metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6-Ferrocenylhex­yl)-1H-imidazole

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, and bStructural Chemistry Unit, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 17 February 2010; accepted 1 March 2010; online 17 March 2010)

The title compound, [Fe(C5H5)(C14H19N2)], is characterized by a ferrocenyl group separated from an imidazole functionality by a straight-chain hexyl unit. The two cyclo­penta­dienyl rings of the ferrocenyl group show a marginal inward tilt of 2.17 (2)°. The imidazole unit, which is essentially planar (with a maximum deviation of 0.007 A for one of the N atoms) and tilted away from the ferrocenyl group [dihedral angle between the substituted ferrocenyl ring and the imidazole = 122.6 (1)°], is involved in inter­molecular C—H⋯N inter­actions.

Related literature

For related structures, see: Hua et al. (2004[Hua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761-m763.]); Nyamori & Bala (2008[Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H19N2)]

  • Mr = 336.25

  • Orthorhombic, P b c a

  • a = 15.587 (3) Å

  • b = 7.6042 (12) Å

  • c = 27.773 (4) Å

  • V = 3291.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 173 K

  • 0.40 × 0.24 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.666, Tmax = 0.751

  • 24220 measured reflections

  • 3061 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.121

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 0.98

  • 3061 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N2i 0.93 2.58 3.399 (5) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was prepared as part of our study into the development of imidazole based ionic liquids and precursors to N-heterocyclic carbene ligands bearing a ferrocenyl functionality. Related compounds bearing structural similarities to (I) have been communicated by Hua et al. (2004) and Nyamori & Bala (2008). The compound (I) shows a fairly linear alkyl carbon-carbon bond linkage of the ferrocenyl moiety with the imidazole. This is evident from the torsion angles; C10—C11—C12—C13 = -178.3 (3)°, C12—C13—C14—C15 = -177.4 (3)° and C13—C14—C15—C16 = 178.3 (3)°. The average bond distances between the carbon atoms (C11 to C15) is 1.5375 (Å) which is normal for saturated alkyl carbon-carbon bonds. The bond distance between C16—N1 is 1.450 (4) Å as expected. The imidazole ring slightly deviates from planarity as indicated by the torsion angles; N1—C19—N2—C18 = -1.3 (4)° and C17—C18—N2—C19 = 1.2 (4)°. The bond length between C19—N2 is 1.312 (4) Å which is a clear indication of a localized carbon-carbon double bond while those of C18—N2 = 1.379 (4) Å, C17—C18 = 1.361 (5) Å and C17—N1 = 1.365 (4) Å are longer and indicate delocalization of π electrons. This implies that aromaticity of the imidazole ring is also reduced. The torsion angles within the atoms of the ferrocenyl rings indicate that the rings are fairly planar. The two ferrocenyl rings also show a marginal tilt towards each other with an angle of 2.17°. The average bond distance of substituted ferrocenyl ring carbon atoms and the metal centre (Fe1) is found to be 2.039 (3) Å while that of the unsubstituted ferrocenyl ring is obtained as 2.027 (3) Å. A value of 114.0 (3)° is observed for the N1—C16—C15 angle. The dihedral angle between the substituted ferrocenyl ring and the imidazole is found to be 122.6 (1)°. These observations confirm that the molecule is kinked and this, in turn, affects the molecular packing of the molecules which are held together by weak C—H···N interactions with a contact distance of about 2.583 Å.

Related literature top

For related structures, see: Hua et al. (2004); Nyamori & Bala (2008).

Experimental top

Imidazole(148 mg, 2.17 mmol) was added to acetone (2.0 cm3) and the solution was stirred. Potassium hydroxide powder (128 mg, 2.27 mmol) was then introducedand allowed to dissolve, forming a homogenous solution. The solution was stirred for about 30 minutes and then 6-bromohexylferrocene (834 mg, 2.39 mmol) in acetone (1.0 cm3) was introduced to the solution dropwise and allowed to stir for about 1 hour at room temperature. The solution was then filtered and concentrated. The crude product was passed through a column of silica gel. Diethyl ether recovered unreacted 6-bromohexylferrocene (150 mg)while ethyl acetate/methanol (10:1) afforded the product as yellow crystals (591 mg, 81 %); mp 68-70°C;IR (KBr cm-1) 3090, 2932, 2859, 1655, 1508, 1466, 1439, 1234, 1107,1076, 999, 829, 802, 745, 671, 509, 486; 1H NMR (CDCl3)7.47 (1H, s, NCH), 7.07 (1H, s, NCH), 6.91 (1H, s, NCH), 4.09 (5H, s, C5H5),4.04 (4H, m, C5H4), 3.91 (2H, t, J 7.1, CH2), 2.31 (2H, t, J 7.3, CH2), 1.77 (2H, m, CH2), 1.48 (2H,m, CH2), 1.31 (4H, m, 2 x CH2); 13C NMR (CDCl3)137.48, 129.76, 119.22, 89.45, 68.87, 68.45, 67.48, 47.42, 31.44, 31.37, 29.89,29.35, 26.83; m/z (EI) 337 (M++1, 14%), 336 (M+, 61%),272 (19), 271 (100), 269 (10), 199 (9), 121 (26); Anal. Calc for C19H24N2Fe:C, 67.8; H, 7.2; N, 8.3; [M+], 336.128888. Found: C, 67.5; H, 7.3;N, 8.0; [M+], 336.128905.

Refinement top

All H-atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for NH, and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for OH.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT_NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
1-(6-Ferrocenylhexyl)-1H-imidazole top
Crystal data top
[Fe(C5H5)(C14H19N2)]F(000) = 1424
Mr = 336.25Dx = 1.357 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 1.5–25.5°
a = 15.587 (3) ŵ = 0.91 mm1
b = 7.6042 (12) ÅT = 173 K
c = 27.773 (4) ÅPlate, yellow
V = 3291.9 (9) Å30.40 × 0.24 × 0.02 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3061 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.121
ϕ and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.666, Tmax = 0.751k = 98
24220 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Fe(C5H5)(C14H19N2)]V = 3291.9 (9) Å3
Mr = 336.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.587 (3) ŵ = 0.91 mm1
b = 7.6042 (12) ÅT = 173 K
c = 27.773 (4) Å0.40 × 0.24 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2017 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.751Rint = 0.121
24220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
3061 reflectionsΔρmin = 0.44 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0402 (2)0.4449 (4)0.43353 (12)0.0507 (9)
H10.06510.49760.46030.061*
C20.0306 (2)0.3298 (4)0.43400 (12)0.0508 (9)
H20.06110.29380.46110.061*
C30.0470 (2)0.2788 (4)0.38591 (13)0.0508 (9)
H30.09020.20310.37570.061*
C40.0136 (2)0.3629 (4)0.35620 (12)0.0463 (8)
H40.01750.35160.32290.056*
C50.0669 (2)0.4665 (4)0.38522 (13)0.0493 (8)
H50.11190.53690.37460.059*
C60.10463 (19)0.0075 (4)0.44559 (12)0.0410 (8)
H60.07370.04900.47190.049*
C70.0912 (2)0.0557 (4)0.39673 (12)0.0493 (9)
H70.05010.13430.38540.059*
C80.1513 (2)0.0373 (4)0.36845 (12)0.0499 (9)
H80.15680.03070.33520.060*
C90.20114 (19)0.1412 (5)0.39933 (11)0.0448 (8)
H90.24530.21550.38970.054*
C100.17368 (18)0.1155 (4)0.44742 (11)0.0368 (7)
C110.21197 (19)0.1987 (4)0.49179 (11)0.0439 (8)
H11A0.26670.14260.49830.053*
H11B0.22330.32160.48490.053*
C120.15795 (19)0.1885 (4)0.53670 (10)0.0438 (8)
H12A0.14810.06580.54450.053*
H12B0.10260.24190.53020.053*
C130.1980 (2)0.2788 (4)0.58019 (11)0.0464 (8)
H13A0.25540.23310.58490.056*
H13B0.20280.40370.57360.056*
C140.14718 (19)0.2535 (4)0.62592 (11)0.0445 (8)
H14A0.14450.12870.63300.053*
H14B0.08900.29380.62040.053*
C150.1825 (2)0.3479 (4)0.66974 (10)0.0450 (8)
H15A0.18680.47240.66250.054*
H15B0.24000.30480.67610.054*
C160.1286 (2)0.3249 (4)0.71481 (12)0.0491 (9)
H16A0.14960.40460.73940.059*
H16B0.06990.35780.70760.059*
C170.0772 (2)0.0108 (5)0.72108 (11)0.0513 (9)
H170.03290.01370.69870.062*
C180.1031 (2)0.1306 (5)0.74738 (13)0.0577 (9)
H180.07840.24190.74610.069*
C190.1837 (2)0.0833 (5)0.76738 (11)0.0496 (8)
H190.22550.15070.78250.060*
N10.12910 (15)0.1475 (4)0.73396 (9)0.0434 (7)
N20.17139 (18)0.0843 (4)0.77628 (10)0.0572 (7)
Fe10.07515 (2)0.20943 (5)0.405519 (14)0.03346 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (2)0.041 (2)0.057 (2)0.0156 (17)0.0107 (18)0.0145 (17)
C20.051 (2)0.048 (2)0.054 (2)0.0168 (17)0.0168 (17)0.0046 (17)
C30.0330 (16)0.046 (2)0.074 (2)0.0070 (15)0.0059 (16)0.0014 (19)
C40.0495 (19)0.046 (2)0.0437 (19)0.0134 (17)0.0033 (16)0.0051 (16)
C50.048 (2)0.0306 (18)0.069 (2)0.0056 (15)0.0020 (18)0.0077 (17)
C60.0401 (17)0.0340 (18)0.049 (2)0.0011 (14)0.0006 (14)0.0104 (16)
C70.048 (2)0.0349 (19)0.065 (2)0.0036 (15)0.0140 (17)0.0059 (17)
C80.053 (2)0.049 (2)0.048 (2)0.0177 (17)0.0018 (17)0.0085 (17)
C90.0358 (16)0.0439 (19)0.055 (2)0.0078 (14)0.0064 (15)0.0071 (17)
C100.0357 (16)0.0313 (17)0.0433 (19)0.0038 (14)0.0035 (14)0.0061 (15)
C110.0367 (16)0.0397 (19)0.055 (2)0.0007 (14)0.0069 (14)0.0066 (16)
C120.0376 (17)0.049 (2)0.0451 (19)0.0048 (15)0.0033 (14)0.0016 (16)
C130.0424 (18)0.046 (2)0.0505 (19)0.0038 (15)0.0007 (15)0.0042 (16)
C140.0409 (17)0.045 (2)0.048 (2)0.0015 (15)0.0062 (15)0.0029 (15)
C150.0459 (18)0.0388 (19)0.050 (2)0.0022 (15)0.0051 (15)0.0022 (16)
C160.054 (2)0.041 (2)0.053 (2)0.0070 (15)0.0014 (17)0.0021 (16)
C170.0445 (19)0.063 (2)0.0463 (19)0.0051 (18)0.0012 (17)0.0018 (18)
C180.061 (2)0.053 (2)0.059 (2)0.0041 (19)0.0139 (19)0.003 (2)
C190.0413 (18)0.056 (2)0.052 (2)0.0039 (17)0.0037 (16)0.0029 (18)
N10.0406 (15)0.0482 (17)0.0413 (16)0.0016 (13)0.0005 (12)0.0042 (13)
N20.0596 (19)0.058 (2)0.0542 (18)0.0079 (16)0.0053 (15)0.0055 (16)
Fe10.0323 (2)0.0293 (2)0.0388 (3)0.00365 (19)0.00101 (19)0.0008 (2)
Geometric parameters (Å, º) top
C1—C21.409 (5)C10—C111.508 (4)
C1—C51.414 (4)C10—Fe12.055 (3)
C1—Fe12.027 (3)C11—C121.507 (4)
C1—H10.9300C11—H11A0.9700
C2—C31.414 (5)C11—H11B0.9700
C2—Fe12.044 (3)C12—C131.523 (4)
C2—H20.9300C12—H12A0.9700
C3—C41.408 (4)C12—H12B0.9700
C3—Fe12.049 (3)C13—C141.509 (4)
C3—H30.9300C13—H13A0.9700
C4—C51.401 (4)C13—H13B0.9700
C4—Fe12.039 (3)C14—C151.517 (4)
C4—H40.9300C14—H14A0.9700
C5—Fe12.039 (3)C14—H14B0.9700
C5—H50.9300C15—C161.518 (4)
C6—C71.421 (4)C15—H15A0.9700
C6—C101.427 (4)C15—H15B0.9700
C6—Fe12.042 (3)C16—N11.450 (4)
C6—H60.9300C16—H16A0.9700
C7—C81.412 (5)C16—H16B0.9700
C7—Fe12.046 (3)C17—C181.361 (5)
C7—H70.9300C17—N11.365 (4)
C8—C91.402 (4)C17—H170.9300
C8—Fe12.045 (3)C18—N21.379 (4)
C8—H80.9300C18—H180.9300
C9—C101.416 (4)C19—N21.312 (4)
C9—Fe12.038 (3)C19—N11.351 (4)
C9—H90.9300C19—H190.9300
C2—C1—C5108.2 (3)H13A—C13—H13B107.7
C2—C1—Fe170.42 (18)C13—C14—C15115.1 (3)
C5—C1—Fe170.09 (17)C13—C14—H14A108.5
C2—C1—H1125.9C15—C14—H14A108.5
C5—C1—H1125.9C13—C14—H14B108.5
Fe1—C1—H1125.2C15—C14—H14B108.5
C1—C2—C3107.6 (3)H14A—C14—H14B107.5
C1—C2—Fe169.08 (18)C14—C15—C16114.0 (3)
C3—C2—Fe169.98 (17)C14—C15—H15A108.8
C1—C2—H2126.2C16—C15—H15A108.8
C3—C2—H2126.2C14—C15—H15B108.8
Fe1—C2—H2126.3C16—C15—H15B108.8
C4—C3—C2107.9 (3)H15A—C15—H15B107.7
C4—C3—Fe169.48 (17)N1—C16—C15114.0 (3)
C2—C3—Fe169.61 (17)N1—C16—H16A108.8
C4—C3—H3126.0C15—C16—H16A108.8
C2—C3—H3126.0N1—C16—H16B108.8
Fe1—C3—H3126.4C15—C16—H16B108.8
C5—C4—C3108.5 (3)H16A—C16—H16B107.6
C5—C4—Fe169.89 (18)C18—C17—N1106.6 (3)
C3—C4—Fe170.25 (18)C18—C17—H17126.7
C5—C4—H4125.8N1—C17—H17126.7
C3—C4—H4125.8C17—C18—N2109.8 (3)
Fe1—C4—H4125.7C17—C18—H18125.1
C4—C5—C1107.8 (3)N2—C18—H18125.1
C4—C5—Fe169.94 (18)N2—C19—N1112.9 (3)
C1—C5—Fe169.19 (17)N2—C19—H19123.6
C4—C5—H5126.1N1—C19—H19123.6
C1—C5—H5126.1C19—N1—C17106.1 (3)
Fe1—C5—H5126.3C19—N1—C16126.3 (3)
C7—C6—C10108.3 (3)C17—N1—C16127.5 (3)
C7—C6—Fe169.80 (18)C19—N2—C18104.6 (3)
C10—C6—Fe170.11 (16)C1—Fe1—C468.03 (13)
C7—C6—H6125.8C1—Fe1—C9121.05 (14)
C10—C6—H6125.8C4—Fe1—C9122.84 (13)
Fe1—C6—H6125.8C1—Fe1—C540.72 (13)
C8—C7—C6107.7 (3)C4—Fe1—C540.18 (12)
C8—C7—Fe169.76 (19)C9—Fe1—C5106.32 (14)
C6—C7—Fe169.52 (17)C1—Fe1—C6124.39 (14)
C8—C7—H7126.2C4—Fe1—C6159.09 (13)
C6—C7—H7126.2C9—Fe1—C667.90 (12)
Fe1—C7—H7126.1C5—Fe1—C6159.95 (13)
C9—C8—C7108.1 (3)C1—Fe1—C240.50 (13)
C9—C8—Fe169.68 (17)C4—Fe1—C267.94 (13)
C7—C8—Fe169.85 (18)C9—Fe1—C2157.40 (14)
C9—C8—H8126.0C5—Fe1—C268.11 (14)
C7—C8—H8126.0C6—Fe1—C2109.39 (13)
Fe1—C8—H8126.1C1—Fe1—C8156.16 (15)
C8—C9—C10109.4 (3)C4—Fe1—C8107.53 (13)
C8—C9—Fe170.17 (18)C9—Fe1—C840.15 (13)
C10—C9—Fe170.40 (16)C5—Fe1—C8120.74 (14)
C8—C9—H9125.3C6—Fe1—C868.08 (13)
C10—C9—H9125.3C2—Fe1—C8161.64 (14)
Fe1—C9—H9125.7C1—Fe1—C7161.63 (14)
C9—C10—C6106.6 (3)C4—Fe1—C7122.76 (13)
C9—C10—C11126.4 (3)C9—Fe1—C767.78 (14)
C6—C10—C11127.1 (3)C5—Fe1—C7156.86 (14)
C9—C10—Fe169.12 (16)C6—Fe1—C740.68 (12)
C6—C10—Fe169.14 (16)C2—Fe1—C7125.83 (14)
C11—C10—Fe1127.8 (2)C8—Fe1—C740.39 (13)
C12—C11—C10115.7 (2)C1—Fe1—C367.98 (13)
C12—C11—H11A108.4C4—Fe1—C340.27 (12)
C10—C11—H11A108.4C9—Fe1—C3159.74 (14)
C12—C11—H11B108.4C5—Fe1—C367.75 (13)
C10—C11—H11B108.4C6—Fe1—C3124.18 (13)
H11A—C11—H11B107.4C2—Fe1—C340.42 (13)
C11—C12—C13113.9 (2)C8—Fe1—C3124.75 (14)
C11—C12—H12A108.8C7—Fe1—C3109.58 (13)
C13—C12—H12A108.8C1—Fe1—C10106.89 (13)
C11—C12—H12B108.8C4—Fe1—C10158.58 (13)
C13—C12—H12B108.8C9—Fe1—C1040.48 (11)
H12A—C12—H12B107.7C5—Fe1—C10122.47 (13)
C14—C13—C12113.3 (3)C6—Fe1—C1040.75 (11)
C14—C13—H13A108.9C2—Fe1—C10122.62 (13)
C12—C13—H13A108.9C8—Fe1—C1068.22 (13)
C14—C13—H13B108.9C7—Fe1—C1068.52 (12)
C12—C13—H13B108.9C3—Fe1—C10159.11 (13)
C5—C1—C2—C30.6 (4)C1—C5—Fe1—C7169.6 (3)
Fe1—C1—C2—C359.6 (2)C4—C5—Fe1—C337.51 (19)
C5—C1—C2—Fe160.2 (2)C1—C5—Fe1—C381.6 (2)
C1—C2—C3—C40.1 (4)C4—C5—Fe1—C10163.07 (18)
Fe1—C2—C3—C459.1 (2)C1—C5—Fe1—C1077.8 (2)
C1—C2—C3—Fe159.0 (2)C7—C6—Fe1—C1165.47 (19)
C2—C3—C4—C50.5 (3)C10—C6—Fe1—C175.2 (2)
Fe1—C3—C4—C559.7 (2)C7—C6—Fe1—C444.1 (4)
C2—C3—C4—Fe159.2 (2)C10—C6—Fe1—C4163.4 (3)
C3—C4—C5—C10.8 (3)C7—C6—Fe1—C981.2 (2)
Fe1—C4—C5—C159.0 (2)C10—C6—Fe1—C938.15 (17)
C3—C4—C5—Fe159.9 (2)C7—C6—Fe1—C5158.0 (4)
C2—C1—C5—C40.9 (3)C10—C6—Fe1—C538.7 (5)
Fe1—C1—C5—C459.5 (2)C7—C6—Fe1—C2122.9 (2)
C2—C1—C5—Fe160.4 (2)C10—C6—Fe1—C2117.8 (2)
C10—C6—C7—C80.2 (3)C7—C6—Fe1—C837.70 (19)
Fe1—C6—C7—C859.5 (2)C10—C6—Fe1—C881.6 (2)
C10—C6—C7—Fe159.7 (2)C10—C6—Fe1—C7119.3 (3)
C6—C7—C8—C90.0 (4)C7—C6—Fe1—C380.3 (2)
Fe1—C7—C8—C959.4 (2)C10—C6—Fe1—C3160.38 (19)
C6—C7—C8—Fe159.4 (2)C7—C6—Fe1—C10119.3 (3)
C7—C8—C9—C100.2 (3)C3—C2—Fe1—C1119.0 (3)
Fe1—C8—C9—C1059.7 (2)C1—C2—Fe1—C481.5 (2)
C7—C8—C9—Fe159.5 (2)C3—C2—Fe1—C437.5 (2)
C8—C9—C10—C60.3 (3)C1—C2—Fe1—C941.7 (4)
Fe1—C9—C10—C659.3 (2)C3—C2—Fe1—C9160.7 (3)
C8—C9—C10—C11178.2 (3)C1—C2—Fe1—C538.1 (2)
Fe1—C9—C10—C11122.2 (3)C3—C2—Fe1—C580.9 (2)
C8—C9—C10—Fe159.6 (2)C1—C2—Fe1—C6120.7 (2)
C7—C6—C10—C90.3 (3)C3—C2—Fe1—C6120.3 (2)
Fe1—C6—C10—C959.26 (19)C1—C2—Fe1—C8160.6 (4)
C7—C6—C10—C11178.2 (3)C3—C2—Fe1—C841.6 (5)
Fe1—C6—C10—C11122.2 (3)C1—C2—Fe1—C7163.14 (19)
C7—C6—C10—Fe159.6 (2)C3—C2—Fe1—C777.9 (2)
C9—C10—C11—C12164.6 (3)C1—C2—Fe1—C3119.0 (3)
C6—C10—C11—C1217.2 (4)C1—C2—Fe1—C1077.4 (2)
Fe1—C10—C11—C1274.0 (3)C3—C2—Fe1—C10163.61 (19)
C10—C11—C12—C13178.3 (3)C9—C8—Fe1—C145.3 (4)
C11—C12—C13—C14174.7 (3)C7—C8—Fe1—C1164.5 (3)
C12—C13—C14—C15177.4 (3)C9—C8—Fe1—C4120.5 (2)
C13—C14—C15—C16178.1 (3)C7—C8—Fe1—C4120.3 (2)
C14—C15—C16—N168.2 (3)C7—C8—Fe1—C9119.2 (3)
N1—C17—C18—N20.7 (4)C9—C8—Fe1—C578.6 (2)
N2—C19—N1—C170.9 (3)C7—C8—Fe1—C5162.19 (19)
N2—C19—N1—C16177.2 (3)C9—C8—Fe1—C681.3 (2)
C18—C17—N1—C190.1 (3)C7—C8—Fe1—C637.96 (18)
C18—C17—N1—C16177.9 (3)C9—C8—Fe1—C2166.9 (4)
C15—C16—N1—C1991.5 (4)C7—C8—Fe1—C247.7 (5)
C15—C16—N1—C1786.2 (4)C9—C8—Fe1—C7119.2 (3)
N1—C19—N2—C181.3 (4)C9—C8—Fe1—C3161.50 (19)
C17—C18—N2—C191.2 (4)C7—C8—Fe1—C379.3 (2)
C2—C1—Fe1—C481.3 (2)C9—C8—Fe1—C1037.19 (18)
C5—C1—Fe1—C437.42 (19)C7—C8—Fe1—C1082.0 (2)
C2—C1—Fe1—C9162.62 (19)C8—C7—Fe1—C1160.0 (4)
C5—C1—Fe1—C978.7 (2)C6—C7—Fe1—C141.1 (5)
C2—C1—Fe1—C5118.7 (3)C8—C7—Fe1—C478.3 (2)
C2—C1—Fe1—C679.5 (2)C6—C7—Fe1—C4162.83 (17)
C5—C1—Fe1—C6161.76 (18)C8—C7—Fe1—C937.44 (18)
C5—C1—Fe1—C2118.7 (3)C6—C7—Fe1—C981.47 (19)
C2—C1—Fe1—C8165.0 (3)C8—C7—Fe1—C542.0 (4)
C5—C1—Fe1—C846.3 (4)C6—C7—Fe1—C5160.9 (3)
C2—C1—Fe1—C748.2 (5)C8—C7—Fe1—C6118.9 (3)
C5—C1—Fe1—C7167.0 (4)C8—C7—Fe1—C2163.3 (2)
C2—C1—Fe1—C337.7 (2)C6—C7—Fe1—C277.8 (2)
C5—C1—Fe1—C381.0 (2)C6—C7—Fe1—C8118.9 (3)
C2—C1—Fe1—C10120.8 (2)C8—C7—Fe1—C3121.0 (2)
C5—C1—Fe1—C10120.5 (2)C6—C7—Fe1—C3120.06 (19)
C5—C4—Fe1—C137.91 (19)C8—C7—Fe1—C1081.2 (2)
C3—C4—Fe1—C181.4 (2)C6—C7—Fe1—C1037.71 (17)
C5—C4—Fe1—C975.8 (2)C4—C3—Fe1—C181.5 (2)
C3—C4—Fe1—C9164.9 (2)C2—C3—Fe1—C137.8 (2)
C3—C4—Fe1—C5119.3 (3)C2—C3—Fe1—C4119.3 (3)
C5—C4—Fe1—C6168.5 (3)C4—C3—Fe1—C939.2 (5)
C3—C4—Fe1—C649.2 (4)C2—C3—Fe1—C9158.5 (4)
C5—C4—Fe1—C281.8 (2)C4—C3—Fe1—C537.42 (19)
C3—C4—Fe1—C237.6 (2)C2—C3—Fe1—C581.9 (2)
C5—C4—Fe1—C8117.2 (2)C4—C3—Fe1—C6160.95 (19)
C3—C4—Fe1—C8123.5 (2)C2—C3—Fe1—C679.7 (2)
C5—C4—Fe1—C7158.9 (2)C4—C3—Fe1—C2119.3 (3)
C3—C4—Fe1—C781.8 (2)C4—C3—Fe1—C875.4 (2)
C5—C4—Fe1—C3119.3 (3)C2—C3—Fe1—C8165.2 (2)
C5—C4—Fe1—C1042.3 (4)C4—C3—Fe1—C7117.9 (2)
C3—C4—Fe1—C10161.6 (3)C2—C3—Fe1—C7122.7 (2)
C8—C9—Fe1—C1160.4 (2)C4—C3—Fe1—C10161.1 (3)
C10—C9—Fe1—C179.4 (2)C2—C3—Fe1—C1041.8 (4)
C8—C9—Fe1—C477.9 (2)C9—C10—Fe1—C1118.3 (2)
C10—C9—Fe1—C4161.90 (18)C6—C10—Fe1—C1123.5 (2)
C8—C9—Fe1—C5118.6 (2)C11—C10—Fe1—C12.1 (3)
C10—C9—Fe1—C5121.24 (19)C9—C10—Fe1—C445.6 (4)
C8—C9—Fe1—C681.8 (2)C6—C10—Fe1—C4163.8 (3)
C10—C9—Fe1—C638.40 (17)C11—C10—Fe1—C474.9 (4)
C8—C9—Fe1—C2169.3 (3)C6—C10—Fe1—C9118.2 (3)
C10—C9—Fe1—C249.1 (4)C11—C10—Fe1—C9120.5 (3)
C10—C9—Fe1—C8120.2 (3)C9—C10—Fe1—C576.6 (2)
C8—C9—Fe1—C737.66 (19)C6—C10—Fe1—C5165.29 (19)
C10—C9—Fe1—C782.49 (19)C11—C10—Fe1—C543.9 (3)
C8—C9—Fe1—C348.8 (5)C9—C10—Fe1—C6118.2 (3)
C10—C9—Fe1—C3169.0 (3)C11—C10—Fe1—C6121.4 (3)
C8—C9—Fe1—C10120.2 (3)C9—C10—Fe1—C2159.8 (2)
C4—C5—Fe1—C1119.1 (3)C6—C10—Fe1—C282.0 (2)
C1—C5—Fe1—C4119.1 (3)C11—C10—Fe1—C239.3 (3)
C4—C5—Fe1—C9121.94 (19)C9—C10—Fe1—C836.90 (19)
C1—C5—Fe1—C9118.9 (2)C6—C10—Fe1—C881.3 (2)
C4—C5—Fe1—C6168.0 (3)C11—C10—Fe1—C8157.4 (3)
C1—C5—Fe1—C648.9 (5)C9—C10—Fe1—C780.5 (2)
C4—C5—Fe1—C281.3 (2)C6—C10—Fe1—C737.65 (18)
C1—C5—Fe1—C237.86 (19)C11—C10—Fe1—C7159.0 (3)
C4—C5—Fe1—C880.7 (2)C9—C10—Fe1—C3169.3 (3)
C1—C5—Fe1—C8160.12 (19)C6—C10—Fe1—C351.2 (4)
C4—C5—Fe1—C750.4 (4)C11—C10—Fe1—C370.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.932.583.399 (5)147
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H19N2)]
Mr336.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)15.587 (3), 7.6042 (12), 27.773 (4)
V3)3291.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.40 × 0.24 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.666, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
24220, 3061, 2017
Rint0.121
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 0.98
No. of reflections3061
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SAINT_NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.932.583.399 (5)147
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We wish to thank Dr Jennifer Look for the data collection and the NRF and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2005). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHua, H., Huang, G.-S., Liang, Y.-M., Wu, X.-L., Ma, Y.-X. & Chen, B.-H. (2004). Acta Cryst. E60, m761–m763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds