Download citation
Download citation
link to html
The title complex, poly[di-μ3-oxo-hepta-μ2-oxo-tetra­oxo­bis(1,10-phenanthroline)-μ4-terephthalato-dicopper(II)­tetra­molybdate(VI)], [Cu2Mo4(C8H4O4)O13(C12H8N2)2], represents a novel two-dimensional copper–molybdate compound with mixed ligands. Tetra­nuclear molybdenum oxide clusters are joined through corner-sharing into a ribbon-like chain, with [Cu(phen)]2+ (phen is 1,10-phenanthroline) complexes grafted onto either side. The terephthalate ligand lies about an inversion centre and links these chains to form a layer via Cu—O and Mo—O bonds. Face-to-face π–π stacking inter­actions between adjacent phen ligands stabilize the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106013412/dn3010sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106013412/dn3010Isup2.hkl
Contains datablock I

CCDC reference: 612443

Comment top

New organic–inorganic hybrid materials based on polyoxometalates have attracted much attention due to the diversity of their structures and the vast range of potential applications in many fields, such as catalysis, electrical conductivity, magneto-chemistry and photochemistry (Yamase et al., 1999; Rhule et al., 1998; Hill & Prosser-McCartha, 1995). One promising approach for the design and synthesis of this class of solid materials is to introduce secondary metal–organic complexes into polyoxometalates via covalent bonds (Gaunt et al., 2003; Strukan et al., 2000; Wilson et al., 1983; Wu et al., 2003; Zapf et al., 1997). To date, an astonishing variety of polyoxometalate-based organic–inorganic hybrid materials with discrete or high-dimensional structures have been isolated. However, the organic molecules introduced into these polyoxometalate-based materials are mostly restricted to organonitrogen ligands (Luan et al., 2000; Reinoso et al., 2003; Kang et al., 1989). Extended polyoxomolybdate-based carboxyl ligands are rare (Liu et al., 1987; Quintal et al., 2001), which may be due to the fact that the negative charge on carboxyl ligands prevents charge balance with the polyoxomolybdate anions. In the course of our development of the chemistry of organic–inorganic hybrid materials based on polyoxomolybdates, organonitrogen and carboxyl ligands were introduced into the polyoxomolybdate systems simultaneously, and the title novel compound, (I), [{Cu(phen)}2(tp)Mo4O13] (phen is 1,10-phenanthroline and tp is terephthalate), was isolated. This compound exhibits a two-dimensional layer formed by cross-linking one-dimensional copper–molybdate chains through tp ligands.

X-ray diffraction analysis reveals that the structure of (I) exhibits a layered network constructed from [{Cu(phen)}2Mo4O13]n2n+ ribbons bridged by tp ligands. The basic building block of (I) is shown in Fig. 1. In the asymmetric unit, there are two crystallographically independent Mo atoms and one Cu atom. Atom Mo1 has a distorted octahedral environment, with Mo—O distances ranging from 1.6865 (16) to 2.3022 (14) Å, while atom Mo2 has a square-pyramidal coordination, with Mo—O distances ranging from 1.6876 (16) to 2.1123 (15) Å. The Cu atom is pentacoordinated in a square-pyramidal environment by two N atoms from the phen ligand, one O atom from the tp ligand and two O atoms from the molybdenum oxide chain. The carboxyl group of the tp ligand offers two O atoms, one to Mo and one to Cu. An extensive bond-valence sum calculation (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991; Thorp, 1992) indicates the valences for Mo and Cu to be 6 and 2, respectively (Mo1 = 6.149, Mo2 = 5.917 and Cu3 = 1.874).

The structure of (I) can be described as follows. Two [MoO6] octahedra and two [MoO5] square pyramids form a tetramolybdate unit through edge-sharing, and these tetramolybdate units form an infinite molybdenum oxide chain through corner-sharing. [Cu(phen)]2+ complexes are grafted onto either side of the molybdenum oxide chain via Cu—O bonds (Fig. 2). It is noteworthy that the second ligand (tp), in a bis-bidentate mode, coordinates to Cu and to the octahedral Mo, thus serving to extend the chains into two-dimensional network (Fig. 3). Weak C—H···O hydrogen bonds (Fig. 4), together with face-to-face ππ stacking interactions between adjacent phen ligands, stabilize the structure.

As shown in Fig. 5, there are two different ππ stacking interactions. One relates phen ring R1 (atoms N1, C1, C2, C3, C4 and C12) to phen ring R3 (atoms C7, C8, C9, C10, N2 and C11) of an adjacent phen ligand, denoted R1···R3i [symmetry code: (i) −1 − x, 1 − y, 1 − z]. The second is formed between phen ring R2 (atoms C4, C5, C6, C7, C11 and C12) and its symmetry-related counterpart R2ii [symmetry code: (ii) −x, 1 − y, 1 − z]. The two phen rings involved in each ππ stacking interaction are nearly parallel, with dihedral angles of 0.08(s.u.?) for R1···R3i and 0.07(s.u.?)° for R2···R2ii, plane-to-plane distances of 3.51 (R1···R3i) and 3.29 Å (R2···R2ii), and centroid-to-centroid distances of 3.628 (13) (R1···R3i) and 3.481 (8) Å (R2···R2ii). Two R1···R3i and one R2···R2ii ππ stacking interactions alternate along the a axis. [Original paragraph was not clear. Please check rephrasing]

Experimental top

A mixture of Na2MoO4·2H2O (0.5 mmol), CuCl2·2H2O (0.5 mmol), 1,10-phenanthroline (0.5 mmol) and terephthalate (0.25 mmol) in water (20 ml) was adjusted to pH4.2 and then heated at 423 K for 3 d. After slow cooling to room temperature, green crystals of (I) were isolated in 41% yield based on Mo. Elemental analysis for (I): calculated: H 1.62, C 30.91, N 4.51, Cu 10.22, Mo 30.86%; found: H 1.71, C 30.89, N 4.50, Cu 10.22, Mo 30.85%. IR (ν, cm−1, KBr): 3549, 3479, 3414, 3237, 1638, 1618, 1565, 1425, 1382, 1372, 1152, 1111, 954, 947, 913, 903, 883, 872, 787, 723.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the coordination environment around Cu and Mo and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry codes: (i) ?; (ii) ?; (iii) ?; (iv) ? Please complete.]
[Figure 2] Fig. 2. A view showing the one-dimensional copper–molybdate chain in (I). Polyhedra represent [MoO6] and [MoO5] units.
[Figure 3] Fig. 3. A polyhedral representation of the two-dimensional framework of (I). For clarity, all H atoms and the C atoms of the phen ligands have been omitted.
[Figure 4] Fig. 4. A view showing the hydrogen bonding involving the C atoms of the phen ligands and the O atoms of the molybdates. Hydrogen bonds are drawn as dashed lines.
[Figure 5] Fig. 5. The ππ interactions between pairs of adjacent phen ligands. Red dashed lines represent R1···R3i interactions and blue dashed lines represent R2···R2ii interactions. [Symmetry codes: (i) −1 − x, 1 − y, 1 − z; (ii) −x, 1 − y, 1 − z.]
poly[di-µ3-oxo-hepta-µ2oxo-tetraoxobis(1,10-phenanthroline)-µ4– terephthalato-dicopper(II)tetramolybdate(VI) top
Crystal data top
[Cu2Mo4(C8H4O4)O13(C12H8N2)2]Z = 1
Mr = 1243.36F(000) = 602
Triclinic, P1Dx = 2.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4592 (17) ÅCell parameters from 2634 reflections
b = 10.251 (2) Åθ = 2.8–27.5°
c = 11.624 (3) ŵ = 2.71 mm1
α = 78.603 (5)°T = 298 K
β = 85.529 (7)°Prism, green
γ = 83.151 (8)°0.22 × 0.12 × 0.06 mm
V = 863.8 (3) Å3
Data collection top
Rigaku Saturn 70 CCD area-detector
diffractometer
3888 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.8°
CCD profile–fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1313
Tmin = 0.588, Tmax = 0.855l = 1415
6795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0342P)2]
where P = (Fo2 + 2Fc2)/3
3888 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2Mo4(C8H4O4)O13(C12H8N2)2]γ = 83.151 (8)°
Mr = 1243.36V = 863.8 (3) Å3
Triclinic, P1Z = 1
a = 7.4592 (17) ÅMo Kα radiation
b = 10.251 (2) ŵ = 2.71 mm1
c = 11.624 (3) ÅT = 298 K
α = 78.603 (5)°0.22 × 0.12 × 0.06 mm
β = 85.529 (7)°
Data collection top
Rigaku Saturn 70 CCD area-detector
diffractometer
3888 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3469 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.855Rint = 0.017
6795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.02Δρmax = 0.70 e Å3
3888 reflectionsΔρmin = 0.49 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.62650 (2)0.004644 (17)0.865091 (16)0.01371 (6)
Mo21.05442 (2)0.048912 (17)0.861737 (15)0.01363 (6)
Cu30.42867 (4)0.29045 (3)0.73632 (2)0.01801 (7)
O10.85138 (18)0.04772 (14)0.97555 (13)0.0149 (3)
O20.83971 (19)0.04949 (16)0.76662 (13)0.0214 (3)
O30.50000.00001.00000.0214 (5)
O40.7695 (2)0.19830 (14)0.91648 (15)0.0239 (4)
O50.4991 (2)0.11217 (15)0.76296 (14)0.0199 (3)
O60.5617 (2)0.14903 (16)0.83524 (16)0.0275 (4)
O71.1629 (2)0.20567 (15)0.80590 (14)0.0224 (3)
O81.1620 (2)0.06607 (16)0.81640 (15)0.0251 (4)
O90.5796 (2)0.35610 (15)0.86342 (15)0.0245 (4)
N10.3227 (3)0.25965 (19)0.57666 (17)0.0213 (4)
N20.3645 (2)0.47719 (19)0.66959 (18)0.0235 (4)
C10.2946 (4)0.1466 (3)0.5358 (2)0.0311 (6)
H1A0.33060.06870.58280.037*
C20.2125 (4)0.1408 (3)0.4242 (3)0.0404 (7)
H2A0.19640.06010.39770.049*
C30.1565 (4)0.2528 (3)0.3547 (2)0.0375 (6)
H3A0.10230.24930.28040.045*
C40.1810 (3)0.3739 (3)0.3958 (2)0.0299 (6)
C50.1220 (4)0.4981 (3)0.3320 (2)0.0382 (7)
H5A0.06340.50070.25810.046*
C60.1504 (4)0.6112 (3)0.3777 (2)0.0370 (7)
H6A0.11490.69080.33340.044*
C70.2340 (3)0.6100 (2)0.4924 (2)0.0290 (6)
C80.2562 (4)0.7207 (3)0.5486 (3)0.0417 (7)
H8A0.22350.80310.50870.050*
C90.3261 (4)0.7070 (3)0.6617 (3)0.0479 (9)
H9A0.33730.77920.70020.057*
C100.3812 (4)0.5833 (3)0.7201 (3)0.0363 (7)
H10A0.43100.57590.79670.044*
C110.2896 (3)0.4901 (2)0.5578 (2)0.0211 (5)
C120.2648 (3)0.3717 (2)0.5076 (2)0.0218 (5)
C130.7253 (3)0.3125 (2)0.91178 (19)0.0187 (4)
C140.8641 (3)0.4095 (2)0.96246 (19)0.0195 (4)
C150.8303 (3)0.5398 (2)0.9626 (2)0.0235 (5)
H15A0.71650.56680.93810.028*
C161.0337 (3)0.3704 (2)1.0006 (2)0.0248 (5)
H16A1.05670.28301.00150.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00974 (10)0.01517 (10)0.01638 (10)0.00039 (7)0.00214 (7)0.00510 (7)
Mo20.01021 (10)0.01556 (10)0.01486 (10)0.00104 (7)0.00019 (7)0.00267 (7)
Cu30.01709 (14)0.01708 (13)0.01847 (14)0.00028 (10)0.00371 (11)0.00277 (10)
O10.0103 (7)0.0162 (7)0.0170 (7)0.0004 (6)0.0009 (6)0.0020 (6)
O20.0129 (7)0.0354 (9)0.0154 (8)0.0023 (7)0.0015 (6)0.0049 (7)
O30.0134 (10)0.0298 (12)0.0211 (12)0.0017 (9)0.0024 (9)0.0047 (9)
O40.0228 (8)0.0138 (7)0.0326 (9)0.0021 (6)0.0095 (7)0.0052 (7)
O50.0154 (7)0.0217 (8)0.0220 (8)0.0022 (6)0.0042 (6)0.0050 (6)
O60.0224 (8)0.0227 (8)0.0387 (10)0.0006 (7)0.0086 (7)0.0143 (7)
O70.0177 (8)0.0227 (8)0.0242 (9)0.0009 (6)0.0023 (6)0.0003 (6)
O80.0184 (8)0.0284 (9)0.0315 (10)0.0055 (7)0.0035 (7)0.0104 (7)
O90.0240 (8)0.0223 (8)0.0279 (9)0.0032 (7)0.0079 (7)0.0096 (7)
N10.0219 (10)0.0213 (9)0.0196 (10)0.0010 (8)0.0011 (8)0.0028 (7)
N20.0181 (10)0.0212 (10)0.0290 (11)0.0007 (8)0.0038 (8)0.0033 (8)
C10.0392 (15)0.0280 (13)0.0270 (13)0.0039 (11)0.0036 (11)0.0092 (10)
C20.0513 (18)0.0435 (16)0.0305 (15)0.0040 (14)0.0030 (13)0.0193 (12)
C30.0416 (16)0.0532 (17)0.0186 (13)0.0056 (13)0.0051 (11)0.0115 (12)
C40.0263 (13)0.0457 (15)0.0157 (12)0.0044 (11)0.0022 (10)0.0004 (10)
C50.0362 (15)0.0532 (18)0.0201 (13)0.0100 (14)0.0014 (11)0.0086 (12)
C60.0312 (14)0.0388 (15)0.0333 (15)0.0088 (12)0.0046 (12)0.0158 (12)
C70.0172 (12)0.0264 (12)0.0375 (15)0.0011 (10)0.0013 (10)0.0072 (11)
C80.0308 (15)0.0214 (13)0.068 (2)0.0043 (11)0.0085 (14)0.0002 (13)
C90.0405 (17)0.0245 (14)0.080 (2)0.0075 (12)0.0204 (17)0.0192 (15)
C100.0308 (14)0.0286 (13)0.0501 (18)0.0061 (11)0.0167 (13)0.0147 (12)
C110.0139 (11)0.0213 (11)0.0249 (12)0.0011 (9)0.0017 (9)0.0021 (9)
C120.0192 (11)0.0277 (12)0.0167 (11)0.0011 (9)0.0034 (9)0.0006 (9)
C130.0205 (11)0.0173 (10)0.0165 (11)0.0034 (8)0.0015 (8)0.0031 (8)
C140.0244 (11)0.0157 (10)0.0166 (11)0.0036 (9)0.0034 (9)0.0043 (8)
C150.0223 (11)0.0207 (11)0.0284 (13)0.0047 (9)0.0082 (10)0.0090 (9)
C160.0274 (12)0.0162 (10)0.0316 (13)0.0040 (9)0.0080 (10)0.0092 (9)
Geometric parameters (Å, º) top
Mo1—O61.6865 (16)C1—H1A0.9300
Mo1—O51.7561 (15)C2—C31.357 (4)
Mo1—O31.8821 (4)C2—H2A0.9300
Mo1—O21.9880 (16)C3—C41.404 (4)
Mo1—O12.0874 (14)C3—H3A0.9300
Mo1—O42.3022 (14)C4—C121.395 (3)
Mo1—Mo23.1722 (8)C4—C51.440 (4)
Mo2—O81.6876 (16)C5—C61.356 (4)
Mo2—O71.7373 (15)C5—H5A0.9300
Mo2—O21.8738 (15)C6—C71.426 (4)
Mo2—O1i1.9639 (15)C6—H6A0.9300
Mo2—O12.1123 (15)C7—C111.402 (3)
Cu3—O51.9216 (16)C7—C81.405 (4)
Cu3—O91.9637 (15)C8—C91.363 (4)
Cu3—N22.017 (2)C8—H8A0.9300
Cu3—N12.0279 (19)C9—C101.406 (4)
Cu3—O7ii2.2136 (16)C9—H9A0.9300
O1—Mo2i1.9639 (15)C10—H10A0.9300
O3—Mo1iii1.8821 (4)C11—C121.434 (3)
O4—C131.244 (3)C13—C141.515 (3)
O7—Cu3iv2.2136 (16)C14—C161.386 (3)
O9—C131.272 (3)C14—C151.389 (3)
N1—C11.325 (3)C15—C16v1.387 (3)
N1—C121.360 (3)C15—H15A0.9300
N2—C101.324 (3)C16—C15v1.387 (3)
N2—C111.361 (3)C16—H16A0.9300
C1—C21.400 (4)
O6—Mo1—O5104.80 (7)C1—N1—C12117.9 (2)
O6—Mo1—O3101.71 (7)C1—N1—Cu3128.98 (17)
O5—Mo1—O399.01 (6)C12—N1—Cu3112.96 (15)
O6—Mo1—O297.65 (8)C10—N2—C11117.9 (2)
O5—Mo1—O291.60 (7)C10—N2—Cu3129.13 (18)
O3—Mo1—O2154.68 (4)C11—N2—Cu3112.91 (15)
O6—Mo1—O196.46 (7)N1—C1—C2122.1 (2)
O5—Mo1—O1155.48 (6)N1—C1—H1A118.9
O3—Mo1—O188.30 (5)C2—C1—H1A118.9
O2—Mo1—O173.34 (6)C3—C2—C1120.1 (2)
O6—Mo1—O4168.63 (7)C3—C2—H2A120.0
O5—Mo1—O484.93 (6)C1—C2—H2A120.0
O3—Mo1—O482.20 (5)C2—C3—C4119.4 (2)
O2—Mo1—O475.87 (6)C2—C3—H3A120.3
O1—Mo1—O472.85 (5)C4—C3—H3A120.3
O6—Mo1—Mo2106.88 (6)C12—C4—C3117.1 (2)
O5—Mo1—Mo2118.72 (5)C12—C4—C5118.3 (2)
O3—Mo1—Mo2123.295 (12)C3—C4—C5124.6 (2)
O2—Mo1—Mo233.61 (4)C6—C5—C4121.2 (3)
O1—Mo1—Mo241.24 (4)C6—C5—H5A119.4
O4—Mo1—Mo262.59 (4)C4—C5—H5A119.4
O8—Mo2—O7107.57 (8)C5—C6—C7121.0 (2)
O8—Mo2—O2102.33 (7)C5—C6—H6A119.5
O7—Mo2—O2101.08 (7)C7—C6—H6A119.5
O8—Mo2—O1i104.81 (7)C11—C7—C8116.6 (2)
O7—Mo2—O1i94.93 (7)C11—C7—C6119.2 (2)
O2—Mo2—O1i142.46 (7)C8—C7—C6124.2 (2)
O8—Mo2—O1109.89 (7)C9—C8—C7119.8 (2)
O7—Mo2—O1142.29 (7)C9—C8—H8A120.1
O2—Mo2—O175.04 (6)C7—C8—H8A120.1
O1i—Mo2—O171.62 (6)C8—C9—C10119.8 (3)
O8—Mo2—Mo1118.42 (5)C8—C9—H9A120.1
O7—Mo2—Mo1120.24 (5)C10—C9—H9A120.1
O2—Mo2—Mo135.97 (5)N2—C10—C9122.1 (3)
O1i—Mo2—Mo1107.09 (4)N2—C10—H10A118.9
O1—Mo2—Mo140.65 (4)C9—C10—H10A118.9
O5—Cu3—O998.50 (7)N2—C11—C7123.7 (2)
O5—Cu3—N2166.82 (8)N2—C11—C12116.64 (19)
O9—Cu3—N290.53 (7)C7—C11—C12119.6 (2)
O5—Cu3—N187.34 (7)N1—C12—C4123.4 (2)
O9—Cu3—N1163.78 (7)N1—C12—C11116.0 (2)
N2—Cu3—N181.49 (8)C4—C12—C11120.6 (2)
O5—Cu3—O7ii88.80 (6)O4—C13—O9125.87 (19)
O9—Cu3—O7ii107.89 (7)O4—C13—C14116.13 (19)
N2—Cu3—O7ii97.59 (7)O9—C13—C14117.89 (19)
N1—Cu3—O7ii87.25 (7)C16—C14—C15119.26 (19)
Mo2i—O1—Mo1139.99 (8)C16—C14—C13119.0 (2)
Mo2i—O1—Mo2108.38 (6)C15—C14—C13121.5 (2)
Mo1—O1—Mo298.11 (6)C16v—C15—C14120.0 (2)
Mo2—O2—Mo1110.42 (8)C16v—C15—H15A120.0
Mo1—O3—Mo1iii180.000 (1)C14—C15—H15A120.0
C13—O4—Mo1134.49 (14)C14—C16—C15v120.8 (2)
Mo1—O5—Cu3140.13 (9)C14—C16—H16A119.6
Mo2—O7—Cu3iv137.72 (9)C15v—C16—H16A119.6
C13—O9—Cu3126.81 (15)
Symmetry codes: (i) x2, y, z+2; (ii) x+1, y, z; (iii) x1, y, z+2; (iv) x1, y, z; (v) x2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2vi0.932.383.205 (3)147
C9—H9A···O6vii0.932.363.056 (3)132
Symmetry codes: (vi) x1, y, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2Mo4(C8H4O4)O13(C12H8N2)2]
Mr1243.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4592 (17), 10.251 (2), 11.624 (3)
α, β, γ (°)78.603 (5), 85.529 (7), 83.151 (8)
V3)863.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.22 × 0.12 × 0.06
Data collection
DiffractometerRigaku Saturn 70 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.588, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
6795, 3888, 3469
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.02
No. of reflections3888
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.49

Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and DIAMOND (Brandenburg, 1998), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.383.205 (3)147.3
C9—H9A···O6ii0.932.363.056 (3)131.6
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds