (2)0.058 (2)0.0362 (19)0.0045 (18)0.0177 (17)0.0011 (16)
C60.048 (2)0.049 (2)0.0315 (17)0.0077 (16)0.0096 (14)0.0033 (15)
C70.0380 (17)0.0344 (17)0.0282 (16)0.0025 (13)0.0061 (13)0.0017 (13)
C80.0371 (17)0.0377 (18)0.0335 (17)0.0017 (14)0.0095 (13)0.0010 (14)
C90.0345 (16)0.0338 (16)0.0306 (16)0.0024 (13)0.0056 (13)0.0012 (13)
N10.0327 (14)0.0439 (16)0.0399 (15)0.0019 (12)0.0084 (11)0.0069 (13)
N20.0322 (15)0.0431 (16)0.0449 (17)0.0011 (12)0.0062 (12)0.0138 (14)
N30.0376 (17)0.058 (2)0.0535 (19)0.0020 (15)0.0130 (14)0.0240 (16)
N40.0334 (14)0.0385 (15)0.0337 (14)0.0005 (11)0.0064 (11)0.0053 (12)
N50.0361 (16)0.0486 (18)0.0520 (18)0.0032 (15)0.0119 (14)0.0185 (14)
Cl10.0546 (5)0.0557 (6)0.0301 (4)0.0022 (4)0.0100 (4)0.0023 (4)
Cl20.0667 (7)0.0834 (8)0.0624 (7)0.0380 (6)0.0067 (5)0.0107 (5)
Cl30.0437 (5)0.0442 (5)0.0479 (5)0.0080 (4)0.0162 (4)0.0081 (4)
Geometric parameters (Å, º) top
C1—C21.381 (4)C7—C91.453 (4)
C1—C61.390 (4)C8—N31.316 (4)
C1—C71.494 (4)C8—N41.337 (4)
C2—C31.386 (4)C8—N21.342 (4)
C2—Cl11.725 (3)C9—N51.317 (4)
C3—C41.377 (5)C9—N41.326 (4)
C3—Cl21.731 (3)N1—N21.352 (4)
C4—C51.374 (5)N2—H2N0.85 (4)
C4—H40.9300N3—H3N0.84 (4)
C5—C61.380 (5)N3—H4N0.89 (4)
C5—H50.9300N5—H5N0.88 (3)
C6—H60.9300N5—H6N0.87 (4)
C7—N11.293 (4)
C2—C1—C6119.6 (3)N1—C7—C1117.4 (3)
C2—C1—C7120.4 (3)C9—C7—C1122.4 (3)
C6—C1—C7120.0 (3)N3—C8—N4120.9 (3)
C1—C2—C3119.9 (3)N3—C8—N2117.8 (3)
C1—C2—Cl1119.9 (2)N4—C8—N2121.3 (3)
C3—C2—Cl1120.2 (2)N5—C9—N4118.5 (3)
C4—C3—C2120.2 (3)N5—C9—C7120.0 (3)
C4—C3—Cl2119.2 (3)N4—C9—C7121.5 (3)
C2—C3—Cl2120.5 (3)C7—N1—N2116.5 (3)
C5—C4—C3119.9 (3)C8—N2—N1124.1 (3)
C5—C4—H4120.1C8—N2—H2N120 (3)
C3—C4—H4120.1N1—N2—H2N115 (3)
C4—C5—C6120.4 (3)C8—N3—H3N117 (3)
C4—C5—H5119.8C8—N3—H4N121 (2)
C6—C5—H5119.8H3N—N3—H4N121 (3)
C5—C6—C1119.9 (3)C9—N4—C8116.5 (3)
C5—C6—H6120.1C9—N5—H5N118 (2)
C1—C6—H6120.1C9—N5—H6N121 (2)
N1—C7—C9120.1 (3)H5N—N5—H6N121 (3)
C6—C1—C2—C32.6 (5)C2—C1—C7—C9104.9 (3)
C7—C1—C2—C3176.2 (3)C6—C1—C7—C973.9 (4)
C6—C1—C2—Cl1177.3 (2)N1—C7—C9—N5177.8 (3)
C7—C1—C2—Cl13.9 (4)C1—C7—C9—N50.6 (5)
C1—C2—C3—C42.5 (5)N1—C7—C9—N41.5 (4)
Cl1—C2—C3—C4177.4 (3)C1—C7—C9—N4178.7 (3)
C1—C2—C3—Cl2177.3 (2)C9—C7—N1—N20.9 (4)
Cl1—C2—C3—Cl22.8 (4)C1—C7—N1—N2178.2 (3)
C2—C3—C4—C50.1 (5)N3—C8—N2—N1178.4 (3)
Cl2—C3—C4—C5179.9 (3)N4—C8—N2—N10.1 (5)
C3—C4—C5—C62.6 (6)C7—N1—N2—C80.2 (5)
C4—C5—C6—C12.4 (6)N5—C9—N4—C8178.0 (3)
C2—C1—C6—C50.2 (5)C7—C9—N4—C81.3 (4)
C7—C1—C6—C5178.6 (3)N3—C8—N4—C9178.9 (3)
C2—C1—C7—N172.4 (4)N2—C8—N4—C90.7 (4)
C6—C1—C7—N1108.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl30.85 (4)2.47 (4)3.233 (3)150 (3)
N3—H3N···Cl30.84 (4)2.36 (4)3.160 (4)160 (3)
N3—H4N···Cl3i0.89 (4)2.30 (4)3.165 (4)164 (3)
N5—H5N···N4ii0.88 (3)2.32 (3)3.189 (4)173 (3)
N5—H6N···Cl3iii0.87 (4)2.48 (4)3.149 (3)135 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+1/2, z+1/2.
(III) 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium nitrate top
Crystal data top
C9H8Cl2N5+·NO3Z = 4
Mr = 319.11F(000) = 648
Triclinic, P1Dx = 1.641 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1356 (9) ÅCell parameters from 4637 reflections
b = 13.3711 (17) Åθ = 3.0–27.9°
c = 14.0294 (18) ŵ = 0.52 mm1
α = 88.285 (2)°T = 294 K
β = 85.502 (2)°Plate, colourless
γ = 75.516 (2)°0.20 × 0.18 × 0.09 mm
V = 1291.9 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3759 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω scansh = 88
12130 measured reflectionsk = 1515
4540 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0926P)2 + 1.6278P]
where P = (Fo2 + 2Fc2)/3
4540 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 1.38 e Å3
6 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H8Cl2N5+·NO3γ = 75.516 (2)°
Mr = 319.11V = 1291.9 (3) Å3
Triclinic, P1Z = 4
a = 7.1356 (9) ÅMo Kα radiation
b = 13.3711 (17) ŵ = 0.52 mm1
c = 14.0294 (18) ÅT = 294 K
α = 88.285 (2)°0.20 × 0.18 × 0.09 mm
β = 85.502 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3759 reflections with I > 2σ(I)
12130 measured reflectionsRint = 0.025
4540 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0676 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.38 e Å3
4540 reflectionsΔρmin = 0.38 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.2438 (6)0.8728 (3)0.5390 (3)0.0402 (9)
C2A0.0814 (6)0.8340 (3)0.5407 (3)0.0442 (9)
C3A0.0055 (6)0.8192 (3)0.4543 (3)0.0435 (9)
C4A0.0888 (6)0.8434 (4)0.3696 (3)0.0541 (11)
H4A0.03830.83260.31280.065*
C5A0.2493 (7)0.8843 (4)0.3677 (3)0.0616 (13)
H5A0.30600.89990.30900.074*
C6A0.3293 (6)0.9029 (4)0.4525 (3)0.0486 (11)
H6A0.43310.93340.45120.058*
C7A0.3264 (6)0.8863 (3)0.6309 (3)0.0408 (9)
C8A0.4605 (5)0.9156 (3)0.7983 (3)0.0390 (9)
C9A0.4390 (5)0.8001 (3)0.6855 (3)0.0368 (8)
N1A0.2979 (5)0.9800 (3)0.6595 (2)0.0476 (8)
N2A0.3693 (6)0.9938 (3)0.7436 (3)0.0480 (9)
H20.346 (5)1.056 (3)0.762 (3)0.058 (10)*
N3A0.5128 (6)0.9388 (3)0.8806 (3)0.0583 (11)
H30.469 (7)0.998 (4)0.899 (3)0.068 (13)*
H40.578 (7)0.886 (3)0.914 (3)0.073 (17)*
N4A0.4999 (5)0.8173 (2)0.7695 (2)0.0418 (8)
N5A0.4838 (6)0.7059 (3)0.6526 (3)0.0475 (9)
H50.569 (6)0.653 (3)0.685 (3)0.039 (10)*
H60.444 (8)0.695 (5)0.596 (2)0.087 (19)*
Cl1A0.02815 (19)0.80530 (11)0.64789 (9)0.0665 (4)
Cl2A0.19445 (17)0.76866 (10)0.45527 (10)0.0659 (4)
C1B1.1718 (5)0.6440 (3)0.9524 (3)0.0381 (9)
C2B1.1395 (5)0.7477 (3)0.9732 (3)0.0374 (8)
C3B1.1888 (6)0.7769 (3)1.0606 (3)0.0464 (10)
C4B1.2720 (6)0.7039 (4)1.1253 (3)0.0528 (11)
H4B1.30510.72411.18330.063*
C5B1.3066 (7)0.6013 (4)1.1049 (3)0.0553 (12)
H5B1.36320.55191.14900.066*
C6B1.2577 (6)0.5706 (3)1.0186 (3)0.0476 (10)
H6B1.28230.50061.00500.057*
C7B1.1198 (5)0.6079 (3)0.8608 (3)0.0364 (8)
C8B1.0338 (6)0.5284 (3)0.7017 (3)0.0443 (9)
C9B0.9203 (5)0.6181 (3)0.8380 (3)0.0356 (8)
N1B1.2625 (5)0.5599 (3)0.8033 (2)0.0448 (8)
N2B1.2167 (5)0.5205 (3)0.7243 (3)0.0492 (9)
H71.315 (5)0.490 (4)0.684 (3)0.080 (17)*
N3B1.0047 (7)0.4846 (4)0.6233 (3)0.0641 (12)
H81.103 (6)0.449 (4)0.586 (4)0.090 (19)*
H90.895 (7)0.480 (3)0.615 (3)0.082 (12)*
N4B0.8808 (5)0.5803 (2)0.7579 (2)0.0393 (7)
N5B0.7739 (5)0.6664 (3)0.8972 (2)0.0436 (8)
H100.655 (3)0.671 (4)0.881 (4)0.069 (16)*
H110.789 (6)0.688 (3)0.9547 (14)0.040 (11)*
Cl1B1.04109 (16)0.83968 (8)0.88917 (8)0.0499 (3)
Cl2B1.1413 (2)0.90679 (9)1.08844 (10)0.0701 (4)
N11.5888 (5)0.4075 (3)0.5653 (3)0.0471 (9)
O11.6033 (5)0.4552 (3)0.6382 (2)0.0654 (9)
O21.4431 (5)0.3753 (3)0.5586 (3)0.0786 (11)
O31.7163 (5)0.3930 (3)0.4997 (2)0.0688 (10)
N20.7104 (5)0.7753 (3)1.1265 (2)0.0475 (9)
O40.7008 (7)0.8007 (3)1.2107 (2)0.0811 (12)
O50.7700 (5)0.6847 (3)1.1034 (2)0.0631 (9)
O60.6582 (5)0.8437 (3)1.0640 (2)0.0661 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.037 (2)0.039 (2)0.044 (2)0.0064 (16)0.0072 (17)0.0027 (17)
C2A0.041 (2)0.043 (2)0.049 (2)0.0093 (18)0.0054 (18)0.0008 (18)
C3A0.036 (2)0.047 (2)0.046 (2)0.0046 (17)0.0123 (17)0.0067 (18)
C4A0.039 (2)0.064 (3)0.059 (3)0.008 (2)0.015 (2)0.008 (2)
C5A0.056 (3)0.089 (4)0.041 (2)0.020 (3)0.001 (2)0.001 (2)
C6A0.035 (2)0.073 (3)0.032 (2)0.005 (2)0.0015 (16)0.004 (2)
C7A0.038 (2)0.043 (2)0.042 (2)0.0085 (17)0.0097 (17)0.0045 (17)
C8A0.0334 (19)0.044 (2)0.039 (2)0.0066 (17)0.0075 (16)0.0061 (17)
C9A0.0338 (19)0.041 (2)0.035 (2)0.0078 (16)0.0053 (15)0.0026 (16)
N1A0.053 (2)0.045 (2)0.045 (2)0.0080 (16)0.0168 (16)0.0033 (16)
N2A0.063 (2)0.039 (2)0.044 (2)0.0104 (17)0.0173 (17)0.0100 (16)
N3A0.071 (3)0.051 (2)0.052 (2)0.005 (2)0.027 (2)0.014 (2)
N4A0.0412 (18)0.0442 (19)0.0386 (18)0.0046 (15)0.0132 (14)0.0044 (14)
N5A0.056 (2)0.0400 (19)0.046 (2)0.0055 (17)0.0183 (17)0.0063 (16)
Cl1A0.0613 (7)0.0952 (10)0.0523 (7)0.0385 (7)0.0024 (5)0.0108 (6)
Cl2A0.0491 (7)0.0742 (8)0.0833 (9)0.0264 (6)0.0203 (6)0.0059 (7)
C1B0.0299 (19)0.044 (2)0.039 (2)0.0063 (16)0.0034 (15)0.0033 (16)
C2B0.0327 (19)0.039 (2)0.040 (2)0.0067 (16)0.0032 (16)0.0003 (16)
C3B0.041 (2)0.046 (2)0.054 (3)0.0117 (18)0.0047 (19)0.0099 (19)
C4B0.044 (2)0.069 (3)0.045 (2)0.010 (2)0.0144 (19)0.011 (2)
C5B0.050 (3)0.063 (3)0.048 (3)0.001 (2)0.019 (2)0.009 (2)
C6B0.044 (2)0.042 (2)0.052 (2)0.0012 (18)0.0101 (19)0.0004 (19)
C7B0.036 (2)0.0307 (18)0.040 (2)0.0041 (15)0.0042 (16)0.0013 (16)
C8B0.044 (2)0.044 (2)0.045 (2)0.0116 (18)0.0013 (18)0.0104 (18)
C9B0.040 (2)0.0308 (18)0.035 (2)0.0065 (15)0.0049 (16)0.0003 (15)
N1B0.0390 (18)0.049 (2)0.0444 (19)0.0055 (15)0.0027 (15)0.0070 (16)
N2B0.0364 (19)0.063 (2)0.045 (2)0.0059 (17)0.0021 (15)0.0189 (17)
N3B0.049 (3)0.087 (3)0.059 (3)0.020 (2)0.004 (2)0.039 (2)
N4B0.0374 (17)0.0403 (18)0.0405 (18)0.0094 (14)0.0025 (14)0.0095 (14)
N5B0.0342 (18)0.053 (2)0.0395 (19)0.0004 (15)0.0032 (15)0.0142 (16)
Cl1B0.0597 (7)0.0394 (5)0.0499 (6)0.0096 (5)0.0113 (5)0.0045 (4)
Cl2B0.0871 (9)0.0515 (7)0.0756 (9)0.0181 (6)0.0198 (7)0.0205 (6)
N10.0403 (19)0.0428 (19)0.055 (2)0.0028 (15)0.0061 (17)0.0091 (17)
O10.0553 (19)0.081 (2)0.059 (2)0.0113 (17)0.0042 (15)0.0320 (18)
O20.060 (2)0.070 (2)0.114 (3)0.0279 (19)0.010 (2)0.018 (2)
O30.063 (2)0.074 (2)0.058 (2)0.0017 (17)0.0118 (17)0.0171 (17)
N20.047 (2)0.058 (2)0.039 (2)0.0176 (17)0.0005 (15)0.0145 (18)
O40.144 (4)0.059 (2)0.0390 (19)0.018 (2)0.013 (2)0.0107 (15)
O50.076 (2)0.053 (2)0.058 (2)0.0117 (16)0.0001 (17)0.0187 (16)
O60.083 (2)0.067 (2)0.0438 (18)0.0070 (18)0.0148 (17)0.0044 (16)
Geometric parameters (Å, º) top
C1A—C2A1.381 (6)C2B—C3B1.394 (6)
C1A—C6A1.409 (6)C2B—Cl1B1.734 (4)
C1A—C7A1.494 (5)C3B—C4B1.368 (6)
C2A—C3A1.404 (6)C3B—Cl2B1.735 (4)
C2A—Cl1A1.718 (4)C4B—C5B1.368 (7)
C3A—C4A1.354 (6)C4B—H4B0.9300
C3A—Cl2A1.724 (4)C5B—C6B1.387 (6)
C4A—C5A1.386 (7)C5B—H5B0.9300
C4A—H4A0.9300C6B—H6B0.9300
C5A—C6A1.413 (6)C7B—N1B1.294 (5)
C5A—H5A0.9300C7B—C9B1.455 (5)
C6A—H6A0.9300C8B—N3B1.316 (6)
C7A—N1A1.289 (5)C8B—N2B1.345 (5)
C7A—C9A1.463 (5)C8B—N4B1.347 (5)
C8A—N3A1.311 (5)C9B—N4B1.325 (5)
C8A—N2A1.340 (5)C9B—N5B1.325 (5)
C8A—N4A1.341 (5)N1B—N2B1.338 (5)
C9A—N5A1.309 (5)N2B—H70.89 (4)
C9A—N4A1.333 (5)N3B—H80.89 (5)
N1A—N2A1.357 (5)N3B—H90.82 (5)
N2A—H20.85 (4)N5B—H100.88 (3)
N3A—H30.82 (5)N5B—H110.89 (3)
N3A—H40.89 (4)N1—O31.226 (5)
N5A—H50.95 (4)N1—O21.231 (5)
N5A—H60.89 (4)N1—O11.246 (5)
C1B—C2B1.384 (5)N2—O51.223 (5)
C1B—C6B1.392 (6)N2—O41.232 (5)
C1B—C7B1.491 (5)N2—O61.255 (5)
C2A—C1A—C6A121.3 (4)C1B—C2B—C3B119.8 (4)
C2A—C1A—C7A119.3 (4)C1B—C2B—Cl1B119.3 (3)
C6A—C1A—C7A119.4 (4)C3B—C2B—Cl1B120.9 (3)
C1A—C2A—C3A119.6 (4)C4B—C3B—C2B120.6 (4)
C1A—C2A—Cl1A120.1 (3)C4B—C3B—Cl2B119.6 (3)
C3A—C2A—Cl1A120.3 (3)C2B—C3B—Cl2B119.8 (3)
C4A—C3A—C2A120.7 (4)C3B—C4B—C5B120.0 (4)
C4A—C3A—Cl2A119.2 (3)C3B—C4B—H4B120.0
C2A—C3A—Cl2A120.1 (3)C5B—C4B—H4B120.0
C3A—C4A—C5A119.9 (4)C4B—C5B—C6B120.3 (4)
C3A—C4A—H4A120.0C4B—C5B—H5B119.8
C5A—C4A—H4A120.0C6B—C5B—H5B119.8
C4A—C5A—C6A121.8 (4)C5B—C6B—C1B120.2 (4)
C4A—C5A—H5A119.1C5B—C6B—H6B119.9
C6A—C5A—H5A119.1C1B—C6B—H6B119.9
C1A—C6A—C5A116.6 (4)N1B—C7B—C9B120.3 (3)
C1A—C6A—H6A121.7N1B—C7B—C1B116.5 (3)
C5A—C6A—H6A121.7C9B—C7B—C1B123.1 (3)
N1A—C7A—C9A120.7 (3)N3B—C8B—N2B119.2 (4)
N1A—C7A—C1A116.1 (3)N3B—C8B—N4B119.7 (4)
C9A—C7A—C1A123.2 (3)N2B—C8B—N4B121.1 (4)
N3A—C8A—N2A117.4 (4)N4B—C9B—N5B118.5 (3)
N3A—C8A—N4A121.0 (4)N4B—C9B—C7B121.1 (3)
N2A—C8A—N4A121.5 (3)N5B—C9B—C7B120.4 (3)
N5A—C9A—N4A119.0 (3)C7B—N1B—N2B116.9 (3)
N5A—C9A—C7A121.0 (3)N1B—N2B—C8B124.1 (3)
N4A—C9A—C7A120.0 (3)N1B—N2B—H7117 (4)
C7A—N1A—N2A117.0 (3)C8B—N2B—H7119 (4)
C8A—N2A—N1A123.3 (4)C8B—N3B—H8122 (4)
C8A—N2A—H2121 (3)C8B—N3B—H9118 (3)
N1A—N2A—H2116 (3)H8—N3B—H9119 (5)
C8A—N3A—H3117 (3)C9B—N4B—C8B116.5 (3)
C8A—N3A—H4116 (4)C9B—N5B—H10118 (3)
H3—N3A—H4126 (5)C9B—N5B—H11123 (3)
C9A—N4A—C8A117.2 (3)H10—N5B—H11119 (4)
C9A—N5A—H5120 (2)O3—N1—O2119.5 (4)
C9A—N5A—H6119 (4)O3—N1—O1121.0 (4)
H5—N5A—H6121 (5)O2—N1—O1119.5 (4)
C2B—C1B—C6B119.0 (4)O5—N2—O4120.7 (4)
C2B—C1B—C7B122.4 (3)O5—N2—O6120.1 (3)
C6B—C1B—C7B118.6 (4)O4—N2—O6119.2 (4)
C6A—C1A—C2A—C3A3.3 (6)C6B—C1B—C2B—C3B1.6 (6)
C7A—C1A—C2A—C3A178.7 (4)C7B—C1B—C2B—C3B179.1 (4)
C6A—C1A—C2A—Cl1A176.1 (3)C6B—C1B—C2B—Cl1B177.6 (3)
C7A—C1A—C2A—Cl1A1.9 (5)C7B—C1B—C2B—Cl1B1.8 (5)
C1A—C2A—C3A—C4A0.6 (6)C1B—C2B—C3B—C4B1.2 (6)
Cl1A—C2A—C3A—C4A178.8 (3)Cl1B—C2B—C3B—C4B177.9 (3)
C1A—C2A—C3A—Cl2A178.8 (3)C1B—C2B—C3B—Cl2B177.9 (3)
Cl1A—C2A—C3A—Cl2A1.8 (5)Cl1B—C2B—C3B—Cl2B2.9 (5)
C2A—C3A—C4A—C5A0.8 (7)C2B—C3B—C4B—C5B0.4 (7)
Cl2A—C3A—C4A—C5A179.9 (4)Cl2B—C3B—C4B—C5B178.7 (4)
C3A—C4A—C5A—C6A0.6 (7)C3B—C4B—C5B—C6B0.0 (7)
C2A—C1A—C6A—C5A4.5 (6)C4B—C5B—C6B—C1B0.4 (7)
C7A—C1A—C6A—C5A177.5 (4)C2B—C1B—C6B—C5B1.2 (6)
C4A—C5A—C6A—C1A3.2 (7)C7B—C1B—C6B—C5B179.5 (4)
C2A—C1A—C7A—N1A106.7 (5)C2B—C1B—C7B—N1B113.6 (4)
C6A—C1A—C7A—N1A71.4 (5)C6B—C1B—C7B—N1B65.7 (5)
C2A—C1A—C7A—C9A75.2 (5)C2B—C1B—C7B—C9B70.7 (5)
C6A—C1A—C7A—C9A106.7 (5)C6B—C1B—C7B—C9B110.0 (4)
N1A—C7A—C9A—N5A173.6 (4)N1B—C7B—C9B—N4B1.1 (6)
C1A—C7A—C9A—N5A4.4 (6)C1B—C7B—C9B—N4B176.6 (3)
N1A—C7A—C9A—N4A5.4 (6)N1B—C7B—C9B—N5B179.4 (4)
C1A—C7A—C9A—N4A176.5 (4)C1B—C7B—C9B—N5B3.9 (6)
C9A—C7A—N1A—N2A2.8 (6)C9B—C7B—N1B—N2B0.6 (6)
C1A—C7A—N1A—N2A179.0 (4)C1B—C7B—N1B—N2B175.2 (3)
N3A—C8A—N2A—N1A176.1 (4)C7B—N1B—N2B—C8B0.3 (6)
N4A—C8A—N2A—N1A4.9 (6)N3B—C8B—N2B—N1B178.4 (4)
C7A—N1A—N2A—C8A2.1 (6)N4B—C8B—N2B—N1B1.7 (7)
N5A—C9A—N4A—C8A176.3 (4)N5B—C9B—N4B—C8B177.5 (4)
C7A—C9A—N4A—C8A2.8 (5)C7B—C9B—N4B—C8B3.0 (5)
N3A—C8A—N4A—C9A179.0 (4)N3B—C8B—N4B—C9B176.8 (4)
N2A—C8A—N4A—C9A2.1 (6)N2B—C8B—N4B—C9B3.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2···O4i0.85 (4)1.91 (4)2.753 (5)173 (4)
N3A—H3···O6i0.82 (5)2.14 (5)2.960 (6)174 (4)
N3A—H4···O60.89 (3)2.24 (4)2.979 (5)140 (5)
N5A—H5···N4B0.95 (4)2.48 (4)3.340 (5)151 (3)
N5A—H6···O3ii0.89 (4)2.35 (3)3.155 (5)151 (5)
N5A—H6···O2ii0.89 (4)2.39 (4)3.146 (5)143 (5)
N2B—H7···O10.89 (4)2.05 (3)2.858 (5)151 (5)
N2B—H7···O20.89 (4)2.34 (3)3.146 (5)151 (5)
N3B—H8···O20.89 (5)2.39 (3)3.177 (6)149 (5)
N3B—H9···O1iii0.82 (5)2.18 (5)2.978 (6)163 (4)
N5B—H10···N4A0.88 (3)2.55 (5)3.076 (5)119 (4)
N5B—H11···O50.89 (3)2.08 (2)2.909 (5)155 (4)
N5B—H11···O60.89 (6)2.56 (3)3.290 (5)140 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+1; (iii) x1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H7Cl2N5C9H8Cl2N5+·ClC9H8Cl2N5+·NO3
Mr256.10292.55319.11
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cTriclinic, P1
Temperature (K)294294294
a, b, c (Å)19.136 (3), 8.6409 (12), 13.5549 (18)16.664 (5), 5.5139 (17), 13.392 (4)7.1356 (9), 13.3711 (17), 14.0294 (18)
α, β, γ (°)90, 109.172 (2), 9090, 102.588 (5), 9088.285 (2), 85.502 (2), 75.516 (2)
V3)2117.0 (5)1201.0 (6)1291.9 (3)
Z844
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.590.750.52
Crystal size (mm)0.21 × 0.11 × 0.070.19 × 0.12 × 0.070.20 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9654, 1869, 1785 10623, 2119, 1645 12130, 4540, 3759
Rint0.0190.0580.025
(sin θ/λ)max1)0.5950.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.05 0.047, 0.124, 1.07 0.067, 0.184, 1.10
No. of reflections186921194540
No. of parameters161174401
No. of restraints006
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.200.45, 0.211.38, 0.38

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N1i0.80 (2)2.54 (2)3.284 (2)155 (2)
N3—H4N···N4ii0.85 (2)2.33 (2)3.178 (2)176.7 (19)
N5—H5N···N2iii0.83 (2)2.40 (2)3.152 (2)151.3 (19)
N5—H6N···Cl2iv0.85 (3)2.65 (2)3.4121 (18)151 (2)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+3/2, y+3/2, z; (iii) x, y+1, z+1/2; (iv) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl30.85 (4)2.47 (4)3.233 (3)150 (3)
N3—H3N···Cl30.84 (4)2.36 (4)3.160 (4)160 (3)
N3—H4N···Cl3i0.89 (4)2.30 (4)3.165 (4)164 (3)
N5—H5N···N4ii0.88 (3)2.32 (3)3.189 (4)173 (3)
N5—H6N···Cl3iii0.87 (4)2.48 (4)3.149 (3)135 (3)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2A—H2···O4i0.85 (4)1.91 (4)2.753 (5)173 (4)
N3A—H3···O6i0.82 (5)2.14 (5)2.960 (6)174 (4)
N3A—H4···O60.89 (3)2.24 (4)2.979 (5)140 (5)
N5A—H5···N4B0.95 (4)2.48 (4)3.340 (5)151 (3)
N5A—H6···O3ii0.89 (4)2.35 (3)3.155 (5)151 (5)
N5A—H6···O2ii0.89 (4)2.39 (4)3.146 (5)143 (5)
N2B—H7···O10.89 (4)2.05 (3)2.858 (5)151 (5)
N2B—H7···O20.89 (4)2.34 (3)3.146 (5)151 (5)
N3B—H8···O20.89 (5)2.39 (3)3.177 (6)149 (5)
N3B—H9···O1iii0.82 (5)2.18 (5)2.978 (6)163 (4)
N5B—H10···N4A0.88 (3)2.55 (5)3.076 (5)119 (4)
N5B—H11···O50.89 (3)2.08 (2)2.909 (5)155 (4)
N5B—H11···O60.89 (6)2.56 (3)3.290 (5)140 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+1; (iii) x1, y, z.
Selected geometric parameters (Å ,° ) for (I), (II) and (III) top
Parameter(I)(II)(III) cation A(III) cation B
N1—N21.350 (2)1.352 (4)1.357 (5)1.338 (5)
C7—N11.312 (2)1.293 (4)1.289 (5)1.294 (5)
N2—C81.340 (2)1.342 (4)1.340 (5)1.345 (5)
C8—N41.351 (2)1.337 (4)1.341 (5)1.347 (5)
N4—C91.325 (2)1.326 (4)1.333 (5)1.325 (5)
N2-C8-N4126.1 (2)121.3 (3)117.4 (4)119.2 (4)
C2-C1-C7-N1111.6 (2)-72.4 (4)-106.7 (5)113.6 (4)
C2-C1-C7-C9-72.0 (2)104.9 (3)75.2 (5)-70.7 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds