Download citation
Download citation
link to html
The title compound, [Ni(C2H8N2)3]6[Cu(CN)3][Cu2(CN)7]2·9H2O, was formed upon dissolution of a freshly prepared precipitate of CuNi(CN)4 in ethyl­ene­diamine (en) as a result of complex redox and complexation equilibriums in the presence of air. The compound exhibits an ionic structure and contains three crystallographically independent chiral [Ni(en)3]2+ cations, planar [Cu(CN)3]2− and chiral [(NC)3Cu–(μ-CN)–Cu(CN)3]5− anions, and water mol­ecules of crystallization. All metal atoms are situated on special positions. One of the Ni atoms lies on a twofold axis, whereas all other metal atoms are located on threefold axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106015769/dn3005sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106015769/dn3005Isup2.hkl
Contains datablock I

CCDC reference: 618601

Comment top

Magneto-structural correlations are being intensively studied at present (Verdaguer et al., 1999; Ohba & Okawa, 2000; Dunbar & Heintz, 1997; Mukherjee et al., 2004; Chandramouli et al., 2003; Boča, 2004). Literature data show that the magnetic dimensionality of the system may differ from the structural dimensionality governed by covalent bonds. For example, Cu(en)2Ni(CN)4 (en = 1,2-diaminoethane) exhibits a one-dimensional crystal structure displaying composition [–Cu(en)2–(µNC)–Ni(CN)2–(µCN)–Cu–] (Seitz et al., 2001), but at low temperatures it behaves as a two-dimensional magnet with short-range ordering at 230 mK. It was proposed that N—H···N type hydrogen bonds may serve as additional exchange paths for magnetic interactions in this compound (Orendáč et al., 1995). In order to better understand the role of the hydrogen bonds (HBs) in mediating magnetic interactions and to avoid the possibility of mediation of magnetic interactions via bridging cyano ligands, we tried to prepare tetracyanonickellate compound with the [Cu(en)3]2+ cation; this cation has already been structurally characterized {e.g. in [Cu(en)3]SO4 (Cullen & Lingafelter, 1970)}. Instead, we unexpectedly obtained in low yield (15%) a new compound, [Ni(en)3]6[Cu2(CN)7]2[Cu(CN)3]·9H2O, (I); the synthetic procedure is reproducible. Our attempts to prepare (I) from the aqueous system NiII–en–CuI–CN were unsuccessful.

The structure of (I) is built up of [Ni(en)3]2+ cations, [Cu(CN)3]2− and [(NC)3Cu(µ-CN)Cu(CN)3]5− anions, and water molecules of crystallization. It is isotructural with the analogous zinc compound described by Černák et al. (1994). The structures of the analogous CuI/CuII mixed-valence compounds Cu(en)2(H2O)Cu2(CN)4 and [Cu(en)3][Cu(CN)3]·2H2O have also been described (Williams et al., 1972; Wicholas & Wolford, 1975).

In the unit cell there are three crystallographically independent chiral cations [Ni(en)3]2+; the NiII atoms lie on special positions, viz. Ni1 on the threefold axis, Ni2 on the intersection of the twofold and threefold axes, and Ni3 on the twofold axis. All NiII atoms are coordinated in a pseudo-octahedral manner by three chelating molecules of ethylenediamine (Figs. 1a–1c). The chelate rings exhibit a gauche conformation. There are three types of enantiomorphs; the configurations of the [Ni1(en)3]2+ and [Ni3(en)3]2+ cations are Λδδδ and Λδδλ, respectively, and the configuration of the [Ni2(en)3]2+ cation (the same mean as in the case of atom Ni1) is Δλλλ. The average values of the Ni—N bond [2.129 (1) Å] and N—Ni—N angle within the metallocycle [81.75 (2) °] are as observed in octahedral complexes of NiII; e.g. in [Ni(en)3]SO4 the corresponding values are 2.125 (2) Å and 80.9 (2)°, respectively (Jameson et al., 1982).

The positive charges of the cations are compensated by two structurally different anions in the unit cell. The planar anion [Cu(CN)3]2− has already been described, e.g. in Na2[Cu(CN)3]·3H2O (Kappenstein & Hugel, 1977) and [Cu(en)3][Cu(CN)3]·2H2O (Wicholas & Wolford, 1975). The symmetry of this anion is D3h (Fig. 1d) and the geometrical parameters correspond to those described previously.

The second chiral anion, [(NC)3Cu(µ-CN)Cu(CN)3]5− (symmetry C3), was previously described only in the analogous zinc compound (Černák et al., 1994); it forms also a part of the polymeric anion in [H31O14][CdCu2(CN)7] (Nishikiori & Iwamoto, 1993). In this anion exist two different CuC4 and CuC3N coordination spheres with tetrahedrally coordinated CuI atoms (Fig. 1e). The dihedral angle between the Cu5/Cu6/C51/N51 and Cu6/Cu5/C61/N61 least-square planes is 26.6 (1)°, which means that the conformation of the anion is staggered. The corresponding value in the isostructural zinc compound is 23.8 (1)° (Černák et al., 1994). The Cu—C bond lengths in the CuC4 chromophore are shorter than the equivalent bonds in K3[Cu(CN)4] (Roof et al., 1968), and the bond lengths for CuC3N are similar to those in Cu(en)2Cu2(CN)4·H2O (Williams et al., 1972).

There are two crystallographically different water molecules of crystallization in the unit cell; these are involved in the hydrogen-bond system and contribute to the stability of the packing as well as to the configuration of the cations.

The formation of (I) means that during preparation the central atoms exchanged their ligands and, moreover, reduction of CuII to CuI occurred. One of the reasons behind such an exchange could be the (partial) instability of CuII in the presence of cyano ligands leading to various cyanocuprate anions and/or CuII/CuI mixed-valence compounds (Dunaj-Jurčo et al., 1988). The higher stability of the [Ni(en)3]2+ cation with respect to the [Cu(en)3]2+ cation forced by the very high concentration of the en ligand may also play an important role.

Experimental top

To a 0.1 M warm solution [specify solvent] (10 ml) of CuSO4 (1 mmol) was added slowly a 0.1 M warm solution (10 ml) of K2[Ni(CN)4]·H2O (1 mmol) (333 K). The formed glaucous precipitate was filtered off, washed several times with water until negative reaction with barium chloride, and then dissolved in liquid en (large excess). The resulting clear blue solution was left for crystallization in a refrigerator (277 K). Single crystals of (I) appeared after one week (yield 0.348 g, 15%). Analysis calculated (Mr = 2356.31): C 27.74, H 6.74, N 31.84, Ni 14.93, Cu 13.48%; found (CHNS Elemental Analyzer Flash EA 1112; Thermo Finnigan, Ni gravimetrically as dimethylglyoximato complex): C 27.28, H 6.77, N 31.68, Ni 14.2, Cu 15.73%. FT–IR (KBr, cm−1): 3333 (vs), 3282 (vs), 2962 (s), 2935 (s), 2885 (s), 2089 (vs), 2079 (vs), 1664 (m), 1587 (s), 1570 (vs), 1470 (s), 1396 (m), 1335 (m), 1281 (m), 1149 (w), 1113 (m), 1024 (vs), 972 (m), 947 (w), 669 (s), 640 (s), 517 (s), 490 (w).

Refinement top

H atoms were treated as riding, with C—H distances of 0.96 or 0.99 Å, O—H distances of 0.85 and N—H distances of 0.92 Å.

Computing details top

Data collection: EXPOSE in IPDS (Stoe & Cie, 1999); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
Fig. 1.

Views of the ions of the title compound, with displacement ellipsoids drawn at the 30% probability level; H atoms have been omitted. (a) [Ni(en)3]2+ (Ni1, internal symmetry 3), (b) [Ni(en)3]2+ (Ni2, internal symmetry 32), (c) [Ni(en)3]2+ (Ni3, internal symmetry 2), (d) [Cu(CN)3]2− (Cu4, internal symmetry 3) (e) [Cu2(CN)7]5− (Cu5 and Cu6, internal symmetry 3).
hexakis[tris(ethylenediamine-κ2N,N')nickel(II)] tricyanocuprate(I) bis{µ-cyano-bis[tricyanocuprate(I)]} nonahydrate, [Ni(C2H8N2)3]6[Cu2(CN)7]2[Cu(CN)3]·9H2O top
Crystal data top
[Ni(C2H8N2)3]6[Cu2(CN)7]2[Cu(CN)3]·9H2ODx = 1.513 Mg m3
Mr = 2356.32Mo Kα radiation, λ = 0.71073 Å
Trigonal, R32Cell parameters from 8000 reflections
Hall symbol: R 3 2θ = 2.6–30.3°
a = 15.3025 (5) ŵ = 2.14 mm1
c = 38.2467 (17) ÅT = 193 K
V = 7756.2 (5) Å3Block, blue
Z = 30.24 × 0.22 × 0.12 mm
F(000) = 3708
Data collection top
Stoe IPDS
diffractometer
4597 independent reflections
Radiation source: fine-focus sealed tube3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 150 pixels mm-1θmax = 29.0°, θmin = 2.6°
ϕ scansh = 2020
Absorption correction: multi-scan
(WinGX; Farrugia, 1999; Spek, 2003)
k = 2019
Tmin = 0.623, Tmax = 0.813l = 5251
27795 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
4597 reflectionsΔρmax = 0.63 e Å3
207 parametersΔρmin = 0.62 e Å3
14 restraintsAbsolute structure: Flack (1983), 2050 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
[Ni(C2H8N2)3]6[Cu2(CN)7]2[Cu(CN)3]·9H2OZ = 3
Mr = 2356.32Mo Kα radiation
Trigonal, R32µ = 2.14 mm1
a = 15.3025 (5) ÅT = 193 K
c = 38.2467 (17) Å0.24 × 0.22 × 0.12 mm
V = 7756.2 (5) Å3
Data collection top
Stoe IPDS
diffractometer
4597 independent reflections
Absorption correction: multi-scan
(WinGX; Farrugia, 1999; Spek, 2003)
3287 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.813Rint = 0.065
27795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.63 e Å3
S = 0.89Δρmin = 0.62 e Å3
4597 reflectionsAbsolute structure: Flack (1983), 2050 Friedel pairs
207 parametersAbsolute structure parameter: 0.00 (2)
14 restraints
Special details top

Experimental. For elemental analysis: CHNS Elemental Analyzer Flash EA 1112; Thermo Finnigan, Ni gravimetrically as dimethylglyoximato complex.

For FT–IR: Nicolet Avatar 330 F T—IR, in KBr.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. ISOR restraint for O3. Crossing twist disorder of en ligand at Ni2: C21A and C21B refined with SADI restraints in C—N and C—C bond lengths, ISOR restraints in the common anisotropic displacement factor.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.00000.119160 (15)0.02724 (15)
Ni20.00000.00000.50000.0270 (2)
Ni30.15322 (4)0.33330.33330.02197 (13)
Cu40.00000.00000.00000.0300 (2)
Cu50.00000.00000.239944 (16)0.03580 (17)
Cu60.00000.00000.378175 (14)0.02865 (15)
N10.00000.00000.29620 (10)0.0272 (9)
C10.00000.00000.32615 (12)0.0261 (10)
N110.0259 (4)0.1258 (3)0.15069 (10)0.0667 (13)
H11A0.01920.10860.17400.080*
H11B0.09010.17880.14700.080*
N120.0829 (4)0.0510 (5)0.08920 (10)0.0732 (15)
H12A0.06670.05370.06590.088*
H12B0.15100.00710.09170.088*
C110.0480 (7)0.1545 (5)0.14094 (17)0.096 (3)
H11C0.02620.22350.14950.116*
H11D0.11410.10760.15160.116*
C120.0575 (7)0.1510 (6)0.10155 (19)0.106 (3)
H12C0.11080.16610.09450.128*
H12D0.00700.20250.09100.128*
N310.2078 (2)0.2316 (2)0.32425 (9)0.0287 (7)
H31A0.19140.18790.34280.034*
H31B0.17880.19450.30440.034*
N320.1280 (2)0.3066 (2)0.38853 (7)0.0315 (6)*
H32A0.09410.23840.39310.038*
H32B0.18850.33590.40030.038*
N330.1097 (2)0.4419 (2)0.34390 (9)0.0287 (7)
H33A0.15520.50280.33400.034*
H33B0.04710.42150.33450.034*
C310.3179 (3)0.2906 (3)0.32012 (11)0.0373 (9)
H31C0.33440.31790.29690.045*
H31D0.34650.24790.32360.045*
C320.0668 (3)0.3522 (3)0.39954 (10)0.0354 (8)*
H32C0.07040.36080.42520.042*
H32D0.00460.30720.39290.042*
C330.1067 (3)0.4529 (3)0.38199 (10)0.0320 (8)
H33C0.06280.48140.38770.038*
H33D0.17540.50020.39070.038*
C410.1279 (4)0.1279 (4)0.00000.0381 (13)
N410.2020 (4)0.2020 (4)0.00000.0603 (16)
C510.1243 (4)0.1285 (4)0.23033 (10)0.0425 (10)
N510.1977 (4)0.2062 (3)0.22805 (11)0.0646 (12)
C610.0811 (3)0.0608 (3)0.39484 (8)0.0293 (7)
N610.1299 (3)0.0930 (3)0.40382 (9)0.0472 (9)
N21A0.0576 (4)0.1337 (2)0.46966 (7)0.0500 (9)0.50
H21A0.12350.15570.46350.060*0.255 (15)
H21B0.02040.12130.44950.060*0.255 (15)
N21B0.0576 (4)0.1337 (2)0.46966 (7)0.0500 (9)0.50
H21C0.12590.17340.47330.060*0.745 (15)
H21D0.04700.11760.44630.060*0.745 (15)
C21A0.0516 (8)0.2125 (7)0.4910 (5)0.071 (3)0.255 (15)
H21E0.05840.26790.47570.106*0.255 (15)
H21F0.10630.24110.50860.106*0.255 (15)
C21B0.0050 (9)0.1901 (7)0.48008 (16)0.071 (3)0.745 (15)
H21G0.06250.15910.46910.106*0.745 (15)
H21H0.04460.26120.47230.106*0.745 (15)
O10.2642 (5)0.2979 (5)0.11186 (12)0.0457 (15)0.50
H1O10.29540.33960.09550.069*0.50
H2O10.27900.25130.11060.069*0.50
O20.2950 (8)0.3651 (6)0.18142 (13)0.105 (4)0.50
H1O20.26070.37280.16550.157*0.50
H2O20.26070.30500.18900.157*0.50
O30.2018 (5)0.2905 (8)0.11546 (17)0.136 (4)0.50
H1O30.19350.30260.13650.204*0.50
H2O30.15260.28570.10360.204*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0299 (2)0.0299 (2)0.0220 (3)0.01493 (12)0.0000.000
Ni20.0321 (3)0.0321 (3)0.0169 (4)0.01603 (16)0.0000.000
Ni30.0215 (2)0.0193 (3)0.0244 (2)0.00964 (13)0.00145 (10)0.00290 (19)
Cu40.0288 (3)0.0288 (3)0.0325 (4)0.01441 (17)0.0000.000
Cu50.0413 (3)0.0413 (3)0.0248 (3)0.02066 (13)0.0000.000
Cu60.0330 (2)0.0330 (2)0.0200 (3)0.01648 (11)0.0000.000
N10.0303 (15)0.0303 (15)0.0208 (19)0.0152 (7)0.0000.000
C10.0259 (16)0.0259 (16)0.026 (3)0.0129 (8)0.0000.000
N110.111 (4)0.047 (2)0.047 (2)0.043 (2)0.014 (2)0.0096 (17)
N120.087 (4)0.112 (4)0.0441 (19)0.067 (3)0.014 (2)0.005 (3)
C110.174 (8)0.088 (4)0.088 (4)0.110 (5)0.002 (4)0.014 (4)
C120.169 (8)0.108 (6)0.104 (5)0.116 (6)0.004 (5)0.031 (4)
N310.0276 (16)0.0247 (16)0.0316 (19)0.0113 (13)0.0008 (12)0.0001 (12)
N330.0284 (15)0.0240 (15)0.0353 (18)0.0142 (13)0.0007 (13)0.0033 (13)
C310.030 (2)0.035 (2)0.051 (2)0.0198 (18)0.0026 (17)0.0008 (17)
C330.0344 (19)0.0270 (17)0.0368 (19)0.0169 (15)0.0053 (15)0.0022 (15)
C410.028 (2)0.028 (2)0.055 (4)0.012 (2)0.0032 (12)0.0032 (12)
N410.038 (2)0.038 (2)0.094 (5)0.011 (3)0.0020 (16)0.0020 (16)
C510.051 (3)0.050 (3)0.027 (2)0.026 (2)0.0067 (17)0.0049 (17)
N510.074 (3)0.052 (3)0.051 (2)0.019 (2)0.016 (2)0.008 (2)
C610.034 (2)0.0312 (19)0.0199 (13)0.0138 (16)0.0008 (15)0.0025 (16)
N610.054 (2)0.051 (2)0.0445 (17)0.032 (2)0.0003 (17)0.0054 (16)
N21A0.084 (3)0.0381 (17)0.0238 (12)0.027 (2)0.003 (2)0.0042 (11)
N21B0.084 (3)0.0381 (17)0.0238 (12)0.027 (2)0.003 (2)0.0042 (11)
C21A0.135 (7)0.055 (4)0.041 (4)0.062 (5)0.014 (4)0.004 (3)
C21B0.135 (7)0.055 (4)0.041 (4)0.062 (5)0.014 (4)0.004 (3)
O10.044 (4)0.057 (4)0.051 (3)0.036 (3)0.025 (3)0.031 (3)
O20.174 (11)0.059 (5)0.074 (5)0.053 (6)0.035 (6)0.014 (4)
O30.162 (9)0.091 (6)0.104 (7)0.024 (6)0.026 (6)0.024 (5)
Geometric parameters (Å, º) top
Ni1—N12i2.126 (4)C11—H11C0.9900
Ni1—N122.126 (4)C11—H11D0.9900
Ni1—N12ii2.126 (4)C12—H12C0.9900
Ni1—N112.134 (4)C12—H12D0.9900
Ni1—N11ii2.134 (4)N31—C311.469 (5)
Ni1—N11i2.134 (4)N31—H31A0.9200
Ni2—N21Bi2.123 (3)N31—H31B0.9200
Ni2—N21Ai2.123 (3)N32—C321.481 (5)
Ni2—N21Bii2.123 (3)N32—H32A0.9200
Ni2—N21Aii2.123 (3)N32—H32B0.9200
Ni2—N21Biii2.123 (3)N33—C331.470 (5)
Ni2—N21Aiii2.123 (3)N33—H33A0.9200
Ni2—N21A2.123 (3)N33—H33B0.9200
Ni2—N21Biv2.123 (3)C31—C31vi1.519 (8)
Ni2—N21Aiv2.123 (3)C31—H31C0.9599
Ni2—N21Bv2.123 (3)C31—H31D0.9600
Ni2—N21Av2.123 (3)C32—C331.503 (5)
Ni3—N33vi2.115 (3)C32—H32C0.9900
Ni3—N332.115 (3)C32—H32D0.9900
Ni3—N312.131 (3)C33—H33C0.9900
Ni3—N31vi2.131 (3)C33—H33D0.9900
Ni3—N322.148 (3)C41—N411.133 (7)
Ni3—N32vi2.148 (3)C51—N511.161 (6)
Cu4—C41ii1.958 (6)C61—N611.135 (5)
Cu4—C41i1.958 (6)N21A—C21A1.496 (9)
Cu4—C411.958 (6)N21A—H21A0.9200
Cu5—C511.970 (5)N21A—H21B0.9200
Cu5—C51ii1.970 (5)C21A—C21Aiv1.531 (13)
Cu5—C51i1.970 (5)C21A—H21E0.9900
Cu5—N12.152 (4)C21A—H21F0.9900
Cu6—C11.990 (5)C21B—C21Biv1.529 (12)
Cu6—C61ii1.991 (4)C21B—H21G0.9900
Cu6—C611.991 (4)C21B—H21H0.9900
Cu6—C61i1.991 (4)O1—H1O10.8499
N1—C11.145 (6)O1—H2O10.8499
N11—C111.451 (8)O1—H1O31.4639
N11—H11A0.9200O2—O2vii1.519 (17)
N11—H11B0.9200O2—H1O20.8501
N12—C121.457 (8)O2—H2O20.8500
N12—H12A0.9200O3—H1O11.4576
N12—H12B0.9200O3—H1O30.8500
C11—C121.512 (9)O3—H2O30.8500
N12i—Ni1—N1293.68 (16)C1—Cu6—C61108.67 (9)
N12i—Ni1—N12ii93.68 (16)C61ii—Cu6—C61110.26 (8)
N12—Ni1—N12ii93.68 (16)C1—Cu6—C61i108.67 (9)
N12i—Ni1—N11170.7 (2)C61ii—Cu6—C61i110.26 (8)
N12—Ni1—N1181.33 (18)C61—Cu6—C61i110.26 (8)
N12ii—Ni1—N1194.4 (2)C1—N1—Cu5180.000 (1)
N12i—Ni1—N11ii94.4 (2)N1—C1—Cu6180.0
N12—Ni1—N11ii170.7 (2)C11—N11—Ni1107.9 (3)
N12ii—Ni1—N11ii81.33 (18)C11—N11—H11A110.1
N11—Ni1—N11ii91.22 (15)Ni1—N11—H11A110.1
N12i—Ni1—N11i81.33 (18)C11—N11—H11B110.1
N12—Ni1—N11i94.4 (2)Ni1—N11—H11B110.1
N12ii—Ni1—N11i170.7 (2)H11A—N11—H11B108.4
N11—Ni1—N11i91.22 (15)C12—N12—Ni1108.4 (4)
N11ii—Ni1—N11i91.22 (15)C12—N12—H12A110.0
N21Bi—Ni2—N21Ai0.0 (4)Ni1—N12—H12A110.0
N21Bi—Ni2—N21Bii92.97 (11)C12—N12—H12B110.0
N21Ai—Ni2—N21Bii92.97 (11)Ni1—N12—H12B110.0
N21Bi—Ni2—N21Aii92.97 (11)H12A—N12—H12B108.4
N21Ai—Ni2—N21Aii92.97 (11)N11—C11—C12108.7 (5)
N21Bii—Ni2—N21Aii0.0 (3)N11—C11—H11C109.9
N21Bi—Ni2—N21Biii172.3 (3)C12—C11—H11C109.9
N21Ai—Ni2—N21Biii172.3 (3)N11—C11—H11D109.9
N21Bii—Ni2—N21Biii81.7 (2)C12—C11—H11D109.9
N21Aii—Ni2—N21Biii81.7 (2)H11C—C11—H11D108.3
N21Bi—Ni2—N21Aiii172.3 (3)N12—C12—C11109.3 (4)
N21Ai—Ni2—N21Aiii172.3 (3)N12—C12—H12C109.8
N21Bii—Ni2—N21Aiii81.7 (2)C11—C12—H12C109.8
N21Aii—Ni2—N21Aiii81.7 (2)N12—C12—H12D109.8
N21Biii—Ni2—N21Aiii0.0 (3)C11—C12—H12D109.8
N21Bi—Ni2—N21A92.97 (11)H12C—C12—H12D108.3
N21Ai—Ni2—N21A92.97 (11)C31—N31—Ni3108.5 (2)
N21Bii—Ni2—N21A92.97 (11)C31—N31—H31A110.0
N21Aii—Ni2—N21A92.97 (11)Ni3—N31—H31A110.0
N21Biii—Ni2—N21A92.8 (3)C31—N31—H31B110.0
N21Aiii—Ni2—N21A92.8 (3)Ni3—N31—H31B110.0
N21Bi—Ni2—N21Biv92.8 (3)H31A—N31—H31B108.4
N21Ai—Ni2—N21Biv92.8 (3)C32—N32—Ni3106.6 (2)
N21Bii—Ni2—N21Biv172.3 (3)C32—N32—H32A110.4
N21Aii—Ni2—N21Biv172.3 (3)Ni3—N32—H32A110.4
N21Biii—Ni2—N21Biv92.97 (11)C32—N32—H32B110.4
N21Aiii—Ni2—N21Biv92.97 (11)Ni3—N32—H32B110.4
N21A—Ni2—N21Biv81.7 (2)H32A—N32—H32B108.6
N21Bi—Ni2—N21Aiv92.8 (3)C33—N33—Ni3108.6 (2)
N21Ai—Ni2—N21Aiv92.8 (3)C33—N33—H33A110.0
N21Bii—Ni2—N21Aiv172.3 (3)Ni3—N33—H33A110.0
N21Aii—Ni2—N21Aiv172.3 (3)C33—N33—H33B110.0
N21Biii—Ni2—N21Aiv92.97 (11)Ni3—N33—H33B110.0
N21Aiii—Ni2—N21Aiv92.97 (11)H33A—N33—H33B108.3
N21A—Ni2—N21Aiv81.7 (2)N31—C31—C31vi109.0 (3)
N21Biv—Ni2—N21Aiv0.0 (3)N31—C31—H31C109.7
N21Bi—Ni2—N21Bv81.7 (2)C31vi—C31—H31C109.6
N21Ai—Ni2—N21Bv81.7 (2)N31—C31—H31D109.9
N21Bii—Ni2—N21Bv92.8 (3)C31vi—C31—H31D110.3
N21Aii—Ni2—N21Bv92.8 (3)H31C—C31—H31D108.4
N21Biii—Ni2—N21Bv92.97 (11)N32—C32—C33109.2 (3)
N21Aiii—Ni2—N21Bv92.97 (11)N32—C32—H32C109.8
N21A—Ni2—N21Bv172.3 (3)C33—C32—H32C109.8
N21Biv—Ni2—N21Bv92.97 (11)N32—C32—H32D109.8
N21Aiv—Ni2—N21Bv92.97 (11)C33—C32—H32D109.8
N21Bi—Ni2—N21Av81.7 (2)H32C—C32—H32D108.3
N21Ai—Ni2—N21Av81.7 (2)N33—C33—C32110.2 (3)
N21Bii—Ni2—N21Av92.8 (3)N33—C33—H33C109.6
N21Aii—Ni2—N21Av92.8 (3)C32—C33—H33C109.6
N21Biii—Ni2—N21Av92.97 (11)N33—C33—H33D109.6
N21Aiii—Ni2—N21Av92.97 (11)C32—C33—H33D109.6
N21A—Ni2—N21Av172.3 (3)H33C—C33—H33D108.1
N21Biv—Ni2—N21Av92.97 (11)N41—C41—Cu4180.0 (9)
N21Aiv—Ni2—N21Av92.97 (11)N51—C51—Cu5173.5 (4)
N21Bv—Ni2—N21Av0.0 (4)N61—C61—Cu6177.8 (4)
N33vi—Ni3—N3389.92 (17)C21A—N21A—Ni2108.4 (7)
N33vi—Ni3—N3194.26 (10)C21A—N21A—H21A110.0
N33—Ni3—N31175.74 (14)Ni2—N21A—H21A110.0
N33vi—Ni3—N31vi175.73 (14)C21A—N21A—H21B110.0
N33—Ni3—N31vi94.27 (10)Ni2—N21A—H21B110.0
N31—Ni3—N31vi81.56 (16)H21A—N21A—H21B108.4
N33vi—Ni3—N3290.91 (12)N21A—C21A—C21Aiv107.1 (8)
N33—Ni3—N3282.23 (12)N21A—C21A—H21E110.3
N31—Ni3—N3296.88 (12)C21Aiv—C21A—H21E110.3
N31vi—Ni3—N3290.46 (12)N21A—C21A—H21F110.3
N33vi—Ni3—N32vi82.23 (12)C21Aiv—C21A—H21F110.3
N33—Ni3—N32vi90.91 (12)H21E—C21A—H21F108.6
N31—Ni3—N32vi90.45 (12)C21Biv—C21B—H21G110.1
N31vi—Ni3—N32vi96.87 (12)C21Biv—C21B—H21H110.1
N32—Ni3—N32vi170.33 (15)H21G—C21B—H21H108.5
C41ii—Cu4—C41i120.0H1O1—O1—H2O1107.7
C41ii—Cu4—C41120.0H1O1—O1—H1O3126.1
C41i—Cu4—C41120.0H2O1—O1—H1O3126.1
C51—Cu5—C51ii116.60 (7)O2vii—O2—H1O280.0
C51—Cu5—C51i116.60 (7)O2vii—O2—H2O2127.6
C51ii—Cu5—C51i116.60 (7)H1O2—O2—H2O2107.7
C51—Cu5—N1100.75 (12)H1O1—O3—H1O3126.8
C51ii—Cu5—N1100.75 (12)H1O1—O3—H2O3111.4
C51i—Cu5—N1100.75 (12)H1O3—O3—H2O3107.7
C1—Cu6—C61ii108.67 (9)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y, x, z+1; (iv) x, x+y, z+1; (v) xy, y, z+1; (vi) xy+1/3, y+2/3, z+2/3; (vii) x+2/3, x+y+1/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O30.922.092.937 (11)152
N12—H12B···O3i0.922.102.98 (8)160
N12—H12B···O1i0.922.152.998 (8)153
N31—H31A···N61ii0.922.633.478 (5)154
N32—H32B···N51vi0.922.483.346 (5)157
N33—H33B···N41viii0.922.373.225 (6)156
N21A—H21A···O2vi0.922.342.96 (7)125
O1—H1O1···N61ix0.852.352.905 (7)124
O1—H2O1···N12ii0.852.552.998 (8)114
O2—H1O2···O30.852.222.842130
O2—H1O2···O10.852.362.806113
O2—H2O2···N510.852.002.773 (9)151
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (vi) xy+1/3, y+2/3, z+2/3; (viii) y1/3, xy+1/3, z+1/3; (ix) y+1/3, xy+2/3, z1/3.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3]6[Cu2(CN)7]2[Cu(CN)3]·9H2O
Mr2356.32
Crystal system, space groupTrigonal, R32
Temperature (K)193
a, c (Å)15.3025 (5), 38.2467 (17)
V3)7756.2 (5)
Z3
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.24 × 0.22 × 0.12
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(WinGX; Farrugia, 1999; Spek, 2003)
Tmin, Tmax0.623, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
27795, 4597, 3287
Rint0.065
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 0.89
No. of reflections4597
No. of parameters207
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.62
Absolute structureFlack (1983), 2050 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: EXPOSE in IPDS (Stoe & Cie, 1999), CELL in IPDS, INTEGRATE in IPDS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Crystal Impact, 2001), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—N122.126 (4)Cu4—C411.958 (6)
Ni1—N112.134 (4)Cu5—C511.970 (5)
Ni2—N21A2.123 (3)Cu5—N12.152 (4)
Ni3—N332.115 (3)Cu6—C11.990 (5)
Ni3—N312.131 (3)Cu6—C611.991 (4)
Ni3—N322.148 (3)N1—C11.145 (6)
N12—Ni1—N1181.33 (18)N33—Ni3—N3282.23 (12)
N21Ai—Ni2—N21Aii81.7 (2)N31—Ni3—N3296.88 (12)
N33—Ni3—N31175.74 (14)
Symmetry codes: (i) y, xy, z; (ii) xy, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O30.922.092.937 (11)152.1
N12—H12B···O3i0.922.102.98 (8)160.2
N12—H12B···O1i0.922.152.998 (8)152.5
N31—H31A···N61iii0.922.633.478 (5)154.4
N32—H32B···N51iv0.922.483.346 (5)156.8
N33—H33B···N41v0.922.373.225 (6)155.5
N21A—H21A···O2iv0.922.342.96 (7)124.8
O1—H1O1···N61vi0.852.352.905 (7)123.6
O1—H2O1···N12iii0.852.552.998 (8)113.7
O2—H1O2···O30.852.222.842130.0
O2—H1O2···O10.852.362.806112.8
O2—H2O2···N510.852.002.773 (9)151.2
Symmetry codes: (i) y, xy, z; (iii) x+y, x, z; (iv) xy+1/3, y+2/3, z+2/3; (v) y1/3, xy+1/3, z+1/3; (vi) y+1/3, xy+2/3, z1/3.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds