Download citation
Download citation
link to html
The title compound, C22H18N2S, is a benzodiazepine derivative with inter­esting pharmacological properties. The mol­ecule is built up from two fused six- and seven-membered rings with benzyl­sulfanyl and phenyl substituents. The seven-membered ring displays a twist-chair conformation. There is weak slipped π–π stacking between symmetry-related mol­ecules, with an inter­planar distance of 3.45 Å and a centroid-to-centroid vector of 3.805 (1) Å (involving the benzyl aromatic rings), which ensures the cohesion of the crystal structure, together with van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029364/dn2191sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029364/dn2191Isup2.hkl
Contains datablock I

CCDC reference: 655027

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.046
  • wR factor = 0.121
  • Data-to-parameter ratio = 23.8

checkCIF/PLATON results

No syntax errors found




Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Benzodiazepines are very important compounds widely used in the last decades as antipyretic (Grossi et al., 2002), anti-anxiety (Kusanur et al., 2004) and hypnotic agents (Zellou et al., 1999).

In addition to the well known pharmacological profile of 1,4-benzodiazepines, it has been shown that also some 1,5-benzodiazepines exert a biological activity (Vijay et al., 2002, Morimoto et al., 2002), similar to that of 1,4-derivatives. Moreover, 1,5-benzodiazepines are valuable synthons used for the synthesis of new heterocyclic compounds, such as benzimidazole, isoxazole and pyrazole (El Azzaoui et al., 2006, Akkurt et al. 2005, Ghomsi et al., 2004).

The 2-(benzylsulfanyl)-4-phenyl-3H-1,5-benzodiazepine molecule (I) is built up from two fused six-membered and seven-membered rings linked to benzylsulfanyl and phenyl, but not coplanar, as show in Fig. 1. The seven-membered ring displays a twist-chair conformation in the moleclule, as indicated by the total puckering amplitude QT=0.859 (2) Å and spherical polar angle θ2=74.83 (9)° with φ2=22.3 (2)° and φ3=128.4 (4)° (Cremer & Pople, 1975).

The crystal structure is stabilized by weak slipped π-π interaction involving the benzene C11–C16 ring between symmetry related molecules with interplanar distance of 3.45 Å and centroid to centroid vector of 3.805 (1) Å and Van der Waals forces.

Related literature top

For related literature, see: Akkurt et al. (2005); Cremer & Pople (1975); El Azzaoui et al. (2006); Ghomsi et al. (2004); Grossi et al. (2002); Kusanur et al. (2004); Morimoto et al. (2002); Vijay et al. (2002); Zellou et al. (1999).

Experimental top

To a solution of 4-phenyl-1,5-benzodiazepine-2-thione (1 g, 3.96 mmol) and benzylbromide (0.70 ml, 4.36 mmol) in DMF (20 ml), 0.5 mmol of tetra-n-butylammonium bromide and 4.36 mmol (0.60 g) of anhydrous potassium carbonate were added. After filtration, the solvent was evaporated under reduced pressure and the crude residue was recrystallized from ethanol giving the compound I in 83% yield.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C).

Structure description top

Benzodiazepines are very important compounds widely used in the last decades as antipyretic (Grossi et al., 2002), anti-anxiety (Kusanur et al., 2004) and hypnotic agents (Zellou et al., 1999).

In addition to the well known pharmacological profile of 1,4-benzodiazepines, it has been shown that also some 1,5-benzodiazepines exert a biological activity (Vijay et al., 2002, Morimoto et al., 2002), similar to that of 1,4-derivatives. Moreover, 1,5-benzodiazepines are valuable synthons used for the synthesis of new heterocyclic compounds, such as benzimidazole, isoxazole and pyrazole (El Azzaoui et al., 2006, Akkurt et al. 2005, Ghomsi et al., 2004).

The 2-(benzylsulfanyl)-4-phenyl-3H-1,5-benzodiazepine molecule (I) is built up from two fused six-membered and seven-membered rings linked to benzylsulfanyl and phenyl, but not coplanar, as show in Fig. 1. The seven-membered ring displays a twist-chair conformation in the moleclule, as indicated by the total puckering amplitude QT=0.859 (2) Å and spherical polar angle θ2=74.83 (9)° with φ2=22.3 (2)° and φ3=128.4 (4)° (Cremer & Pople, 1975).

The crystal structure is stabilized by weak slipped π-π interaction involving the benzene C11–C16 ring between symmetry related molecules with interplanar distance of 3.45 Å and centroid to centroid vector of 3.805 (1) Å and Van der Waals forces.

For related literature, see: Akkurt et al. (2005); Cremer & Pople (1975); El Azzaoui et al. (2006); Ghomsi et al. (2004); Grossi et al. (2002); Kusanur et al. (2004); Morimoto et al. (2002); Vijay et al. (2002); Zellou et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows ( Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
2-(Benzylsulfanyl)-4-phenyl-3H-1,5-benzodiazepine top
Crystal data top
C22H18N2SF(000) = 720
Mr = 342.44Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 5390 reflections
a = 8.9633 (2) Åθ = 2.5–30.6°
b = 8.4904 (2) ŵ = 0.19 mm1
c = 23.1997 (5) ÅT = 293 K
β = 92.206 (1)°Parallelepiped, pale yellow
V = 1764.24 (7) Å30.36 × 0.20 × 0.11 mm
Z = 4
Data collection top
Bruker X8 APEXII KappaCCD area-detector
diffractometer
3087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 30.6°, θmin = 2.6°
φ scans, and ω scans with κ offsetsh = 1212
20651 measured reflectionsk = 1112
5390 independent reflectionsl = 2833
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.0842P]
where P = (Fo2 + 2Fc2)/3
5390 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H18N2SV = 1764.24 (7) Å3
Mr = 342.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9633 (2) ŵ = 0.19 mm1
b = 8.4904 (2) ÅT = 293 K
c = 23.1997 (5) Å0.36 × 0.20 × 0.11 mm
β = 92.206 (1)°
Data collection top
Bruker X8 APEXII KappaCCD area-detector
diffractometer
3087 reflections with I > 2σ(I)
20651 measured reflectionsRint = 0.050
5390 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
5390 reflectionsΔρmin = 0.20 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46398 (5)0.71815 (5)0.067691 (19)0.04826 (14)
N10.28324 (15)0.66474 (15)0.15407 (6)0.0430 (3)
N20.03087 (15)0.66376 (15)0.10001 (6)0.0441 (3)
C10.15618 (18)0.59743 (18)0.17860 (7)0.0418 (4)
C20.1790 (2)0.5380 (2)0.23459 (7)0.0537 (4)
H20.27270.54760.25290.064*
C30.0662 (2)0.4661 (2)0.26296 (8)0.0605 (5)
H30.08490.42220.29920.073*
C40.0755 (2)0.4591 (2)0.23736 (9)0.0610 (5)
H40.15200.40880.25610.073*
C50.1033 (2)0.5264 (2)0.18437 (8)0.0535 (4)
H50.20040.52780.16880.064*
C60.01218 (18)0.59340 (18)0.15305 (7)0.0421 (4)
C70.05337 (17)0.65608 (18)0.05623 (7)0.0402 (4)
C80.19674 (17)0.56213 (18)0.05994 (7)0.0423 (4)
H8A0.17800.45720.07450.051*
H8B0.23830.55290.02210.051*
C90.30306 (17)0.64850 (17)0.10023 (7)0.0389 (3)
C100.56719 (19)0.8065 (2)0.12818 (8)0.0480 (4)
H10A0.54970.74500.16250.058*
H10B0.67300.80050.12110.058*
C110.52765 (17)0.97528 (19)0.13977 (7)0.0430 (4)
C120.5712 (2)1.0944 (2)0.10325 (9)0.0605 (5)
H120.62421.06950.07080.073*
C130.5368 (2)1.2495 (2)0.11455 (10)0.0701 (6)
H130.56611.32820.08950.084*
C140.4599 (2)1.2880 (2)0.16230 (10)0.0666 (5)
H140.43911.39290.17040.080*
C150.4135 (2)1.1711 (2)0.19825 (8)0.0627 (5)
H150.35921.19670.23030.075*
C160.44700 (19)1.0155 (2)0.18717 (8)0.0526 (4)
H160.41500.93710.21180.063*
C170.00515 (18)0.74104 (17)0.00296 (7)0.0408 (4)
C180.1250 (2)0.8310 (2)0.00231 (8)0.0526 (4)
H180.17910.83870.03560.063*
C190.1745 (2)0.9085 (2)0.04679 (9)0.0618 (5)
H190.26220.96700.04650.074*
C200.0956 (2)0.9002 (2)0.09610 (8)0.0622 (5)
H200.12910.95350.12910.075*
C210.0325 (2)0.8133 (2)0.09660 (8)0.0631 (5)
H210.08610.80730.13010.076*
C220.0831 (2)0.7341 (2)0.04748 (7)0.0507 (4)
H220.17050.67530.04830.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0448 (2)0.0518 (3)0.0487 (3)0.00462 (19)0.00941 (19)0.00117 (19)
N10.0419 (8)0.0437 (7)0.0435 (8)0.0033 (6)0.0037 (6)0.0006 (6)
N20.0388 (8)0.0449 (7)0.0488 (8)0.0008 (6)0.0043 (6)0.0011 (6)
C10.0467 (10)0.0380 (8)0.0413 (8)0.0005 (7)0.0081 (7)0.0007 (7)
C20.0562 (11)0.0586 (11)0.0465 (10)0.0071 (9)0.0074 (8)0.0031 (8)
C30.0700 (14)0.0624 (12)0.0503 (11)0.0128 (10)0.0176 (10)0.0136 (9)
C40.0641 (13)0.0535 (11)0.0674 (12)0.0023 (9)0.0274 (10)0.0117 (9)
C50.0453 (10)0.0537 (10)0.0624 (11)0.0029 (8)0.0150 (8)0.0028 (9)
C60.0436 (9)0.0367 (8)0.0465 (9)0.0023 (7)0.0089 (7)0.0004 (7)
C70.0379 (9)0.0361 (8)0.0465 (9)0.0041 (6)0.0009 (7)0.0047 (7)
C80.0424 (9)0.0394 (8)0.0454 (9)0.0008 (7)0.0033 (7)0.0051 (7)
C90.0365 (8)0.0339 (8)0.0463 (9)0.0018 (6)0.0027 (7)0.0013 (7)
C100.0337 (8)0.0529 (10)0.0573 (10)0.0011 (7)0.0009 (7)0.0047 (8)
C110.0311 (8)0.0497 (9)0.0480 (9)0.0019 (7)0.0017 (7)0.0007 (7)
C120.0589 (12)0.0553 (11)0.0687 (12)0.0033 (9)0.0208 (10)0.0007 (9)
C130.0736 (14)0.0525 (12)0.0852 (15)0.0033 (10)0.0160 (12)0.0089 (10)
C140.0633 (13)0.0542 (11)0.0823 (15)0.0076 (10)0.0014 (11)0.0104 (11)
C150.0589 (12)0.0746 (14)0.0547 (11)0.0090 (10)0.0036 (9)0.0144 (10)
C160.0462 (10)0.0633 (12)0.0481 (10)0.0022 (8)0.0012 (8)0.0009 (8)
C170.0397 (8)0.0384 (8)0.0442 (9)0.0073 (6)0.0015 (7)0.0049 (7)
C180.0449 (10)0.0575 (11)0.0553 (11)0.0043 (8)0.0007 (8)0.0017 (9)
C190.0490 (11)0.0657 (12)0.0698 (13)0.0063 (9)0.0098 (10)0.0060 (10)
C200.0692 (14)0.0648 (12)0.0511 (11)0.0076 (10)0.0153 (10)0.0086 (9)
C210.0725 (14)0.0702 (13)0.0467 (11)0.0054 (11)0.0038 (10)0.0010 (9)
C220.0494 (10)0.0539 (10)0.0488 (10)0.0009 (8)0.0028 (8)0.0010 (8)
Geometric parameters (Å, º) top
S1—C91.7561 (15)C10—H10B0.9700
S1—C101.8132 (18)C11—C161.382 (2)
N1—C91.2759 (19)C11—C121.385 (2)
N1—C11.4133 (19)C12—C131.380 (3)
N2—C71.2905 (19)C12—H120.9300
N2—C61.408 (2)C13—C141.367 (3)
C1—C61.400 (2)C13—H130.9300
C1—C21.401 (2)C14—C151.371 (3)
C2—C31.371 (2)C14—H140.9300
C2—H20.9300C15—C161.381 (3)
C3—C41.383 (3)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C51.369 (3)C17—C221.387 (2)
C4—H40.9300C17—C181.394 (2)
C5—C61.407 (2)C18—C191.374 (2)
C5—H50.9300C18—H180.9300
C7—C171.481 (2)C19—C201.370 (3)
C7—C81.512 (2)C19—H190.9300
C8—C91.500 (2)C20—C211.365 (3)
C8—H8A0.9700C20—H200.9300
C8—H8B0.9700C21—C221.385 (3)
C10—C111.503 (2)C21—H210.9300
C10—H10A0.9700C22—H220.9300
C9—S1—C10102.10 (8)H10A—C10—H10B107.6
C9—N1—C1119.68 (14)C16—C11—C12118.37 (16)
C7—N2—C6121.16 (14)C16—C11—C10120.79 (15)
C6—C1—C2118.88 (15)C12—C11—C10120.84 (15)
C6—C1—N1125.70 (14)C13—C12—C11120.67 (18)
C2—C1—N1115.33 (15)C13—C12—H12119.7
C3—C2—C1121.43 (18)C11—C12—H12119.7
C3—C2—H2119.3C14—C13—C12120.39 (19)
C1—C2—H2119.3C14—C13—H13119.8
C2—C3—C4119.69 (18)C12—C13—H13119.8
C2—C3—H3120.2C13—C14—C15119.58 (18)
C4—C3—H3120.2C13—C14—H14120.2
C5—C4—C3119.98 (17)C15—C14—H14120.2
C5—C4—H4120.0C14—C15—C16120.43 (18)
C3—C4—H4120.0C14—C15—H15119.8
C4—C5—C6121.35 (18)C16—C15—H15119.8
C4—C5—H5119.3C15—C16—C11120.55 (17)
C6—C5—H5119.3C15—C16—H16119.7
C1—C6—C5118.40 (15)C11—C16—H16119.7
C1—C6—N2125.23 (14)C22—C17—C18117.57 (16)
C5—C6—N2116.13 (15)C22—C17—C7122.88 (15)
N2—C7—C17118.13 (14)C18—C17—C7119.55 (15)
N2—C7—C8120.23 (14)C19—C18—C17120.97 (17)
C17—C7—C8121.64 (14)C19—C18—H18119.5
C9—C8—C7107.20 (12)C17—C18—H18119.5
C9—C8—H8A110.3C20—C19—C18120.47 (18)
C7—C8—H8A110.3C20—C19—H19119.8
C9—C8—H8B110.3C18—C19—H19119.8
C7—C8—H8B110.3C21—C20—C19119.77 (18)
H8A—C8—H8B108.5C21—C20—H20120.1
N1—C9—C8123.62 (14)C19—C20—H20120.1
N1—C9—S1122.14 (13)C20—C21—C22120.28 (18)
C8—C9—S1114.16 (11)C20—C21—H21119.9
C11—C10—S1114.59 (12)C22—C21—H21119.9
C11—C10—H10A108.6C21—C22—C17120.94 (18)
S1—C10—H10A108.6C21—C22—H22119.5
C11—C10—H10B108.6C17—C22—H22119.5
S1—C10—H10B108.6

Experimental details

Crystal data
Chemical formulaC22H18N2S
Mr342.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9633 (2), 8.4904 (2), 23.1997 (5)
β (°) 92.206 (1)
V3)1764.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.36 × 0.20 × 0.11
Data collection
DiffractometerBruker X8 APEXII KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20651, 5390, 3087
Rint0.050
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.01
No. of reflections5390
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows ( Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds