Download citation
Download citation
link to html
In the structure of L-prolinium picrate, C5H10NO2+·C6H2N3O7, the Cγ atom of the pyrrolidine ring has conformational disorder. Both the major and minor conformers of the pyrrolidine ring adopt conformations inter­mediate between a half-chair and an envelope. Both the cation and anion are packed through chelated three-centred N—H...O hydrogen bonds. The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis. In 2-methyl­pyridinium picrate, C6H8N+·C6H2N3O7, the cations and anions are packed separately along the a axis and are inter­connected by N—H...O hydrogen bonds. Intra­molecular contacts between phenolate O atoms and adjacent nitro groups are identified in both structures. A graph-set motif of R12(6) is observed in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106029209/dn3021sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106029209/dn3021Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106029209/dn3021IIsup3.hkl
Contains datablock II

CCDC references: 621290; 621291

Comment top

Picric acid forms charge-transfer complexes with organic compounds. Crystalline picrates have commonly been used in the preparation of amine derivatives in qualitative organic chemistry (Shriner et al., 1980). The crystal structure elucidation of L-prolinium picrate, (I), and 2-methylpyridinium picrate, (II), was undertaken to study the nature of hydrogen bonding between the molecular ions, involving phenolate O atoms and the protonated N atoms, and the crystal packing in the different environments.

In the structure of (I), the asymmetric part of the unit cell contains a prolinium cation and a picrate anion (Fig. 1). An orthorhombic form of L-prolinium picrate has already been reported (Jin et al., 2003). The backbone conformation angles ψ1 (O1A—C1—C2—N1) and ψ2 (O1B—C1—C2—N1) are cis and trans, respectively. The side-chain conformation angles χ1 (N1—C2—C3—C4), χ2 (C2—C3—C4—C5), χ3 (C4—C5—N1—C2), χ4 (C3—C4—C5—N1) and θ (C4—C5—N1—C5) are 8.3, -27.2, -29.6, 34.7 and 13.2, respectively (Prasad & Vijayan, 1993) (Table 1). The Cγ atom (C4) of the pyrolidine ring has conformational disorder, as observed in bis(L-proline) hydrogen perchlorate (Pandiarajan et al., 2002). Atoms C4 and C41 deviate from the plane of which atoms?, whereas atoms N1, C2, C3 and C5 are nearly coplanar. Both major and minor conformers of the pyrrolidine ring adopt conformations intermediate between a half-chair and an envelope (Cremer & Pople, 1975; Nardelli, 1983). The angle between the rings of the anion and cation is 44.4 (2)°.

Both the cation and anion of (I) are packed through chelated three-centred N—H···O hydrogen bonds, as observed in other picrate complexes (Jin et al., 2003; Kai et al., 1994). The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis (Fig. 2). Weak three-centred C—H···O hydrogen bonds also stabilize the structure. The prolinium cation forms an infinite chain along the b axis through a C—H···O hydrogen bond (Table 2). The anion and cation form a hydrogen-bonded network with a graph-set motif of R21(6) (Etter et al., 1990) (Fig. 2).

We now discuss the crystal structure of (II). The crystal structures of pyridine and pyridine trihydrate (Mootz & Wussow, 1981), pyridine picrate (Talukdar & Chaudhuri, 1976) and pyridinium picrate (Takayanagi et al., 1990) have already been reported. The asymmetric part of the unit cell of (II) contains two 2-methylpyridinium cations and two picrate anions (Fig. 4). The protonation of the N atom of the pyridine ring is confirmed from the values of the C—N bond distances, which agree well with those in pyridinum picrate (Table ? No values were flagged in the CIF for inclusion in a bond table - do you wish to add them?). The angles between the rings of both anions and those of the cations are 74.4 (1) and 79.4 (1)°, and 76.5 (1) and 80.7 (1)° [It is not clear which pairs of rings these are angles between - please clarify]. The pyridine ring is almost normal to the phenyl ring. This fact supports the absence of π bonding in this complex, as observed in p-phenylenediamine picrate and o-phenylenediamine picrate (Takayanagi et al., 1996). Both cations form bifurcated N—H···O hydrogen bonds with inversely related anions, thus forming a graph-set motif of R21(6) (Etter et al., 1990) (Fig. 5). This type of bifurcated hydrogen bonding (Table 3) is also observed in the crystal structure of (I).

In the picrate anions of (I) and (II), the bond distances and angles show the deprotonation of the phenolic group, and the geometry is similar to that in other picrate complexes (Takayanagi et al., 1996). The picrate anions are sandwiched between layers of prolinium cations along the c axis in (I) (Fig. 3), whereas in (II), the picrate anions are packed between layers of pyridinium cations (Fig. 5). In the structure of (II), both the anions are arranged nearly parallel to each other, making angles of 9.02 (1) and 11.4 (1)° with the [001] plane. Intramolecular contacts between the phenolate O atoms and adjacent nitro groups are observed in both structures. In compounds (I) and (II), one of the ortho-nitro groups is twisted more from the plane of the ring, while the para-nitro group is nearly planar. In the structure of (II), the angle between the rings of the picrate anions is 20.6 (1)°, and the angle between the rings of the pyridinium cations is 25.1 (1)°.

Experimental top

Compound (I) was crystallized from an aqueous solution containing L-proline and picric acid in the stoichiometric ratio of 1:1 at room temperature, by the technique of slow evaporation. Similarly, compound (II) was crystallized from an aqueous solution containing pyridoxine and picric acid in the stoichiometric ratio of 1:1 at room temperature by the technique of slow evaporation. Instead of the expected picric acid complex with pyridoxine, crystals of 2-methylpyridinum picrate were obtained.

Refinement top

All H atoms were placed in geometrically calculated positions and included in the refinement in the riding-model approximation, with N—H = 0.90 Å and C—H = 0.93–0.98 Å in compound (I), and with N—H = 0.86 Å and C—H = 0.93–0.96 Å and in compound (II). In both compounds, Uiso(H) = 1.2–1.5Ueq(C,N). In compound (I), the Cγ atom (C4) of the pyrolidine ring has conformational disorder, with site-occupancy factors of 0.52 (1) and 0.48 (1). In compound (II), one of the O atoms of the picrate anion is disordered, with occupancy factors of 0.71 (1) and 0.29 (1) for atoms O47 and O471. In compound (I), owing to the absence of atoms heavier than Si, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP 3 for Windows (Farrugia, 1997), PLATON (Spek, 2003) and Mercury (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is indicated by dashed lines. H atoms not involved in this interaction have been omitted.
[Figure 2] Fig. 2. The infinite chain formed in the crystal structure of (I), connecting two picrate anions with cations, running along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of the molecules in the structure of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 4] Fig. 4. The molecular structure of title compound (II) with atom numbering scheme and 50% probability displacement ellipsoids. H-bonds are shown as dashed lines.
[Figure 5] Fig. 5. A packing diagram of the molecules in the structure of (II), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) L-prolinium picrate top
Crystal data top
C5H10NO2+·C6H2N3O7F(000) = 356
Mr = 344.25Dx = 1.662 Mg m3
Dm = 1.66 Mg m3
Dm measured by flotation using a liquid mixture of carbon tetrachloride and bromoform
MonoclinicP21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 10.909 (4) Åθ = 9.9–14.2°
b = 5.352 (3) ŵ = 0.15 mm1
c = 12.474 (5) ÅT = 293 K
β = 109.142 (5)°Needle, yellow
V = 688.0 (5) Å30.3 × 0.2 × 0.12 mm
Z = 2
Data collection top
Nonius MACH3 sealed tube
diffractometer
1590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
ω/2θ scansh = 115
Absorption correction: ψ scan
(North et al., 1968)
k = 67
Tmin = 0.967, Tmax = 0.981l = 1716
3719 measured reflections3 standard reflections every 60 min
2205 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1016P)2]
where P = (Fo2 + 2Fc2)/3
2205 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.49 e Å3
10 restraintsΔρmin = 0.27 e Å3
Crystal data top
C5H10NO2+·C6H2N3O7V = 688.0 (5) Å3
Mr = 344.25Z = 2
MonoclinicP21Mo Kα radiation
a = 10.909 (4) ŵ = 0.15 mm1
b = 5.352 (3) ÅT = 293 K
c = 12.474 (5) Å0.3 × 0.2 × 0.12 mm
β = 109.142 (5)°
Data collection top
Nonius MACH3 sealed tube
diffractometer
1590 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.100
Tmin = 0.967, Tmax = 0.9813 standard reflections every 60 min
3719 measured reflections intensity decay: none
2205 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05810 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.07Δρmax = 0.49 e Å3
2205 reflectionsΔρmin = 0.27 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.5965 (3)0.4460 (5)0.9635 (2)0.0504 (7)
O1B0.4482 (2)0.2628 (5)0.8176 (2)0.0441 (6)
H1B0.41180.39860.81190.066*
C10.5557 (3)0.2674 (6)0.9041 (3)0.0305 (6)
C20.6275 (3)0.0212 (6)0.9191 (3)0.0342 (6)
H20.56660.11900.90640.041*
C30.7083 (3)0.0030 (10)0.8391 (3)0.0474 (9)0.52
H3A0.67550.12810.78340.057*0.52
H3B0.70690.15990.79990.057*0.52
C40.8447 (7)0.0576 (19)0.9166 (7)0.0455 (17)0.52
H4A0.85840.23700.92120.055*0.52
H4B0.90860.01780.88780.055*0.52
C50.8560 (3)0.0392 (18)1.0229 (4)0.0767 (19)0.52
H5A0.88030.21421.02750.092*0.52
H5B0.92110.05161.08210.092*0.52
N10.7249 (3)0.0087 (7)1.0354 (2)0.0439 (7)
H1A0.71960.13931.06790.053*
H1C0.71040.13121.07920.053*
C310.7083 (3)0.0030 (10)0.8391 (3)0.0474 (9)0.48
H3C0.71410.16830.81580.057*0.48
H3D0.67180.10590.77220.057*0.48
C410.8392 (7)0.100 (2)0.9115 (7)0.052 (2)0.48
H41A0.90720.02390.88810.062*0.48
H41B0.84330.27930.90330.062*0.48
C510.8560 (3)0.0392 (18)1.0229 (4)0.0767 (19)0.48
H5C0.90370.17071.07280.092*0.48
H5D0.90490.11491.04330.092*0.48
O110.3453 (2)0.6864 (5)0.76837 (19)0.0387 (6)
O120.5313 (2)0.5462 (7)0.6679 (2)0.0537 (8)
O130.4166 (3)0.3670 (6)0.5124 (3)0.0625 (8)
O140.1507 (3)1.0047 (9)0.2598 (2)0.0617 (9)
O150.0693 (3)1.3017 (9)0.3313 (3)0.0742 (11)
O160.1150 (3)1.3073 (6)0.7175 (3)0.0636 (9)
O170.1876 (3)0.9980 (7)0.8269 (2)0.0541 (8)
N110.4326 (2)0.5253 (6)0.5860 (3)0.0380 (6)
N120.1304 (3)1.1055 (7)0.3397 (3)0.0453 (8)
N130.1659 (2)1.0970 (6)0.7365 (3)0.0393 (7)
C110.2968 (3)0.7829 (6)0.6720 (3)0.0287 (6)
C120.3281 (3)0.7069 (6)0.5727 (3)0.0318 (6)
C130.2725 (3)0.8005 (7)0.4665 (3)0.0347 (7)
H130.29420.73740.40560.042*
C140.1825 (3)0.9922 (7)0.4508 (3)0.0351 (7)
C150.1499 (3)1.0857 (7)0.5400 (3)0.0359 (7)
H150.09191.21830.52890.043*
C160.2034 (3)0.9823 (6)0.6460 (3)0.0308 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0620 (15)0.0286 (12)0.0459 (13)0.0129 (12)0.0022 (12)0.0044 (11)
O1B0.0359 (11)0.0293 (12)0.0579 (15)0.0028 (11)0.0031 (10)0.0071 (12)
C10.0372 (14)0.0221 (13)0.0344 (14)0.0042 (13)0.0147 (12)0.0055 (12)
C20.0341 (13)0.0204 (12)0.0504 (17)0.0022 (12)0.0167 (13)0.0045 (14)
C30.0468 (17)0.056 (2)0.0407 (17)0.009 (2)0.0160 (14)0.0078 (19)
C40.040 (4)0.040 (4)0.059 (5)0.010 (3)0.019 (3)0.001 (4)
C50.0315 (15)0.142 (6)0.056 (2)0.013 (3)0.0129 (16)0.005 (4)
N10.0476 (14)0.0489 (18)0.0407 (14)0.0229 (16)0.0222 (12)0.0195 (15)
C310.0468 (17)0.056 (2)0.0407 (17)0.009 (2)0.0160 (14)0.0078 (19)
C410.045 (4)0.056 (6)0.065 (6)0.003 (5)0.032 (4)0.008 (5)
C510.0315 (15)0.142 (6)0.056 (2)0.013 (3)0.0129 (16)0.005 (4)
O110.0398 (12)0.0346 (11)0.0396 (12)0.0117 (11)0.0100 (10)0.0064 (11)
O120.0369 (12)0.065 (2)0.0578 (15)0.0196 (14)0.0135 (11)0.0124 (16)
O130.0572 (16)0.0412 (14)0.096 (2)0.0011 (14)0.0345 (16)0.0226 (17)
O140.0555 (15)0.087 (2)0.0412 (13)0.0027 (19)0.0142 (12)0.0135 (19)
O150.0712 (19)0.072 (2)0.074 (2)0.033 (2)0.0164 (17)0.035 (2)
O160.0754 (19)0.0422 (15)0.073 (2)0.0232 (16)0.0235 (17)0.0087 (16)
O170.0542 (14)0.069 (2)0.0382 (13)0.0208 (17)0.0136 (11)0.0008 (15)
N110.0349 (12)0.0294 (13)0.0545 (16)0.0061 (12)0.0212 (12)0.0087 (14)
N120.0335 (13)0.0557 (19)0.0420 (15)0.0024 (15)0.0059 (12)0.0167 (16)
N130.0283 (11)0.0399 (15)0.0445 (16)0.0039 (12)0.0049 (11)0.0137 (14)
C110.0223 (11)0.0239 (12)0.0367 (15)0.0014 (11)0.0052 (11)0.0016 (13)
C120.0254 (12)0.0252 (13)0.0435 (16)0.0015 (11)0.0094 (12)0.0009 (14)
C130.0313 (13)0.0302 (15)0.0441 (17)0.0006 (14)0.0143 (12)0.0007 (15)
C140.0285 (12)0.0366 (16)0.0368 (14)0.0015 (14)0.0061 (11)0.0077 (15)
C150.0238 (12)0.0307 (15)0.0467 (17)0.0018 (12)0.0027 (12)0.0051 (14)
C160.0253 (12)0.0283 (14)0.0362 (14)0.0004 (12)0.0065 (11)0.0054 (13)
Geometric parameters (Å, º) top
O1A—C11.202 (4)C41—H41B0.9700
O1B—C11.308 (4)O11—C111.255 (4)
O1B—H1B0.8200O12—N111.222 (4)
C1—C21.513 (4)O13—N111.219 (4)
C2—N11.493 (4)O14—N121.215 (5)
C2—C31.535 (5)O15—N121.229 (5)
C2—H20.9800O16—N131.243 (4)
C3—C41.520 (8)O17—N131.197 (4)
C3—H3A0.9700N11—C121.466 (4)
C3—H3B0.9700N12—C141.448 (4)
C4—C51.392 (9)N13—C161.456 (4)
C4—H4A0.9700C11—C161.438 (4)
C4—H4B0.9700C11—C121.447 (4)
C5—N11.497 (5)C12—C131.359 (5)
C5—H5A0.9700C13—C141.388 (5)
C5—H5B0.9700C13—H130.9300
N1—H1A0.9000C14—C151.370 (5)
N1—H1C0.9000C15—C161.375 (4)
C41—H41A0.9700C15—H150.9300
C1—O1B—H1B109.5C2—N1—H1C110.3
O1A—C1—O1B125.0 (3)C5—N1—H1C110.3
O1A—C1—C2123.0 (3)H1A—N1—H1C108.6
O1B—C1—C2111.9 (3)H41A—C41—H41B108.4
N1—C2—C1109.5 (3)O13—N11—O12124.2 (3)
N1—C2—C3104.6 (2)O13—N11—C12117.5 (3)
C1—C2—C3111.1 (3)O12—N11—C12118.3 (3)
N1—C2—H2110.5O14—N12—O15123.3 (4)
C1—C2—H2110.5O14—N12—C14118.6 (3)
C3—C2—H2110.5O15—N12—C14118.1 (4)
C4—C3—C2104.6 (4)O17—N13—O16121.2 (3)
C4—C3—H3A110.8O17—N13—C16121.6 (3)
C2—C3—H3A110.8O16—N13—C16117.0 (3)
C4—C3—H3B110.8O11—C11—C16124.5 (3)
C2—C3—H3B110.8O11—C11—C12124.1 (3)
H3A—C3—H3B108.9C16—C11—C12111.4 (2)
C5—C4—C3106.8 (5)C13—C12—C11125.2 (3)
C5—C4—H4A110.4C13—C12—N11115.9 (3)
C3—C4—H4A110.4C11—C12—N11118.9 (3)
C5—C4—H4B110.4C12—C13—C14118.6 (3)
C3—C4—H4B110.4C12—C13—H13120.7
H4A—C4—H4B108.6C14—C13—H13120.7
C4—C5—N1105.6 (5)C15—C14—C13121.0 (3)
C4—C5—H5A110.6C15—C14—N12120.0 (3)
N1—C5—H5A110.6C13—C14—N12118.8 (3)
C4—C5—H5B110.6C14—C15—C16119.5 (3)
N1—C5—H5B110.6C14—C15—H15120.2
H5A—C5—H5B108.7C16—C15—H15120.2
C2—N1—C5107.1 (3)C15—C16—C11124.1 (3)
C2—N1—H1A110.3C15—C16—N13115.9 (3)
C5—N1—H1A110.3C11—C16—N13119.8 (3)
O1A—C1—C2—N119.1 (5)N11—C12—C13—C14173.3 (3)
O1B—C1—C2—N1163.0 (3)C12—C13—C14—C150.1 (5)
O1A—C1—C2—C395.9 (4)C12—C13—C14—N12175.3 (3)
O1B—C1—C2—C382.0 (3)O14—N12—C14—C15173.0 (3)
N1—C2—C3—C48.2 (6)O15—N12—C14—C158.1 (5)
C1—C2—C3—C4126.2 (5)O14—N12—C14—C1311.5 (5)
C2—C3—C4—C527.1 (8)O15—N12—C14—C13167.4 (3)
C3—C4—C5—N134.7 (9)C13—C14—C15—C162.4 (5)
C1—C2—N1—C5107.3 (5)N12—C14—C15—C16177.8 (3)
C3—C2—N1—C511.8 (5)C14—C15—C16—C112.1 (5)
C4—C5—N1—C229.5 (8)C14—C15—C16—N13178.5 (3)
O11—C11—C12—C13176.8 (3)O11—C11—C16—C15179.5 (3)
C16—C11—C12—C133.2 (4)C12—C11—C16—C150.6 (4)
O11—C11—C12—N116.9 (5)O11—C11—C16—N134.2 (5)
C16—C11—C12—N11173.1 (3)C12—C11—C16—N13175.8 (3)
O13—N11—C12—C1342.6 (4)O17—N13—C16—C15166.8 (3)
O12—N11—C12—C13135.4 (3)O16—N13—C16—C1516.1 (4)
O13—N11—C12—C11140.7 (3)O17—N13—C16—C1116.6 (5)
O12—N11—C12—C1141.3 (4)O16—N13—C16—C11160.5 (3)
C11—C12—C13—C143.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O110.821.712.515 (4)165
N1—H1C···O11i0.902.202.952 (4)141
N1—H1A···O17ii0.902.383.202 (5)153
N1—H1C···O17i0.902.373.106 (5)139
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y3/2, z+2.
(II) 2-methylpyridinium picrate top
Crystal data top
C6H8N+·C6H2N3O7Z = 4
Mr = 322.24F(000) = 664
TriclinicP1Dx = 1.575 Mg m3
Dm = 1.57 Mg m3
Dm measured by flotation using a liquid mixture of xylene and carbon tetrachloride
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.211 (3) ÅCell parameters from 25 reflections
b = 11.806 (4) Åθ = 10.5–14.0°
c = 14.388 (4) ŵ = 0.13 mm1
α = 85.428 (5)°T = 293 K
β = 82.863 (5)°Block, yellow
γ = 79.726 (4)°0.25 × 0.2 × 0.15 mm
V = 1359.4 (8) Å3
Data collection top
Nonius MACH3 sealed tube
diffractometer
3255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 1314
Tmin = 0.970, Tmax = 0.980l = 1717
5848 measured reflections3 standard reflections every 60 min
4762 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.5564P]
where P = (Fo2 + 2Fc2)/3
4762 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 0.32 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H8N+·C6H2N3O7γ = 79.726 (4)°
Mr = 322.24V = 1359.4 (8) Å3
TriclinicP1Z = 4
a = 8.211 (3) ÅMo Kα radiation
b = 11.806 (4) ŵ = 0.13 mm1
c = 14.388 (4) ÅT = 293 K
α = 85.428 (5)°0.25 × 0.2 × 0.15 mm
β = 82.863 (5)°
Data collection top
Nonius MACH3 sealed tube
diffractometer
3255 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.970, Tmax = 0.9803 standard reflections every 60 min
5848 measured reflections intensity decay: none
4762 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
4762 reflectionsΔρmin = 0.27 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.0555 (2)0.16222 (16)0.47838 (15)0.0456 (5)
H110.01740.21220.45260.055*
C120.0662 (3)0.1673 (2)0.5690 (2)0.0525 (6)
H120.00340.22480.60240.063*
C130.1770 (4)0.0900 (2)0.6135 (2)0.0617 (7)
H130.18560.09440.67690.074*
C140.2757 (4)0.0056 (2)0.5634 (3)0.0673 (8)
H140.35100.04960.59290.081*
C150.2646 (3)0.0018 (2)0.4707 (2)0.0637 (8)
H150.33270.05610.43700.076*
C160.1523 (3)0.0835 (2)0.42510 (19)0.0495 (6)
C170.1331 (5)0.0904 (3)0.3243 (2)0.0834 (10)
H17A0.01790.11510.31560.125*
H17B0.17130.01590.29970.125*
H17C0.19770.14470.29190.125*
N210.5579 (2)0.15320 (15)0.02808 (15)0.0448 (5)
H210.47700.19730.05800.054*
C220.5970 (3)0.1786 (2)0.06285 (19)0.0509 (6)
H220.53800.24360.09190.061*
C230.7219 (3)0.1108 (2)0.1136 (2)0.0557 (7)
H230.75090.12890.17690.067*
C240.8044 (3)0.0144 (2)0.0686 (2)0.0601 (7)
H240.88850.03480.10200.072*
C250.7638 (3)0.0094 (2)0.0244 (2)0.0551 (7)
H250.82080.07450.05420.066*
C260.6387 (3)0.06220 (19)0.07506 (18)0.0451 (6)
C270.5891 (4)0.0470 (3)0.1772 (2)0.0691 (8)
H27A0.66130.08010.21070.104*
H27B0.59770.03370.19520.104*
H27C0.47620.08480.19180.104*
O310.26158 (19)0.26093 (13)0.10363 (13)0.0509 (4)
O320.0606 (3)0.24090 (17)0.03931 (16)0.0750 (6)
O330.1624 (4)0.2549 (2)0.18142 (17)0.1059 (9)
O340.2623 (2)0.70981 (16)0.14801 (16)0.0689 (6)
O350.0467 (2)0.77191 (15)0.18087 (14)0.0626 (5)
O360.4826 (2)0.53746 (15)0.14666 (14)0.0609 (5)
O370.5224 (2)0.38072 (16)0.07610 (17)0.0736 (6)
N310.0786 (2)0.28612 (17)0.11263 (17)0.0482 (5)
N320.1139 (3)0.69502 (17)0.15822 (15)0.0472 (5)
N330.4295 (2)0.45950 (17)0.11523 (14)0.0448 (5)
C310.1830 (3)0.36127 (18)0.11291 (16)0.0385 (5)
C320.0035 (3)0.38540 (18)0.11985 (16)0.0378 (5)
C330.0943 (3)0.48951 (19)0.13400 (16)0.0407 (5)
H330.20970.49830.13730.049*
C340.0160 (3)0.58273 (18)0.14340 (16)0.0400 (5)
C350.1546 (3)0.56928 (19)0.13908 (16)0.0400 (5)
H350.20470.63190.14730.048*
C360.2512 (3)0.46385 (18)0.12263 (16)0.0376 (5)
O410.2188 (2)0.28144 (13)0.41520 (13)0.0549 (5)
O420.6001 (4)0.2878 (2)0.31333 (18)0.1024 (9)
O430.5605 (3)0.24710 (17)0.45615 (17)0.0802 (7)
O440.7095 (2)0.72988 (16)0.32174 (16)0.0715 (6)
O450.4888 (2)0.80333 (14)0.32766 (14)0.0625 (5)
O460.0213 (2)0.56425 (17)0.3695 (2)0.0883 (8)
O470.0416 (6)0.3939 (4)0.4240 (3)0.0793 (14)0.71
O4710.0475 (12)0.3818 (8)0.3708 (6)0.058 (2)0.29
N410.5474 (2)0.30597 (17)0.38478 (17)0.0500 (5)
N420.5624 (3)0.72029 (17)0.33411 (15)0.0487 (5)
N430.0402 (2)0.47909 (17)0.38919 (15)0.0499 (5)
C410.2903 (3)0.38214 (18)0.39647 (16)0.0384 (5)
C420.4640 (3)0.40615 (18)0.38166 (16)0.0377 (5)
C430.5534 (3)0.51179 (19)0.36168 (16)0.0405 (5)
H430.66510.52060.35220.049*
C440.4718 (3)0.60678 (18)0.35587 (16)0.0398 (5)
C450.3061 (3)0.59369 (18)0.36621 (16)0.0405 (5)
H450.25370.65790.36080.049*
C460.2166 (3)0.48558 (18)0.38464 (16)0.0389 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0345 (11)0.0340 (10)0.0670 (14)0.0017 (8)0.0094 (9)0.0011 (9)
C120.0461 (15)0.0418 (14)0.0685 (18)0.0048 (12)0.0005 (12)0.0117 (12)
C130.0624 (18)0.0546 (16)0.0719 (19)0.0135 (14)0.0211 (15)0.0028 (14)
C140.0538 (17)0.0448 (15)0.103 (3)0.0008 (13)0.0277 (17)0.0061 (16)
C150.0442 (16)0.0369 (14)0.106 (3)0.0022 (12)0.0056 (15)0.0197 (14)
C160.0427 (14)0.0407 (13)0.0663 (17)0.0139 (11)0.0033 (12)0.0096 (12)
C170.094 (3)0.093 (2)0.071 (2)0.040 (2)0.0044 (18)0.0146 (17)
N210.0339 (10)0.0341 (10)0.0650 (14)0.0004 (8)0.0059 (9)0.0066 (9)
C220.0486 (15)0.0397 (13)0.0650 (17)0.0039 (11)0.0191 (13)0.0042 (12)
C230.0591 (17)0.0494 (15)0.0593 (16)0.0105 (13)0.0052 (13)0.0071 (12)
C240.0523 (16)0.0470 (15)0.078 (2)0.0003 (13)0.0013 (14)0.0159 (14)
C250.0461 (15)0.0324 (12)0.085 (2)0.0053 (11)0.0183 (14)0.0011 (12)
C260.0399 (13)0.0343 (12)0.0631 (16)0.0085 (10)0.0114 (11)0.0006 (11)
C270.075 (2)0.0675 (19)0.0670 (19)0.0209 (16)0.0092 (15)0.0049 (14)
O310.0355 (9)0.0335 (9)0.0811 (12)0.0008 (7)0.0040 (8)0.0073 (8)
O320.0802 (15)0.0612 (12)0.0909 (15)0.0254 (11)0.0022 (12)0.0310 (11)
O330.137 (2)0.122 (2)0.0800 (16)0.095 (2)0.0008 (15)0.0086 (14)
O340.0368 (11)0.0501 (11)0.1154 (17)0.0070 (8)0.0119 (10)0.0058 (10)
O350.0562 (11)0.0395 (10)0.0928 (14)0.0023 (9)0.0109 (10)0.0184 (9)
O360.0381 (10)0.0553 (11)0.0949 (15)0.0128 (8)0.0143 (9)0.0178 (10)
O370.0334 (10)0.0583 (12)0.1290 (18)0.0033 (9)0.0053 (10)0.0371 (12)
N310.0386 (11)0.0417 (11)0.0666 (14)0.0105 (9)0.0124 (10)0.0012 (11)
N320.0384 (12)0.0376 (11)0.0624 (13)0.0008 (9)0.0031 (9)0.0038 (9)
N330.0308 (10)0.0424 (11)0.0617 (13)0.0056 (9)0.0055 (9)0.0060 (9)
C310.0334 (12)0.0357 (12)0.0455 (13)0.0034 (10)0.0044 (10)0.0024 (9)
C320.0325 (12)0.0347 (12)0.0475 (13)0.0082 (9)0.0069 (10)0.0013 (9)
C330.0277 (12)0.0422 (13)0.0512 (14)0.0035 (10)0.0052 (10)0.0007 (10)
C340.0341 (12)0.0328 (11)0.0511 (14)0.0002 (9)0.0049 (10)0.0040 (10)
C350.0341 (12)0.0350 (12)0.0521 (14)0.0070 (9)0.0068 (10)0.0044 (10)
C360.0262 (11)0.0390 (12)0.0479 (13)0.0039 (9)0.0066 (9)0.0036 (10)
O410.0421 (10)0.0350 (9)0.0875 (13)0.0010 (7)0.0201 (9)0.0048 (8)
O420.131 (2)0.1091 (19)0.0918 (17)0.0722 (18)0.0236 (16)0.0221 (14)
O430.0923 (16)0.0548 (12)0.1009 (17)0.0361 (12)0.0225 (13)0.0215 (12)
O440.0405 (11)0.0528 (11)0.1144 (17)0.0066 (9)0.0142 (11)0.0127 (11)
O450.0605 (12)0.0321 (9)0.0925 (14)0.0063 (9)0.0060 (10)0.0043 (9)
O460.0420 (11)0.0525 (12)0.174 (2)0.0187 (10)0.0195 (13)0.0079 (13)
O470.050 (2)0.053 (2)0.141 (4)0.0125 (16)0.048 (3)0.027 (3)
O4710.031 (4)0.055 (5)0.085 (6)0.000 (3)0.013 (5)0.001 (5)
N410.0405 (12)0.0391 (11)0.0729 (15)0.0104 (9)0.0080 (11)0.0080 (11)
N420.0432 (12)0.0367 (11)0.0616 (13)0.0016 (9)0.0028 (10)0.0020 (9)
N430.0359 (11)0.0437 (12)0.0700 (14)0.0073 (10)0.0100 (10)0.0044 (10)
C410.0365 (12)0.0336 (12)0.0448 (13)0.0034 (10)0.0066 (10)0.0023 (9)
C420.0354 (12)0.0312 (11)0.0476 (13)0.0082 (9)0.0050 (10)0.0027 (9)
C430.0313 (12)0.0401 (12)0.0494 (14)0.0031 (10)0.0065 (10)0.0029 (10)
C440.0376 (13)0.0316 (11)0.0479 (13)0.0009 (10)0.0046 (10)0.0002 (9)
C450.0380 (13)0.0337 (12)0.0498 (14)0.0086 (10)0.0034 (10)0.0003 (10)
C460.0299 (11)0.0386 (12)0.0478 (13)0.0053 (10)0.0059 (10)0.0005 (10)
Geometric parameters (Å, º) top
N11—C121.324 (3)O35—N321.227 (3)
N11—C161.335 (3)O36—N331.225 (2)
N11—H110.8600O37—N331.219 (2)
C12—C131.350 (4)N31—C321.469 (3)
C12—H120.9300N32—C341.439 (3)
C13—C141.361 (4)N33—C361.447 (3)
C13—H130.9300C31—C321.442 (3)
C14—C151.353 (4)C31—C361.445 (3)
C14—H140.9300C32—C331.358 (3)
C15—C161.394 (4)C33—C341.393 (3)
C15—H150.9300C33—H330.9300
C16—C171.472 (4)C34—C351.376 (3)
C17—H17A0.9600C35—C361.372 (3)
C17—H17B0.9600C35—H350.9300
C17—H17C0.9600O41—C411.253 (3)
N21—C221.331 (3)O42—N411.212 (3)
N21—C261.339 (3)O43—N411.198 (3)
N21—H210.8600O44—N421.227 (3)
C22—C231.357 (4)O45—N421.232 (3)
C22—H220.9300O46—N431.202 (3)
C23—C241.374 (4)O47—O4710.784 (8)
C23—H230.9300O47—N431.214 (4)
C24—C251.357 (4)O471—N431.271 (9)
C24—H240.9300N41—C421.463 (3)
C25—C261.379 (4)N42—C441.443 (3)
C25—H250.9300N43—C461.447 (3)
C26—C271.480 (4)C41—C421.443 (3)
C27—H27A0.9600C41—C461.446 (3)
C27—H27B0.9600C42—C431.359 (3)
C27—H27C0.9600C43—C441.398 (3)
O31—C311.252 (3)C43—H430.9300
O32—N311.201 (3)C44—C451.367 (3)
O33—N311.205 (3)C45—C461.378 (3)
O34—N321.226 (3)C45—H450.9300
C12—N11—C16123.3 (2)O37—N33—O36121.85 (19)
C12—N11—H11118.3O37—N33—C36119.61 (19)
C16—N11—H11118.3O36—N33—C36118.51 (19)
N11—C12—C13120.9 (2)O31—C31—C32121.3 (2)
N11—C12—H12119.6O31—C31—C36127.2 (2)
C13—C12—H12119.6C32—C31—C36111.43 (19)
C12—C13—C14118.5 (3)C33—C32—C31126.2 (2)
C12—C13—H13120.7C33—C32—N31118.0 (2)
C14—C13—H13120.7C31—C32—N31115.80 (19)
C15—C14—C13120.1 (3)C32—C33—C34117.7 (2)
C15—C14—H14120.0C32—C33—H33121.1
C13—C14—H14120.0C34—C33—H33121.1
C14—C15—C16120.9 (2)C35—C34—C33121.0 (2)
C14—C15—H15119.6C35—C34—N32119.0 (2)
C16—C15—H15119.6C33—C34—N32120.0 (2)
N11—C16—C15116.3 (2)C36—C35—C34120.3 (2)
N11—C16—C17118.0 (3)C36—C35—H35119.9
C15—C16—C17125.7 (3)C34—C35—H35119.9
C16—C17—H17A109.5C35—C36—C31123.3 (2)
C16—C17—H17B109.5C35—C36—N33116.17 (19)
H17A—C17—H17B109.5C31—C36—N33120.50 (19)
C16—C17—H17C109.5O471—O47—N4375.6 (8)
H17A—C17—H17C109.5O47—O471—N4367.7 (8)
H17B—C17—H17C109.5O43—N41—O42123.7 (2)
C22—N21—C26123.1 (2)O43—N41—C42119.5 (2)
C22—N21—H21118.5O42—N41—C42116.9 (2)
C26—N21—H21118.5O44—N42—O45122.7 (2)
N21—C22—C23120.8 (2)O44—N42—C44118.5 (2)
N21—C22—H22119.6O45—N42—C44118.9 (2)
C23—C22—H22119.6O46—N43—O47119.3 (3)
C22—C23—C24117.9 (3)O46—N43—O471118.5 (5)
C22—C23—H23121.0O47—N43—O47136.7 (4)
C24—C23—H23121.0O46—N43—C46119.2 (2)
C25—C24—C23120.4 (2)O47—N43—C46120.9 (3)
C25—C24—H24119.8O471—N43—C46114.5 (5)
C23—C24—H24119.8O41—C41—C42121.2 (2)
C24—C25—C26120.7 (2)O41—C41—C46127.1 (2)
C24—C25—H25119.7C42—C41—C46111.68 (18)
C26—C25—H25119.7C43—C42—C41125.9 (2)
N21—C26—C25117.1 (2)C43—C42—N41117.9 (2)
N21—C26—C27117.8 (2)C41—C42—N41116.10 (19)
C25—C26—C27125.1 (2)C42—C43—C44117.7 (2)
C26—C27—H27A109.5C42—C43—H43121.2
C26—C27—H27B109.5C44—C43—H43121.2
H27A—C27—H27B109.5C45—C44—C43121.3 (2)
C26—C27—H27C109.5C45—C44—N42119.4 (2)
H27A—C27—H27C109.5C43—C44—N42119.3 (2)
H27B—C27—H27C109.5C44—C45—C46120.2 (2)
O32—N31—O33123.4 (2)C44—C45—H45119.9
O32—N31—C32119.1 (2)C46—C45—H45119.9
O33—N31—C32117.5 (2)C45—C46—C41123.1 (2)
O34—N32—O35122.5 (2)C45—C46—N43116.4 (2)
O34—N32—C34118.3 (2)C41—C46—N43120.46 (19)
O35—N32—C34119.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O410.861.832.656 (3)160
N11—H11···O470.862.282.771 (5)117
N11—H11···O4710.862.352.906 (11)123
N21—H21···O310.861.852.680 (3)160
N21—H21···O370.862.302.783 (3)116

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H10NO2+·C6H2N3O7C6H8N+·C6H2N3O7
Mr344.25322.24
Crystal system, space groupMonoclinicP21TriclinicP1
Temperature (K)293293
a, b, c (Å)10.909 (4), 5.352 (3), 12.474 (5)8.211 (3), 11.806 (4), 14.388 (4)
α, β, γ (°)90, 109.142 (5), 9085.428 (5), 82.863 (5), 79.726 (4)
V3)688.0 (5)1359.4 (8)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.150.13
Crystal size (mm)0.3 × 0.2 × 0.120.25 × 0.2 × 0.15
Data collection
DiffractometerNonius MACH3 sealed tube
diffractometer
Nonius MACH3 sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.967, 0.9810.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3719, 2205, 1590 5848, 4762, 3255
Rint0.1000.015
(sin θ/λ)max1)0.7030.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.169, 1.07 0.042, 0.124, 1.04
No. of reflections22054762
No. of parameters226426
No. of restraints103
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.270.32, 0.27

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), SHELXTL/PC, ORTEP 3 for Windows (Farrugia, 1997), PLATON (Spek, 2003) and Mercury (Version 1.4.1; Macrae et al., 2006).

Selected geometric parameters (Å, º) for (I) top
O1A—C11.202 (4)C5—N11.497 (5)
O1B—C11.308 (4)O11—C111.255 (4)
C2—N11.493 (4)
C2—N1—C5107.1 (3)
O1A—C1—C2—N119.1 (5)O13—N11—C12—C1342.6 (4)
O1B—C1—C2—N1163.0 (3)O12—N11—C12—C1141.3 (4)
N1—C2—C3—C48.2 (6)O15—N12—C14—C158.1 (5)
C2—C3—C4—C527.1 (8)O14—N12—C14—C1311.5 (5)
C3—C4—C5—N134.7 (9)O16—N13—C16—C1516.1 (4)
C3—C2—N1—C511.8 (5)O17—N13—C16—C1116.6 (5)
C4—C5—N1—C229.5 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O110.821.712.515 (4)165.3
N1—H1C···O11i0.902.202.952 (4)140.9
N1—H1A···O17ii0.902.383.202 (5)152.8
N1—H1C···O17i0.902.373.106 (5)139.2
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y3/2, z+2.
Selected geometric parameters (Å, º) for (II) top
N11—C121.324 (3)O31—C311.252 (3)
N11—C161.335 (3)O41—C411.253 (3)
C12—N11—C16123.3 (2)C22—N21—C26123.1 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O410.861.832.656 (3)159.7
N11—H11···O470.862.282.771 (5)116.5
N11—H11···O4710.862.352.906 (11)122.6
N21—H21···O310.861.852.680 (3)160.1
N21—H21···O370.862.302.783 (3)115.6
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds