Download citation
Download citation
link to html
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both mol­ecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen-bond inter­actions of N—H...O, C—H...Cl and C—H...π types for 2-[(R)-2-chloro-3-quinol­yl]-2-[(R)-1-(4-methoxy­phenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2-[(S)-2-chloro-3-quinol­yl]-2-[(R)-1-(4-methoxy­phenyl)ethyl­amino]acetonitrile, re­sulting in the formation of two- and three-dimensional networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010903193X/dn3121sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010903193X/dn3121Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010903193X/dn3121IIsup3.hkl
Contains datablock II

CCDC references: 749729; 749730

Comment top

Quinolines and their annulated derivatives are important compounds due to their presence in numerous natural products, along with their wide-ranging applications as drugs, pharmaceuticals and agrochemicals (Jones, 1996; Jackson & Meth-Cohn, 1995; Kansagra et al., 2000). Amino acid derivatives are broadly useful chiral building blocks, with especially important applications in complex natural-product and combinatorial syntheses (Burk et al., 1998; Williams, 1989). In recent years, we have developed a programme devoted to the synthesis and biological evaluation of quinolyl derivatives (Benzerka et al., 2008; Bouraiou et al., 2007, 2008). In previous work, we have reported the synthesis and stereostructure determination of 2-(S)-(2-chloroquinolin-3-yl)-2-[(S)-α-methylbenzylamino]acetonitrile (Belfaitah et al., 2006). We report here the synthesis and structure determinations of two diastereoisomers of the title compound at 100 K.

The Strecker reaction is one of the oldest and best known routes to racemic amino acids (Shuichi et al., 2004; Boesten et al., 2001). The use of optically active α-methylbenzylamine-derived aldimines has a significant role in the diastereoselective Strecker synthesis (Bhanu-Prasad et al., 2004). The title diastereoisomers were synthesized from (R,E)-N-[(2-chloroquinolin-3-yl)methylene]-1-(4-methoxyphenyl)ethanamine in the presence of tert-BuMe2SiCN. A 45:55 ratio of the diastereoisomers (R,R) and (S,R), respectively, was observed by NMR spectroscopy. Since separation of the isomers by standard chromatographic methods failed, an attempt was made to crystallize the mixture directly by fractional crystallization from a CH2Cl2–petroleum ether (1:9) solution at 298 K.

Initially, microsphere crystals were obtained from the first crystallization and these were separated by hand, while after several recrystallizations good crystals were obtained in the form of long thin needles. The material of these needles was shown by NMR spectroscopy to be the minor component of the mixture. The different crystals obtained were analysed by single-crystal diffractometry, and it was be found that the long needles represent the (10R,12R) diastereoisomer, (I) (Fig. 1), while the microsphere crystals correspond to the (10S,12R) diastereoisomer, (II) (Fig. 2). Diastereoisomers (I) and (II) crystallize in different crystal systems, both in noncentrosymmetric space groups (P212121 and P21). The structures were further elucidated by detailed NMR studies (see Experimental). It is clear that the difference between the isomers is the disposition of the H atom at the stereogenic centre at C10, which is confirmed by the torsion angles (Table 1).

Chemically equivalent bond distances in diastereoisomers (I) and (II) do not differ by more than 2 s.u.s from their mean values, while equivalent angles in some cases reach this limit. The largest difference is seen for N2—C10—C2 [109.65 (12) and 112.50 (15)° for (I) (atom labels with the suffix A) and (II) (atom labels with the suffix B), respectively]. The differences in the torsion angles are sometimes greater than 90°, in particular around the bonds C12A(B)—C14A(B), C10A(B)—N2A(B), C10A(B)—C2A(B) and N2A(B)—C12A(B). The maximum difference of 93.4° is seen for the torsion angle C14—C12—N2—C10 [63.88 (17) and 158.18 (14)° for (I) and (II), respectively] (Table 1). The two rings of the quinolyl unit are planar and form dihedral angles of 0.78 (5) and 1.65 (4)° for (I) and (II), respectively; this unit forms dihedral angles of 81.68 (5) and 53.51 (4)° with the benzene ring for (I) and (II), respectively.

In the packing of (I), a weak classical N—H···O hydrogen bond (PLATON; Spek, 2009) creates extended chains which run parallel to the [001] direction, and C—H···Cl interactions link these chains together to form a two-dimensional network. A C—H···π interaction involving the C4A–C9A phenyl ring of the quinoline group (ring centroid Cg1A) helps to stabilize the packing, resulting in the formation of a three-dimensional network (Table 2, Fig. 3).

In the packing of (II), a C—H···O interaction forms zigzag chains along the c axis (Fig. 4a). An N—H···N hydrogen bond and a C—H···π interaction involving the C14B–C19B phenyl ring (ring centroid Cg2B) connect these chains together, resulting in the formation of a two-dimensional network parallel to the (100) plane and reinforcing the cohesion of the structure (Table 3, Fig. 4b)

Experimental top

Reaction of [Which?] chiral imine (1.0 g, 3.08 mmol), tert-butyldimethylsilyl cyanide (0.367 mg, 1.2 equivalents, 3.69 mmol), [acetonitrile shown in scheme?] and a few drops of water gave the title compound in a mixture of diasterioisomers, (I) [(R,R)] and (II) [(S,R)], in a 45:55 ratio as a yellow solid in 91% yield. IR (KBr, ν, cm-1): 2212 (CN). Crystals of each diasterioisomer were obtained by fractional crystallization from a CH2Cl2–petroleum ether (1:9) solution of the mixture.

Analysis for (I): white crystals, m.p. 421 K; 1H NMR (250 MHz, CDCl3): 8.43 (s, 1H, H4, quinolyl), 8.04 (dd, J = 8.4 and 1.1 Hz, 1H, H8, quinolyl), 7.88 (dd, J = 8.1 and 1.0 Hz, 1H, H5, quinolyl), 7.80 (ddd, J = 8.1, 7.0 and 1.0 Hz, 1H, H7, quinolyl), 7.63 (ddd, J = 8.1, 7.0 and 1.0 Hz, 1H, H6, quinolyl), 7.43 (dd, J = 6.6 and 2.0 Hz, 2H, Harom), 6.95 (dd, J = 6.6 and 2.0 Hz, 2H, Harom), 4.78 (br, 1H, Hα), 4.25 (q, J = 6.5 Hz, 1H, Hα'), 3.85 (s, 3H, OCH3), 1.86 (br, 1H, NH), 1.47 (d, J = 6.5 Hz, 3H, CH3); 13C NMR (62.9 MHz, CDCl3): 159.4 (C), 148.9 (C), 147.4 (C), 137.8 (CH), 133.7 (C), 131.4 (CH), 128.4 (2 × CH), 128.3 (CH), 127.8 (CH), 127.7 (CH), 127.2 (C), 126.7 (C), 117.9(CN), 114.0 (2 × CH), 56.5 (OCH3), 55.2 (CH), 50.1 (CH), 24.5 (CH3).

Analysis for (II): yellow crystals, m.p. 418 K; 1H NMR (250 MHz, CDCl3): 8.27 (s, 1H, H4, quinolyl), 8.05 (dd, J = 8.7 and 1.0 Hz, 1H, H8, quinolyl), 7.95–7.75 (m, 2H, H7 and H5, quinolyl), 7.62 (ddd, J = 8.2, 7.0 and 1.1 Hz, 1H, H6, quinolyl), 7.25 (dd, J = 6.6 and 2.0 Hz, 2H, Harom), 6.81 (dd, J = 6.6 and 2.0 Hz, 2H, Harom), 5.24 (br, 1H, Hα), 4.08 (q, J = 6.4 Hz, 1H, Hα'), 3.74 (s, 3H, OCH3), 2.04 (br, 1H, NH), 1.48 (d, J = 6.4 Hz, 3H, CH3); 13C NMR (62.9 MHz, CDCl3): 159.0 (C), 148.9 (C), 147.3 (C), 137.8 (CH), 135.5 (CH), 131.3 (CH), 128.3 (CH), 127.8 (2 × CH), 127.7 (CH), 126.9 (C), 126.6 (C), 117.7 (CN), 114.0 (2 × CH), 55.9 (OCH3), 55.1 (CH), 49.9 (CH), 22.7 (CH3).

Refinement top

Atoms H2N atoms in both structures were located in a difference Fourier map and refined isotropically. All remaining H atoms were located in difference Fourier maps but introduced in calculated positions, with C—H = 0.93, 0.96 and 0.98 Å for aromatic, methyl and tertiary H atoms, respectively, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The absolute configurations of the two isomers presented here are based on the values of the Flack (1983) parameters of 0.05 (5) for (I) and 0.03 (5) for (II); no Friedel reflections were used in these refinements.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal packing of (I), showing classical hygrogen bonds and other interactions as dashed lines in the layers. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, -y + 1, z + 1/2; (ii) -x - 1/2, -y + 1, z + 1/2; (iii) -x + 3/2, -y + 1, z - 1/2.]
[Figure 4] Fig. 4. (a) Chains of C—H···O interactions (dashed lines) in the crystal packing of (II). [Symmetry codes: (i) x, y, -1 + z; (ii) 1 - x, 1/2 + y, -z; (iii) 1 - x, -1/2 + y, 1 - z.] (b) Part of the crystal packing of (II), showing the N—H···N and C—H···π interactions (dashed lines) between chains. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -1/2 + y, 1 - z; (ii) x, -1 + y, z.]
(I) 2-[(R)-2-chloro-3-quinolyl]-2-[(R)-1-(4- methoxyphenyl)ethylamino]acetonitrile top
Crystal data top
C20H18ClN3OF(000) = 736
Mr = 351.82Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6769 reflections
a = 8.7606 (7) Åθ = 2.6–27.4°
b = 11.8494 (10) ŵ = 0.23 mm1
c = 17.0002 (12) ÅT = 100 K
V = 1764.8 (2) Å3Block, white
Z = 40.59 × 0.50 × 0.37 mm
Data collection top
Bruker APEXII
diffractometer
Rint = 0.048
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.1°
15585 measured reflectionsh = 1111
4051 independent reflectionsk = 1515
3828 reflections with I > 2σ(I)l = 1622
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0363P)2 + 0.3546P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.079Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.27 e Å3
4051 reflectionsAbsolute structure: Flack (Flack, 1983), based on 1733 Friedel pairs
229 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Crystal data top
C20H18ClN3OV = 1764.8 (2) Å3
Mr = 351.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7606 (7) ŵ = 0.23 mm1
b = 11.8494 (10) ÅT = 100 K
c = 17.0002 (12) Å0.59 × 0.50 × 0.37 mm
Data collection top
Bruker APEXII
diffractometer
3828 reflections with I > 2σ(I)
15585 measured reflectionsRint = 0.048
4051 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.23 e Å3
S = 1.03Δρmin = 0.27 e Å3
4051 reflectionsAbsolute structure: Flack (Flack, 1983), based on 1733 Friedel pairs
229 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07921 (17)0.48361 (12)0.61467 (9)0.0168 (3)
C20.02863 (16)0.39485 (13)0.60614 (8)0.0152 (3)
C30.03086 (16)0.31563 (13)0.66440 (9)0.0166 (3)
H30.09970.2560.66160.02*
C40.07067 (16)0.32338 (12)0.72906 (8)0.0157 (3)
C50.07363 (18)0.24268 (14)0.79069 (9)0.0202 (3)
H50.00440.18320.79080.024*
C60.17865 (18)0.25247 (15)0.85015 (9)0.0237 (3)
H60.18180.19890.89010.028*
C70.28185 (19)0.34372 (16)0.85060 (10)0.0267 (4)
H70.35310.34940.8910.032*
C80.27933 (18)0.42400 (15)0.79283 (10)0.0256 (3)
H80.34720.48430.79460.031*
C90.17336 (16)0.41510 (14)0.73057 (9)0.0182 (3)
C100.13877 (16)0.39401 (12)0.53738 (9)0.0176 (3)
H100.08320.41860.49040.021*
C110.1971 (2)0.27730 (14)0.52290 (9)0.0252 (4)
C120.37451 (16)0.48417 (14)0.48772 (9)0.0187 (3)
H120.41480.40880.47620.022*
C130.50537 (18)0.55780 (16)0.51707 (10)0.0281 (4)
H13A0.46740.63170.52940.042*
H13B0.5820.56350.47690.042*
H13C0.5490.52460.56340.042*
C140.29951 (16)0.52992 (13)0.41392 (8)0.0167 (3)
C150.24420 (17)0.63973 (14)0.40942 (9)0.0200 (3)
H150.25080.68590.45350.024*
C160.17920 (18)0.68285 (13)0.34097 (9)0.0208 (3)
H160.14410.75690.33920.025*
C170.16764 (17)0.61333 (13)0.27540 (9)0.0191 (3)
C180.22029 (18)0.50295 (14)0.27852 (9)0.0214 (3)
H180.21150.45640.23470.026*
C190.28598 (18)0.46232 (13)0.34708 (9)0.0200 (3)
H190.32180.38850.34860.024*
C200.0455 (2)0.75708 (16)0.19849 (11)0.0352 (5)
H20A0.03560.76650.23590.053*
H20B0.00680.76920.14630.053*
H20C0.12490.81070.20930.053*
N10.17582 (14)0.49561 (11)0.67225 (8)0.0196 (3)
N30.2519 (2)0.19097 (14)0.51158 (10)0.0397 (4)
N20.26189 (14)0.47432 (11)0.55185 (8)0.0166 (3)
O10.10535 (14)0.64544 (10)0.20439 (6)0.0252 (3)
Cl10.08760 (4)0.58681 (3)0.54210 (2)0.02475 (10)
H20.311 (3)0.454 (2)0.5929 (13)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0166 (6)0.0163 (7)0.0176 (7)0.0028 (6)0.0041 (6)0.0021 (6)
C20.0140 (6)0.0181 (7)0.0137 (7)0.0023 (6)0.0009 (5)0.0020 (6)
C30.0157 (6)0.0149 (7)0.0192 (8)0.0003 (6)0.0008 (6)0.0016 (6)
C40.0151 (6)0.0183 (7)0.0138 (7)0.0038 (6)0.0016 (5)0.0025 (6)
C50.0184 (7)0.0241 (8)0.0181 (7)0.0009 (6)0.0019 (6)0.0006 (6)
C60.0233 (7)0.0344 (9)0.0132 (7)0.0072 (7)0.0017 (6)0.0035 (7)
C70.0233 (7)0.0398 (10)0.0170 (8)0.0038 (7)0.0072 (6)0.0047 (7)
C80.0211 (7)0.0300 (9)0.0256 (8)0.0031 (7)0.0045 (6)0.0058 (7)
C90.0166 (7)0.0198 (7)0.0183 (7)0.0026 (6)0.0002 (5)0.0028 (6)
C100.0196 (6)0.0187 (7)0.0145 (7)0.0028 (5)0.0012 (5)0.0001 (6)
C110.0306 (8)0.0242 (8)0.0210 (8)0.0056 (7)0.0112 (7)0.0032 (7)
C120.0157 (6)0.0234 (8)0.0171 (7)0.0000 (6)0.0028 (5)0.0034 (6)
C130.0167 (7)0.0437 (11)0.0239 (8)0.0080 (7)0.0013 (6)0.0051 (8)
C140.0142 (6)0.0219 (8)0.0141 (7)0.0018 (6)0.0042 (5)0.0020 (6)
C150.0225 (7)0.0206 (8)0.0170 (7)0.0026 (6)0.0022 (6)0.0033 (6)
C160.0239 (8)0.0164 (7)0.0222 (8)0.0016 (6)0.0045 (6)0.0012 (6)
C170.0201 (7)0.0228 (8)0.0146 (7)0.0006 (6)0.0036 (6)0.0036 (6)
C180.0279 (8)0.0204 (7)0.0160 (8)0.0010 (7)0.0020 (6)0.0025 (6)
C190.0235 (7)0.0168 (7)0.0197 (8)0.0028 (6)0.0040 (6)0.0000 (6)
C200.0471 (11)0.0337 (10)0.0247 (9)0.0179 (9)0.0054 (8)0.0098 (8)
N10.0166 (6)0.0180 (6)0.0243 (7)0.0001 (5)0.0001 (5)0.0006 (5)
N30.0508 (10)0.0246 (8)0.0439 (10)0.0018 (7)0.0239 (8)0.0066 (7)
N20.0161 (5)0.0203 (6)0.0133 (6)0.0030 (5)0.0006 (5)0.0001 (5)
O10.0313 (6)0.0284 (6)0.0159 (5)0.0088 (5)0.0008 (5)0.0031 (5)
Cl10.02157 (17)0.02440 (18)0.0283 (2)0.00040 (15)0.00290 (15)0.01054 (16)
Geometric parameters (Å, º) top
C1—N11.3018 (19)C12—C141.516 (2)
C1—C21.421 (2)C12—C131.525 (2)
C1—Cl11.7386 (15)C12—H120.98
C2—C31.365 (2)C13—H13A0.96
C2—C101.5157 (19)C13—H13B0.96
C3—C41.417 (2)C13—H13C0.96
C3—H30.93C14—C151.391 (2)
C4—C91.411 (2)C14—C191.395 (2)
C4—C51.419 (2)C15—C161.393 (2)
C5—C61.372 (2)C15—H150.93
C5—H50.93C16—C171.390 (2)
C6—C71.409 (3)C16—H160.93
C6—H60.93C17—O11.3783 (19)
C7—C81.367 (2)C17—C181.388 (2)
C7—H70.93C18—C191.386 (2)
C8—C91.412 (2)C18—H180.93
C8—H80.93C19—H190.93
C9—N11.376 (2)C20—O11.427 (2)
C10—N21.4592 (18)C20—H20A0.96
C10—C111.495 (2)C20—H20B0.96
C10—H100.98C20—H20C0.96
C11—N31.146 (2)N2—H20.85 (2)
C12—N21.4749 (18)
N1—C1—C2126.14 (14)C14—C12—H12108.4
N1—C1—Cl1115.42 (11)C13—C12—H12108.4
C2—C1—Cl1118.44 (11)C12—C13—H13A109.5
C3—C2—C1116.39 (13)C12—C13—H13B109.5
C3—C2—C10123.10 (13)H13A—C13—H13B109.5
C1—C2—C10120.45 (13)C12—C13—H13C109.5
C2—C3—C4120.63 (13)H13A—C13—H13C109.5
C2—C3—H3119.7H13B—C13—H13C109.5
C4—C3—H3119.7C15—C14—C19117.56 (14)
C9—C4—C3117.66 (13)C15—C14—C12122.08 (14)
C9—C4—C5119.61 (13)C19—C14—C12120.35 (14)
C3—C4—C5122.73 (14)C14—C15—C16122.13 (15)
C6—C5—C4119.96 (15)C14—C15—H15118.9
C6—C5—H5120C16—C15—H15118.9
C4—C5—H5120C17—C16—C15118.85 (14)
C5—C6—C7119.93 (15)C17—C16—H16120.6
C5—C6—H6120C15—C16—H16120.6
C7—C6—H6120O1—C17—C18115.16 (14)
C8—C7—C6121.30 (15)O1—C17—C16124.59 (14)
C8—C7—H7119.3C18—C17—C16120.25 (14)
C6—C7—H7119.3C19—C18—C17119.82 (15)
C7—C8—C9119.80 (16)C19—C18—H18120.1
C7—C8—H8120.1C17—C18—H18120.1
C9—C8—H8120.1C18—C19—C14121.37 (15)
N1—C9—C4122.06 (13)C18—C19—H19119.3
N1—C9—C8118.56 (14)C14—C19—H19119.3
C4—C9—C8119.37 (15)O1—C20—H20A109.5
N2—C10—C11112.25 (12)O1—C20—H20B109.5
N2—C10—C2109.65 (12)H20A—C20—H20B109.5
C11—C10—C2110.52 (12)O1—C20—H20C109.5
N2—C10—H10108.1H20A—C20—H20C109.5
C11—C10—H10108.1H20B—C20—H20C109.5
C2—C10—H10108.1C1—N1—C9117.12 (13)
N3—C11—C10175.19 (18)C10—N2—C12114.93 (12)
N2—C12—C14110.48 (11)C10—N2—H2108.8 (16)
N2—C12—C13107.84 (12)C12—N2—H2106.9 (16)
C14—C12—C13113.08 (13)C17—O1—C20117.59 (13)
N2—C12—H12108.4
N1—C1—C2—C30.5 (2)N2—C12—C14—C1567.47 (18)
Cl1—C1—C2—C3179.84 (11)C13—C12—C14—C1553.51 (18)
N1—C1—C2—C10177.59 (14)N2—C12—C14—C19113.54 (15)
Cl1—C1—C2—C103.06 (18)C13—C12—C14—C19125.48 (16)
C1—C2—C3—C40.3 (2)C19—C14—C15—C160.9 (2)
C10—C2—C3—C4177.27 (13)C12—C14—C15—C16178.14 (14)
C2—C3—C4—C90.2 (2)C14—C15—C16—C170.8 (2)
C2—C3—C4—C5179.45 (14)C15—C16—C17—O1179.75 (14)
C9—C4—C5—C61.7 (2)C15—C16—C17—C180.0 (2)
C3—C4—C5—C6177.48 (15)O1—C17—C18—C19179.58 (14)
C4—C5—C6—C71.0 (2)C16—C17—C18—C190.6 (2)
C5—C6—C7—C80.4 (2)C17—C18—C19—C140.5 (2)
C6—C7—C8—C91.0 (3)C15—C14—C19—C180.2 (2)
C3—C4—C9—N10.5 (2)C12—C14—C19—C18178.85 (13)
C5—C4—C9—N1179.79 (14)C2—C1—N1—C90.2 (2)
C3—C4—C9—C8178.18 (14)Cl1—C1—N1—C9179.56 (10)
C5—C4—C9—C81.1 (2)C4—C9—N1—C10.3 (2)
C7—C8—C9—N1178.45 (15)C8—C9—N1—C1178.39 (14)
C7—C8—C9—C40.3 (2)C11—C10—N2—C1258.65 (17)
C3—C2—C10—N299.63 (16)C2—C10—N2—C12178.10 (12)
C1—C2—C10—N277.27 (16)C14—C12—N2—C1063.88 (17)
C3—C2—C10—C1124.6 (2)C13—C12—N2—C10172.08 (13)
C1—C2—C10—C11158.47 (14)C18—C17—O1—C20178.29 (15)
N2—C10—C11—N39 (2)C16—C17—O1—C201.5 (2)
C2—C10—C11—N3132 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (2)2.35 (2)3.1767 (17)163 (2)
C7—H7···Cl1ii0.932.733.5474 (18)147
C20—H20A···Cg1iii0.962.943.7513 (13)143
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2.
(II) 2-[(S)-2-chloro-3-quinolyl]-2-[(R)-1-(4- methoxyphenyl)ethylamino]acetonitrile top
Crystal data top
C20H18ClN3OF(000) = 368
Mr = 351.82Dx = 1.347 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 13007 reflections
a = 11.2728 (7) Åθ = 3.1–27.4°
b = 5.7612 (4) ŵ = 0.23 mm1
c = 13.3573 (9) ÅT = 100 K
β = 90.171 (4)°Stick, yellow
V = 867.48 (10) Å30.55 × 0.12 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
3630 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.049
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
θmax = 27.4°, θmin = 3.1°
Tmin = 0.837, Tmax = 0.984h = 1414
13007 measured reflectionsk = 77
3868 independent reflectionsl = 1717
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1763P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.087Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.23 e Å3
3868 reflectionsAbsolute structure: Flack (Flack, 1983), based on 1698 Friedel pairs
231 parametersAbsolute structure parameter: 0.03 (5)
1 restraint
Crystal data top
C20H18ClN3OV = 867.48 (10) Å3
Mr = 351.82Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.2728 (7) ŵ = 0.23 mm1
b = 5.7612 (4) ÅT = 100 K
c = 13.3573 (9) Å0.55 × 0.12 × 0.07 mm
β = 90.171 (4)°
Data collection top
Bruker APEXII
diffractometer
3868 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
3630 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.984Rint = 0.049
13007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.27 e Å3
S = 1.03Δρmin = 0.23 e Å3
3868 reflectionsAbsolute structure: Flack (Flack, 1983), based on 1698 Friedel pairs
231 parametersAbsolute structure parameter: 0.03 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40358 (4)0.69953 (9)0.27078 (3)0.02690 (13)
O10.36109 (12)0.7825 (2)0.93882 (9)0.0234 (3)
N20.23893 (13)0.7582 (3)0.47003 (11)0.0166 (3)
N30.04500 (14)0.9359 (3)0.42845 (12)0.0214 (3)
N10.28490 (14)0.3653 (3)0.18859 (12)0.0203 (3)
C20.17023 (15)0.5950 (3)0.30709 (12)0.0157 (4)
C40.07505 (16)0.2777 (3)0.21734 (13)0.0179 (4)
C10.27497 (17)0.5341 (3)0.25309 (13)0.0182 (4)
C100.17076 (15)0.8028 (3)0.37793 (12)0.0162 (4)
H100.20940.93170.34290.019*
C110.04697 (17)0.8785 (3)0.40252 (13)0.0169 (4)
C80.19358 (18)0.0515 (3)0.09828 (14)0.0236 (4)
H80.26550.02120.0670.028*
C130.36715 (18)1.1062 (4)0.48142 (15)0.0252 (4)
H13A0.3511.13550.4120.038*
H13B0.4381.01470.48750.038*
H13C0.37791.2510.51580.038*
C90.18496 (16)0.2345 (3)0.16910 (13)0.0182 (4)
C120.26269 (16)0.9742 (3)0.52776 (13)0.0170 (4)
H120.1921.07310.5250.02*
C190.25684 (16)1.0704 (3)0.71275 (14)0.0189 (4)
H190.21791.20750.69630.023*
C30.07167 (16)0.4625 (3)0.28855 (13)0.0167 (4)
H30.00170.49330.32280.02*
C70.09567 (19)0.0803 (4)0.07609 (14)0.0261 (4)
H70.10150.19920.02920.031*
C140.28851 (15)0.9143 (3)0.63646 (13)0.0167 (4)
C160.37322 (16)0.6602 (3)0.76374 (13)0.0209 (4)
H160.4120.52310.78050.025*
C170.34086 (15)0.8168 (3)0.83822 (13)0.0179 (4)
C60.01452 (19)0.0371 (4)0.12399 (15)0.0249 (4)
H60.08020.12790.10840.03*
C50.02458 (17)0.1382 (3)0.19330 (14)0.0203 (4)
H50.09690.16520.22450.024*
C180.28308 (16)1.0223 (3)0.81269 (14)0.0198 (4)
H180.2621.12750.86240.024*
C150.34696 (16)0.7105 (4)0.66344 (13)0.0211 (4)
H150.3690.60570.61390.025*
C200.42763 (19)0.5816 (4)0.96724 (15)0.0275 (4)
H20A0.50320.58380.93430.041*
H20B0.38490.44440.9480.041*
H20C0.43940.58181.03840.041*
H20.195 (2)0.664 (5)0.506 (2)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0193 (2)0.0342 (3)0.0272 (2)0.0074 (2)0.00628 (17)0.0088 (2)
O10.0270 (7)0.0282 (8)0.0149 (6)0.0066 (6)0.0036 (5)0.0037 (5)
N20.0194 (8)0.0171 (8)0.0131 (7)0.0016 (6)0.0009 (6)0.0007 (5)
N30.0236 (9)0.0200 (8)0.0205 (8)0.0015 (7)0.0004 (7)0.0029 (6)
N10.0204 (8)0.0242 (9)0.0164 (7)0.0005 (7)0.0021 (6)0.0017 (6)
C20.0179 (9)0.0183 (9)0.0110 (8)0.0011 (7)0.0011 (7)0.0024 (6)
C40.0232 (9)0.0176 (9)0.0130 (8)0.0006 (7)0.0006 (7)0.0028 (7)
C10.0179 (9)0.0211 (10)0.0157 (8)0.0027 (7)0.0018 (7)0.0003 (7)
C100.0177 (8)0.0158 (8)0.0151 (8)0.0019 (7)0.0018 (7)0.0000 (7)
C110.0237 (10)0.0159 (9)0.0113 (7)0.0001 (7)0.0031 (7)0.0001 (7)
C80.0277 (10)0.0266 (11)0.0167 (9)0.0025 (8)0.0031 (8)0.0012 (8)
C130.0322 (11)0.0199 (10)0.0236 (10)0.0077 (8)0.0004 (8)0.0011 (8)
C90.0212 (9)0.0190 (10)0.0143 (8)0.0013 (7)0.0003 (7)0.0017 (7)
C120.0190 (9)0.0160 (9)0.0159 (8)0.0023 (7)0.0014 (7)0.0023 (7)
C190.0170 (9)0.0170 (9)0.0227 (9)0.0012 (7)0.0020 (7)0.0037 (7)
C30.0164 (9)0.0191 (9)0.0147 (8)0.0027 (7)0.0013 (7)0.0021 (7)
C70.0375 (12)0.0217 (10)0.0191 (9)0.0002 (9)0.0023 (8)0.0043 (8)
C140.0138 (8)0.0183 (9)0.0182 (8)0.0021 (7)0.0016 (7)0.0021 (7)
C160.0208 (9)0.0208 (10)0.0211 (9)0.0066 (7)0.0021 (7)0.0017 (7)
C170.0133 (8)0.0242 (9)0.0162 (8)0.0021 (7)0.0014 (7)0.0027 (7)
C60.0297 (11)0.0224 (10)0.0226 (9)0.0051 (8)0.0063 (8)0.0007 (8)
C50.0211 (9)0.0224 (10)0.0173 (8)0.0015 (7)0.0017 (7)0.0036 (7)
C180.0201 (9)0.0206 (10)0.0188 (9)0.0018 (7)0.0004 (7)0.0085 (7)
C150.0236 (9)0.0210 (9)0.0185 (8)0.0042 (9)0.0006 (7)0.0066 (8)
C200.0341 (11)0.0283 (11)0.0201 (9)0.0067 (9)0.0043 (8)0.0008 (8)
Geometric parameters (Å, º) top
O1—C171.377 (2)C13—H13B0.96
O1—C201.430 (2)C13—H13C0.96
C1—Cl11.7505 (19)C12—H120.98
N2—H20.88 (3)C19—C181.394 (2)
N3—C111.143 (2)C19—C141.406 (2)
N1—C11.304 (2)C19—H190.93
N1—C91.379 (2)C3—H30.93
C2—C31.370 (3)C7—C61.421 (3)
C2—C11.429 (2)C7—H70.93
C2—C101.526 (2)C14—C151.393 (3)
C4—C51.417 (3)C16—C171.392 (2)
C4—C91.420 (2)C16—C151.401 (2)
C4—C31.428 (2)C16—H160.93
C10—H100.98C17—C181.393 (3)
C8—C71.372 (3)C6—C51.375 (3)
C8—C91.420 (3)C6—H60.93
C8—H80.93C5—H50.93
C10—N21.471 (2)C18—H180.93
C10—C111.499 (2)C15—H150.93
C12—N21.488 (2)C20—H20A0.96
C12—C131.534 (3)C20—H20B0.96
C12—C141.520 (2)C20—H20C0.96
C13—H13A0.96
C17—O1—C20117.42 (14)C13—C12—H12108.8
N2—C10—C11110.59 (14)C18—C19—C14120.87 (17)
N2—C10—C2112.50 (15)C18—C19—H19119.6
C11—C10—C2111.23 (14)C14—C19—H19119.6
N2—C12—C14109.81 (14)C2—C3—C4120.83 (16)
N2—C12—C13110.04 (15)C2—C3—H3119.6
C14—C12—C13110.68 (15)C4—C3—H3119.6
C10—N2—C12112.35 (14)C8—C7—C6120.63 (18)
C10—N2—H2105.4 (17)C8—C7—H7119.7
C12—N2—H2109.5 (18)C6—C7—H7119.7
C1—N1—C9117.40 (15)C15—C14—C19118.19 (16)
C3—C2—C1116.28 (16)C15—C14—C12121.85 (15)
C3—C2—C10123.43 (15)C19—C14—C12119.92 (16)
C1—C2—C10120.26 (15)C17—C16—C15119.62 (17)
C5—C4—C9119.32 (17)C17—C16—H16120.2
C5—C4—C3123.44 (17)C15—C16—H16120.2
C9—C4—C3117.24 (16)O1—C17—C16124.17 (17)
N1—C1—C2126.09 (17)O1—C17—C18115.90 (15)
N1—C1—Cl1114.99 (14)C16—C17—C18119.92 (16)
C2—C1—Cl1118.90 (13)C5—C6—C7120.40 (18)
N2—C10—H10107.4C5—C6—H6119.8
C11—C10—H10107.4C7—C6—H6119.8
C2—C10—H10107.4C6—C5—C4120.15 (18)
N3—C11—C10175.00 (18)C6—C5—H5119.9
C7—C8—C9119.91 (18)C4—C5—H5119.9
C7—C8—H8120C17—C18—C19120.07 (16)
C9—C8—H8120C17—C18—H18120
C12—C13—H13A109.5C19—C18—H18120
C12—C13—H13B109.5C14—C15—C16121.32 (16)
H13A—C13—H13B109.5C14—C15—H15119.3
C12—C13—H13C109.5C16—C15—H15119.3
H13A—C13—H13C109.5O1—C20—H20A109.5
H13B—C13—H13C109.5O1—C20—H20B109.5
N1—C9—C8118.27 (16)H20A—C20—H20B109.5
N1—C9—C4122.13 (16)O1—C20—H20C109.5
C8—C9—C4119.59 (16)H20A—C20—H20C109.5
N2—C12—H12108.8H20B—C20—H20C109.5
C14—C12—H12108.8
C9—N1—C1—C21.0 (3)C10—C2—C3—C4176.59 (16)
C9—N1—C1—Cl1177.73 (13)C5—C4—C3—C2178.52 (17)
C3—C2—C1—N10.1 (3)C9—C4—C3—C21.6 (2)
C10—C2—C1—N1178.00 (17)C9—C8—C7—C60.5 (3)
C3—C2—C1—Cl1178.61 (13)C18—C19—C14—C150.1 (3)
C10—C2—C1—Cl10.7 (2)C18—C19—C14—C12177.95 (17)
C12—N2—C10—C1168.00 (18)N2—C12—C14—C1533.7 (2)
C12—N2—C10—C2166.95 (14)C13—C12—C14—C1588.0 (2)
C3—C2—C10—N2110.05 (19)N2—C12—C14—C19148.59 (16)
C1—C2—C10—N272.2 (2)C13—C12—C14—C1989.7 (2)
C3—C2—C10—C1114.7 (2)C20—O1—C17—C165.0 (3)
C1—C2—C10—C11163.09 (15)C20—O1—C17—C18175.64 (16)
N2—C10—C11—N34 (2)C15—C16—C17—O1179.10 (17)
C2—C10—C11—N3130 (2)C15—C16—C17—C180.2 (3)
C1—N1—C9—C8179.31 (17)C8—C7—C6—C50.1 (3)
C1—N1—C9—C40.6 (3)C7—C6—C5—C40.2 (3)
C7—C8—C9—N1179.21 (17)C9—C4—C5—C60.0 (3)
C7—C8—C9—C40.7 (3)C3—C4—C5—C6179.89 (17)
C5—C4—C9—N1179.47 (16)O1—C17—C18—C19178.87 (16)
C3—C4—C9—N10.6 (3)C16—C17—C18—C190.5 (3)
C5—C4—C9—C80.5 (2)C14—C19—C18—C170.3 (3)
C3—C4—C9—C8179.44 (16)C19—C14—C15—C160.4 (3)
C10—N2—C12—C14158.18 (14)C12—C14—C15—C16178.19 (17)
C10—N2—C12—C1379.75 (18)C17—C16—C15—C140.2 (3)
C1—C2—C3—C41.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.88 (3)2.32 (3)3.176 (2)166 (2)
C8—H8···O1ii0.932.453.245 (2)144
C5—H5···Cg2i0.932.763.646 (2)159
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y1, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H18ClN3OC20H18ClN3O
Mr351.82351.82
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)100100
a, b, c (Å)8.7606 (7), 11.8494 (10), 17.0002 (12)11.2728 (7), 5.7612 (4), 13.3573 (9)
α, β, γ (°)90, 90, 9090, 90.171 (4), 90
V3)1764.8 (2)867.48 (10)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.230.23
Crystal size (mm)0.59 × 0.50 × 0.370.55 × 0.12 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Bruker APEXII
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 2002)
Tmin, Tmax0.837, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
15585, 4051, 3828 13007, 3868, 3630
Rint0.0480.049
(sin θ/λ)max1)0.6500.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.03 0.036, 0.087, 1.03
No. of reflections40513868
No. of parameters229231
No. of restraints01
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.270.27, 0.23
Absolute structureFlack (Flack, 1983), based on 1733 Friedel pairsFlack (Flack, 1983), based on 1698 Friedel pairs
Absolute structure parameter0.05 (5)0.03 (5)

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (2)2.35 (2)3.1767 (17)163 (2)
C7—H7···Cl1ii0.932.733.5474 (18)147
C20—H20A···Cg1iii0.962.943.7513 (13)143
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.88 (3)2.32 (3)3.176 (2)166 (2)
C8—H8···O1ii0.932.453.245 (2)144
C5—H5···Cg2i0.932.763.646 (2)159
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y1, z1.
Comparison of selected geometric parameters (Å, °) for (I) and (II) top
(I)(II)
C1—Cl11.7386 (15)1.7505 (19)
C2—C101.5157 (19)1.526 (2)
C10—N21.4592 (18)1.471 (2)
C10—C111.495 (2)1.499 (2)
C12—N21.4749 (18)1.488 (2)
C12—C141.516 (2)1.534 (3)
C12—C131.525 (2)1.520 (2)
N2—C10—C11112.25 (12)110.59 (14)
N2—C10—C2109.65 (12)112.50 (15)
C11—C10—C2110.52 (12)111.23 (14)
N2—C12—C14110.48 (11)109.81 (14)
N2—C12—C13107.84 (12)110.04 (15)
C14—C12—C13113.08 (13)110.68 (15)
C10—N2—C12114.93 (12)112.35 (14)
C3—C2—C10—N2-99.63 (16)110.05 (19)
C1—C2—C10—N277.27 (16)-72.2 (2)
C3—C2—C10—C1124.6 (2)-14.7 (2)
N2—C10—C11—N3-9(2)4(2)
N2—C12—C14—C1567.47 (18)33.7 (2)
C13—C12—C14—C15-53.51 (18)-88.0 (2)
N2—C12—C14—C19-113.54 (15)-148.59 (16)
C13—C12—C14—C19125.48 (16)89.7 (2)
C11—C10—N2—C1258.65 (17)-68.00 (18)
C2—C10—N2—C12-178.10 (12)166.95 (14)
C14—C12—N2—C1063.88 (17)158.18 (14)
C13—C12—N2—C10-172.08 (13)-79.75 (18)
C18—C17—O1—C20178.29 (15)-175.64 (16)
C16—C17—O1—C20-1.5 (2)5.0 (3)
Cl1—C1—C2—C103.06 (18)0.7 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds