Download citation
Download citation
link to html
In the title compound, [Mn(C7H3Cl2O2)2(C3H7NO)(H2O)], the MnII atom is octa­hedrally coordinated by four O atoms from two bidentate 2,4-dichloro-6-formyl­phenolate ligands forming the equatorial plane, and by one O atom from a water mol­ecule and one O atom from N,N-dimethyl­formamide trans in axial positions. A pseudo-dimer is constructed through O—H...O, O—H...Cl and slipped π–π stacking (with a centroid-to-centroid distance of 3.692 Å and inter­planar distance of 3.47 Å, giving an offset angle of 20°) inter­actions. Short Cl...Cl inter­actions may help in stabilizing the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033417/dn2214sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033417/dn2214Isup2.hkl
Contains datablock I

CCDC reference: 657557

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.077
  • wR factor = 0.229
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.27 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.32 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.60 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.22 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), contains the dichloride ligand 3,5-Dichloro-2-hydroxy-benzaldehyde, with two Cl atoms accessible at the periphery of each ligand.

In compound (I), the MnII atom is octahedrally coordinated by four O atoms from two bidentate 3,5-Dichloro-2-hydroxy-benzaldehyde ligands forming the equatorial plane, one O atom from H2O and one O atom from N,N-Dimethyl-formamide trans on axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The O—H···O hydrogen bonds result in the formation of pseudo dimers through inversion centres (Fig. 2). Within the dimer, there are slippest π-π stacking between the C1—C6 and C8—C13 rings with centroid-to-centroid distance of 3.692 and interplanar distance of 3.47 giving an offset angle of 20°. Some O—H···Cl interactions are also present in these dimers (Table 1). The shortest Cl–Cl contacts, 3.573 (8) Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Cl2 and Cl3i [symmetry codes: (i) x, 1/2 + y, -1/2 + z] might help in stabilizing the crystal packing.

Related literature top

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews et al. (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005).

Experimental top

A ethanol solution (30 ml) containing 3,5-Dichloro-2-hydroxy-benzaldehyde (0.382 g, 2 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid(0.222 g, 2 mmol) and sodium hydroxide (0.080 g, 2 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of manganese chloride (0.396 g, 2 mmol) was added to the resulting solution and stirred for 2 h. The yellow-green solid compound was separated out and dissolved by N,N-Dimethyl-formamide, then the yellow-green solution was filtrated. After 15 days, colorless crystals were produced from the filtrate (yield: 48.6%, based on Mn).

Structure description top

Interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Desiraju, 1989; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), contains the dichloride ligand 3,5-Dichloro-2-hydroxy-benzaldehyde, with two Cl atoms accessible at the periphery of each ligand.

In compound (I), the MnII atom is octahedrally coordinated by four O atoms from two bidentate 3,5-Dichloro-2-hydroxy-benzaldehyde ligands forming the equatorial plane, one O atom from H2O and one O atom from N,N-Dimethyl-formamide trans on axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The O—H···O hydrogen bonds result in the formation of pseudo dimers through inversion centres (Fig. 2). Within the dimer, there are slippest π-π stacking between the C1—C6 and C8—C13 rings with centroid-to-centroid distance of 3.692 and interplanar distance of 3.47 giving an offset angle of 20°. Some O—H···Cl interactions are also present in these dimers (Table 1). The shortest Cl–Cl contacts, 3.573 (8) Å, (Mathews & Manohar, 1991; Willey et al., 1994) observed between Cl2 and Cl3i [symmetry codes: (i) x, 1/2 + y, -1/2 + z] might help in stabilizing the crystal packing.

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews et al. (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii.
[Figure 2] Fig. 2. View of the pseudo dimer formed by O–H···O and O–H···Cl hydrogen bonding interaction. H atoms not involved in H bonds have been omitted for clarity. [Symmetry code: (i) -x, -y, 1 - z].
Aquabis(2,4-dichloro-6-formylphenolato-κ2O,O')(N,N'-dimethylformamide-\ κO)manganese(II) top
Crystal data top
[Mn(C7H3Cl2O2)2(C3H7NO)(H2O)]F(000) = 1060
Mr = 526.04Dx = 1.644 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 264 reflections
a = 10.479 (2) Åθ = 1.8–25.1°
b = 8.9988 (18) ŵ = 1.16 mm1
c = 22.561 (5) ÅT = 293 K
β = 92.51 (3)°Block, colorless
V = 2125.4 (8) Å30.47 × 0.34 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3770 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.612, Tmax = 0.761k = 1010
10253 measured reflectionsl = 2617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0588P)2 + 19.7821P]
where P = (Fo2 + 2Fc2)/3
3770 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 1.38 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn(C7H3Cl2O2)2(C3H7NO)(H2O)]V = 2125.4 (8) Å3
Mr = 526.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.479 (2) ŵ = 1.16 mm1
b = 8.9988 (18) ÅT = 293 K
c = 22.561 (5) Å0.47 × 0.34 × 0.25 mm
β = 92.51 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2353 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.761Rint = 0.062
10253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0773 restraints
wR(F2) = 0.229H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0588P)2 + 19.7821P]
where P = (Fo2 + 2Fc2)/3
3770 reflectionsΔρmax = 1.38 e Å3
270 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0004 (7)0.0754 (9)0.3582 (4)0.0342 (19)
C20.1247 (7)0.1196 (9)0.3346 (4)0.0367 (19)
C30.1756 (8)0.0685 (11)0.2826 (4)0.045 (2)
H30.25530.10280.26890.054*
C40.1109 (8)0.0350 (12)0.2488 (4)0.049 (2)
C50.0103 (9)0.0785 (11)0.2674 (4)0.052 (2)
H50.05620.14370.24440.062*
C60.0644 (7)0.0244 (11)0.3210 (4)0.039 (2)
C70.1920 (9)0.0777 (11)0.3359 (4)0.049 (2)
H70.22850.13700.30740.058*
C80.2317 (8)0.1811 (10)0.5888 (4)0.0371 (19)
C90.1969 (8)0.2856 (10)0.6319 (4)0.041 (2)
C100.2705 (9)0.3182 (11)0.6815 (4)0.052 (2)
H100.24190.38700.70860.063*
C110.3880 (9)0.2491 (13)0.6916 (4)0.056 (3)
C120.4278 (8)0.1482 (11)0.6519 (4)0.049 (2)
H120.50650.10210.65880.058*
C130.3533 (7)0.1108 (10)0.6003 (4)0.0366 (19)
C140.4044 (7)0.0009 (10)0.5623 (4)0.039 (2)
H140.48040.04330.57590.047*
C150.3455 (15)0.6253 (13)0.4451 (8)0.113 (6)
H15A0.31140.66560.40830.169*
H15B0.41960.68100.45810.169*
H15C0.28210.63140.47440.169*
C160.4926 (12)0.4435 (15)0.4035 (6)0.085 (4)
H16A0.51620.34120.40900.127*
H16B0.56170.50610.41750.127*
H16C0.47430.46230.36210.127*
C170.3068 (9)0.3661 (12)0.4519 (4)0.053 (3)
H170.23310.38980.47130.064*
Cl10.2081 (2)0.2480 (3)0.37414 (12)0.0573 (7)
Cl20.1816 (3)0.1083 (4)0.18426 (12)0.0761 (9)
Cl30.0525 (2)0.3769 (3)0.61989 (13)0.0652 (8)
Cl40.4803 (3)0.2921 (5)0.75486 (14)0.0919 (12)
Mn10.19920 (11)0.04952 (15)0.46251 (6)0.0371 (4)
N10.3796 (8)0.4755 (9)0.4368 (4)0.057 (2)
O10.0414 (5)0.1221 (7)0.4086 (2)0.0382 (14)
O20.2581 (5)0.0552 (7)0.3810 (3)0.0472 (16)
O30.1589 (5)0.1547 (7)0.5430 (2)0.0389 (14)
O40.3610 (5)0.0425 (7)0.5142 (3)0.0417 (14)
O50.3276 (6)0.2326 (7)0.4424 (3)0.0521 (17)
O60.0987 (5)0.1542 (7)0.4855 (3)0.0408 (14)
H60.095 (8)0.165 (11)0.5228 (7)0.061*
H6A0.031 (5)0.187 (11)0.468 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (4)0.035 (5)0.037 (5)0.005 (4)0.004 (3)0.003 (4)
C20.031 (4)0.031 (5)0.049 (5)0.001 (4)0.007 (4)0.011 (4)
C30.035 (4)0.049 (6)0.051 (6)0.002 (4)0.006 (4)0.013 (5)
C40.041 (5)0.065 (7)0.040 (5)0.005 (5)0.001 (4)0.000 (5)
C50.052 (5)0.052 (6)0.052 (6)0.004 (5)0.002 (4)0.008 (5)
C60.029 (4)0.054 (6)0.035 (5)0.003 (4)0.005 (3)0.001 (4)
C70.048 (5)0.055 (7)0.044 (5)0.014 (5)0.007 (4)0.008 (5)
C80.035 (4)0.037 (5)0.039 (5)0.007 (4)0.006 (4)0.000 (4)
C90.039 (5)0.032 (5)0.052 (5)0.005 (4)0.004 (4)0.007 (4)
C100.056 (6)0.044 (6)0.058 (6)0.008 (5)0.009 (5)0.012 (5)
C110.046 (5)0.080 (8)0.041 (5)0.025 (5)0.004 (4)0.007 (5)
C120.037 (5)0.057 (7)0.052 (6)0.008 (4)0.002 (4)0.002 (5)
C130.029 (4)0.043 (5)0.038 (5)0.004 (4)0.004 (3)0.005 (4)
C140.025 (4)0.038 (5)0.054 (6)0.004 (4)0.002 (4)0.005 (4)
C150.113 (12)0.025 (7)0.200 (17)0.012 (7)0.011 (11)0.009 (8)
C160.076 (8)0.066 (9)0.113 (10)0.004 (7)0.028 (7)0.010 (7)
C170.044 (5)0.059 (8)0.057 (6)0.002 (5)0.000 (4)0.001 (5)
Cl10.0431 (12)0.0522 (16)0.0768 (17)0.0185 (11)0.0043 (11)0.0017 (13)
Cl20.0656 (17)0.103 (3)0.0579 (17)0.0133 (16)0.0124 (13)0.0144 (16)
Cl30.0547 (15)0.0574 (17)0.0835 (19)0.0128 (13)0.0027 (13)0.0221 (14)
Cl40.0704 (19)0.142 (3)0.0612 (18)0.034 (2)0.0145 (14)0.0208 (19)
Mn10.0270 (6)0.0398 (8)0.0445 (8)0.0008 (6)0.0025 (5)0.0040 (6)
N10.052 (5)0.037 (5)0.083 (6)0.001 (4)0.005 (4)0.000 (4)
O10.033 (3)0.040 (4)0.042 (3)0.009 (3)0.005 (3)0.000 (3)
O20.038 (3)0.054 (4)0.049 (4)0.015 (3)0.001 (3)0.009 (3)
O30.027 (3)0.044 (4)0.046 (3)0.002 (3)0.000 (2)0.008 (3)
O40.029 (3)0.043 (4)0.054 (4)0.008 (3)0.001 (3)0.006 (3)
O50.047 (4)0.033 (4)0.077 (5)0.008 (3)0.011 (3)0.002 (3)
O60.025 (3)0.043 (4)0.055 (4)0.006 (3)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
C1—O11.271 (9)C12—H120.9300
C1—C61.423 (11)C13—C141.429 (12)
C1—C21.443 (11)C14—O41.222 (10)
C2—C31.348 (12)C14—H140.9300
C2—Cl11.722 (9)C15—N11.409 (14)
C3—C41.398 (13)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.377 (13)C15—H15C0.9600
C4—Cl21.735 (9)C16—N11.457 (14)
C5—C61.399 (12)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.446 (12)C16—H16C0.9600
C7—O21.222 (10)C17—O51.241 (12)
C7—H70.9300C17—N11.300 (13)
C8—O31.279 (9)C17—H170.9300
C8—C91.411 (12)Mn1—O32.107 (6)
C8—C131.435 (11)Mn1—O12.114 (5)
C9—C101.363 (12)Mn1—O42.179 (6)
C9—Cl31.733 (9)Mn1—O22.180 (6)
C10—C111.390 (14)Mn1—O52.187 (6)
C10—H100.9300Mn1—O62.188 (6)
C11—C121.353 (14)O6—H60.85 (2)
C11—Cl41.733 (9)O6—H6A0.85 (6)
C12—C131.414 (12)
O1—C1—C6125.7 (7)N1—C15—H15A109.5
O1—C1—C2120.6 (7)N1—C15—H15B109.5
C6—C1—C2113.7 (7)H15A—C15—H15B109.5
C3—C2—C1123.0 (8)N1—C15—H15C109.5
C3—C2—Cl1119.3 (6)H15A—C15—H15C109.5
C1—C2—Cl1117.6 (7)H15B—C15—H15C109.5
C2—C3—C4121.3 (8)N1—C16—H16A109.5
C2—C3—H3119.4N1—C16—H16B109.5
C4—C3—H3119.4H16A—C16—H16B109.5
C5—C4—C3119.1 (8)N1—C16—H16C109.5
C5—C4—Cl2120.1 (8)H16A—C16—H16C109.5
C3—C4—Cl2120.8 (7)H16B—C16—H16C109.5
C4—C5—C6119.8 (9)O5—C17—N1125.4 (10)
C4—C5—H5120.1O5—C17—H17117.3
C6—C5—H5120.1N1—C17—H17117.3
C5—C6—C1123.0 (8)O3—Mn1—O1100.2 (2)
C5—C6—C7114.9 (8)O3—Mn1—O483.7 (2)
C1—C6—C7122.1 (8)O1—Mn1—O4175.3 (2)
O2—C7—C6128.6 (8)O3—Mn1—O2175.1 (2)
O2—C7—H7115.7O1—Mn1—O283.7 (2)
C6—C7—H7115.7O4—Mn1—O292.6 (2)
O3—C8—C9121.1 (8)O3—Mn1—O589.3 (2)
O3—C8—C13123.8 (8)O1—Mn1—O596.9 (2)
C9—C8—C13115.1 (7)O4—Mn1—O585.7 (2)
C10—C9—C8123.7 (8)O2—Mn1—O587.2 (3)
C10—C9—Cl3119.0 (7)O3—Mn1—O693.2 (2)
C8—C9—Cl3117.3 (7)O1—Mn1—O691.3 (2)
C9—C10—C11120.2 (9)O4—Mn1—O685.8 (2)
C9—C10—H10119.9O2—Mn1—O689.7 (2)
C11—C10—H10119.9O5—Mn1—O6170.8 (2)
C12—C11—C10119.2 (9)C17—N1—C15122.3 (10)
C12—C11—Cl4121.2 (8)C17—N1—C16119.0 (9)
C10—C11—Cl4119.6 (8)C15—N1—C16118.3 (11)
C11—C12—C13122.0 (9)C1—O1—Mn1130.0 (5)
C11—C12—H12119.0C7—O2—Mn1127.0 (6)
C13—C12—H12119.0C8—O3—Mn1130.2 (5)
C12—C13—C14116.8 (8)C14—O4—Mn1127.2 (5)
C12—C13—C8119.8 (8)C17—O5—Mn1125.4 (6)
C14—C13—C8123.4 (8)Mn1—O6—H6112 (6)
O4—C14—C13128.2 (8)Mn1—O6—H6A126 (6)
O4—C14—H14115.9H6—O6—H6A110 (7)
C13—C14—H14115.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1i0.85 (2)2.19 (6)2.874 (8)138 (8)
O6—H6A···O3i0.85 (6)2.02 (6)2.748 (7)143 (9)
O6—H6···Cl1i0.85 (2)2.67 (5)3.426 (7)149 (8)
O6—H6A···Cl3i0.85 (6)2.73 (6)3.442 (6)142 (8)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C7H3Cl2O2)2(C3H7NO)(H2O)]
Mr526.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.479 (2), 8.9988 (18), 22.561 (5)
β (°) 92.51 (3)
V3)2125.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.47 × 0.34 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.612, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
10253, 3770, 2353
Rint0.062
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.229, 1.08
No. of reflections3770
No. of parameters270
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0588P)2 + 19.7821P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.38, 0.42

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1i0.85 (2)2.19 (6)2.874 (8)138 (8)
O6—H6A···O3i0.85 (6)2.02 (6)2.748 (7)143 (9)
O6—H6···Cl1i0.85 (2)2.67 (5)3.426 (7)149 (8)
O6—H6A···Cl3i0.85 (6)2.73 (6)3.442 (6)142 (8)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds