Download citation
Download citation
link to html
In the title complex, [Cu2Cl2(C10H8N2S2)2], the asymmetric unit contains one and a half dinuclear copper complexes, one complex being arranged around an inversion center. In each complex, the CuI atom is coordinated by two N atoms from one di-2-pyridyl disulfide ligand and two bridging Cl atoms, and has a distorted tetrahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027304/dn2183sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027304/dn2183Isup2.hkl
Contains datablock I

CCDC reference: 654715

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.065
  • wR factor = 0.199
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu1 - Cl1 .. 10.31 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu2 - Cl2 .. 11.12 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu2 - Cl3 .. 10.45 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu3 - Cl3 .. 11.23 su
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.44 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - Cl1_a .. 8.96 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu3 - Cl2 .. 8.79 su PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (1) 1.00 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (1) 0.98 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu3 (1) 0.99
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

2,2'-dipyridyldisuldide possessing N-donnor and S-donnor is excellent candidates for the construction of metal complexes. Examples of crystal structure reports are copper(I) (Kadooka et al., 1976a,b; Kubo et al., 1998), copper(II) (Delgado et al., 2006), cobalt(II)(Kadooka et al., 1976b), mercury(II) (Bell et al., 2000). Recently, we obtained the title novel copper complex (I) by the reaction of cuprous chloride, 2,2'-dipyridyldisuldide in a dry ethanol and acetonitrile solution, and its crystal structure is reported here.

The asymmetric unit of the title compound is build up from one and a half dinuclear copper complexes; one of the dinuclear complex being arranged around inversion center (Fig. 1). Each CuI is coordinated by two N atoms from one 2,2'-dipyridyldisuldide ligand, and two bridging Cl atoms, and displays a pyramidal geometry. In the centrosymmetric dinuclear complex, the Cu1···Cu1 separation is 3.076 (3) Å, whereas in the noncentrosymmetric molecule, the distance Cu2···Cu3 is slightly shorter 2.996 (1) Å.

Related literature top

For general background, see: Kadooka et al. (1976a,b); Delgado et al. (2006); Bell et al. (2000). For related literature, see: Kubo et al. (1998).

Experimental top

2,2'-dipyridyldisuldide (0.05 g,0.012 mmol), CuCl (0.18 g 0.8 mmol), were added in a mixed solvent of dry ethanol and acetonitrile, the mixture was heated for five h under reflux during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, a weeks later some single crystals of the size suitable for X-Ray diffraction analysis precipitated.

Refinement top

H atoms were placed at calculated positions and were treated as riding on their parent atoms with C—H = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Structure description top

2,2'-dipyridyldisuldide possessing N-donnor and S-donnor is excellent candidates for the construction of metal complexes. Examples of crystal structure reports are copper(I) (Kadooka et al., 1976a,b; Kubo et al., 1998), copper(II) (Delgado et al., 2006), cobalt(II)(Kadooka et al., 1976b), mercury(II) (Bell et al., 2000). Recently, we obtained the title novel copper complex (I) by the reaction of cuprous chloride, 2,2'-dipyridyldisuldide in a dry ethanol and acetonitrile solution, and its crystal structure is reported here.

The asymmetric unit of the title compound is build up from one and a half dinuclear copper complexes; one of the dinuclear complex being arranged around inversion center (Fig. 1). Each CuI is coordinated by two N atoms from one 2,2'-dipyridyldisuldide ligand, and two bridging Cl atoms, and displays a pyramidal geometry. In the centrosymmetric dinuclear complex, the Cu1···Cu1 separation is 3.076 (3) Å, whereas in the noncentrosymmetric molecule, the distance Cu2···Cu3 is slightly shorter 2.996 (1) Å.

For general background, see: Kadooka et al. (1976a,b); Delgado et al. (2006); Bell et al. (2000). For related literature, see: Kubo et al. (1998).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry code: (i) 1 - x, 2 - y, 1 - z).
Di-µ-chlorido-bis[(di-2-pyridyl disuldide-κ2N,N')copper(I)] top
Crystal data top
[Cu2Cl2(C10H8N2S2)2]F(000) = 1920
Mr = 638.65Dx = 1.781 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6700 reflections
a = 17.838 (3) Åθ = 1.4–26.0°
b = 9.4102 (17) ŵ = 2.38 mm1
c = 21.309 (4) ÅT = 298 K
β = 92.594 (3)°Block, red
V = 3573.2 (11) Å30.33 × 0.19 × 0.11 mm
Z = 6
Data collection top
Bruker APEXII area-detector
diffractometer
6349 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1921
Tmin = 0.511, Tmax = 0.788k = 1110
17489 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
6349 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2Cl2(C10H8N2S2)2]V = 3573.2 (11) Å3
Mr = 638.65Z = 6
Monoclinic, P21/cMo Kα radiation
a = 17.838 (3) ŵ = 2.38 mm1
b = 9.4102 (17) ÅT = 298 K
c = 21.309 (4) Å0.33 × 0.19 × 0.11 mm
β = 92.594 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
6349 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3331 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.788Rint = 0.073
17489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.03Δρmax = 1.16 e Å3
6349 reflectionsΔρmin = 0.47 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44411 (5)0.90184 (10)0.46404 (5)0.0569 (3)
Cu20.22174 (5)1.03134 (10)0.21276 (5)0.0570 (3)
Cu30.11860 (5)0.84980 (11)0.13204 (5)0.0583 (3)
Cl10.53561 (10)1.0723 (2)0.42630 (8)0.0525 (5)
Cl20.12468 (11)0.8660 (2)0.24314 (9)0.0574 (5)
Cl30.21251 (10)1.0189 (2)0.10053 (9)0.0536 (5)
S10.28817 (12)0.7473 (3)0.38570 (11)0.0695 (7)
S20.33945 (13)0.6327 (2)0.45702 (11)0.0697 (7)
S30.33046 (11)1.2986 (2)0.22833 (10)0.0588 (6)
S40.37443 (11)1.1740 (2)0.29946 (9)0.0587 (6)
S50.01756 (12)0.5706 (2)0.11862 (10)0.0610 (6)
S60.01918 (12)0.6791 (2)0.04045 (10)0.0652 (6)
N10.4784 (3)0.7170 (6)0.4314 (3)0.0491 (16)
N20.3429 (3)0.9894 (7)0.4401 (3)0.0497 (16)
N30.3211 (3)0.9391 (7)0.2374 (3)0.0489 (16)
N40.1883 (3)1.2190 (7)0.2442 (3)0.0472 (15)
N50.0181 (3)0.9261 (7)0.1010 (3)0.0511 (16)
N60.1566 (3)0.6636 (6)0.0994 (3)0.0470 (15)
C10.5490 (4)0.6937 (8)0.4137 (3)0.053 (2)
H10.58160.77050.41200.064*
C20.5746 (5)0.5611 (9)0.3979 (4)0.064 (2)
H20.62410.54930.38680.076*
C30.5268 (6)0.4455 (10)0.3986 (4)0.076 (3)
H30.54310.35510.38800.092*
C40.4557 (6)0.4687 (9)0.4151 (4)0.074 (3)
H40.42210.39320.41570.088*
C50.4321 (4)0.6038 (9)0.4311 (3)0.054 (2)
C60.2844 (4)0.9278 (9)0.4103 (3)0.052 (2)
C70.2182 (5)1.0010 (11)0.3922 (4)0.068 (2)
H70.17830.95510.37110.082*
C80.2146 (5)1.1429 (11)0.4068 (4)0.072 (3)
H80.17241.19550.39430.087*
C90.2724 (5)1.2071 (9)0.4396 (4)0.061 (2)
H90.26941.30180.45160.073*
C100.3353 (4)1.1279 (9)0.4543 (4)0.055 (2)
H100.37531.17300.47550.066*
C110.3797 (4)0.9970 (8)0.2701 (3)0.049 (2)
C120.4435 (4)0.9214 (10)0.2871 (4)0.060 (2)
H120.48220.96370.31120.072*
C130.4493 (4)0.7817 (10)0.2679 (4)0.063 (2)
H130.49200.72850.27820.076*
C140.3903 (4)0.7239 (10)0.2334 (4)0.061 (2)
H140.39230.62980.22020.073*
C150.3291 (4)0.8041 (9)0.2186 (3)0.058 (2)
H150.29040.76350.19400.069*
C160.2350 (4)1.3303 (8)0.2478 (3)0.0472 (19)
C170.2137 (5)1.4648 (8)0.2623 (4)0.061 (2)
H170.24841.53840.26570.074*
C180.1379 (5)1.4881 (10)0.2720 (4)0.074 (3)
H180.12101.57920.28060.088*
C190.0888 (5)1.3782 (9)0.2690 (4)0.062 (2)
H190.03811.39230.27540.074*
C200.1165 (4)1.2438 (9)0.2562 (3)0.056 (2)
H200.08361.16720.25600.067*
C210.2300 (4)0.6443 (8)0.0883 (3)0.0471 (19)
H210.25980.72440.08370.056*
C220.2625 (4)0.5137 (9)0.0833 (3)0.055 (2)
H220.31320.50510.07550.067*
C230.2180 (5)0.3941 (9)0.0902 (4)0.063 (2)
H230.23910.30390.08820.076*
C240.1434 (5)0.4090 (9)0.0999 (3)0.056 (2)
H240.11250.32990.10310.067*
C250.1149 (4)0.5454 (8)0.1049 (3)0.0497 (19)
C260.0330 (4)0.8605 (9)0.0627 (3)0.051 (2)
C270.0934 (4)0.9273 (10)0.0358 (4)0.061 (2)
H270.12630.87740.00890.074*
C280.1066 (5)1.0680 (11)0.0479 (4)0.073 (3)
H280.14721.11530.02870.087*
C290.0572 (5)1.1379 (10)0.0900 (4)0.065 (2)
H290.06521.23170.10150.078*
C300.0038 (5)1.0631 (10)0.1138 (4)0.061 (2)
H300.03771.11080.14070.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0477 (6)0.0528 (7)0.0699 (7)0.0004 (5)0.0005 (5)0.0113 (5)
Cu20.0449 (6)0.0503 (6)0.0751 (7)0.0010 (5)0.0038 (5)0.0115 (5)
Cu30.0449 (6)0.0547 (7)0.0748 (7)0.0000 (5)0.0028 (5)0.0132 (5)
Cl10.0493 (12)0.0519 (12)0.0559 (11)0.0076 (9)0.0009 (9)0.0004 (9)
Cl20.0534 (12)0.0577 (13)0.0608 (12)0.0163 (10)0.0000 (9)0.0006 (10)
Cl30.0507 (12)0.0505 (12)0.0590 (12)0.0097 (9)0.0028 (9)0.0025 (9)
S10.0577 (14)0.0764 (17)0.0740 (15)0.0146 (12)0.0002 (11)0.0228 (13)
S20.0680 (16)0.0623 (15)0.0811 (16)0.0174 (12)0.0277 (12)0.0040 (13)
S30.0527 (13)0.0539 (13)0.0712 (14)0.0104 (10)0.0170 (10)0.0020 (11)
S40.0541 (13)0.0649 (15)0.0568 (12)0.0144 (11)0.0009 (10)0.0118 (11)
S50.0489 (13)0.0576 (14)0.0773 (14)0.0107 (10)0.0141 (11)0.0000 (12)
S60.0555 (14)0.0730 (16)0.0660 (14)0.0055 (11)0.0094 (10)0.0142 (12)
N10.042 (4)0.046 (4)0.060 (4)0.010 (3)0.009 (3)0.002 (3)
N20.049 (4)0.061 (5)0.039 (3)0.007 (3)0.003 (3)0.004 (3)
N30.039 (4)0.055 (4)0.053 (4)0.000 (3)0.002 (3)0.011 (3)
N40.042 (4)0.051 (4)0.049 (4)0.003 (3)0.001 (3)0.001 (3)
N50.054 (4)0.049 (4)0.051 (4)0.009 (3)0.011 (3)0.001 (3)
N60.047 (4)0.042 (4)0.054 (4)0.007 (3)0.015 (3)0.005 (3)
C10.055 (5)0.051 (5)0.054 (5)0.000 (4)0.000 (4)0.007 (4)
C20.070 (6)0.051 (6)0.071 (6)0.012 (5)0.014 (5)0.005 (5)
C30.093 (8)0.056 (6)0.081 (7)0.017 (6)0.026 (6)0.012 (5)
C40.102 (8)0.042 (5)0.079 (6)0.001 (5)0.025 (6)0.007 (5)
C50.051 (5)0.061 (6)0.052 (5)0.001 (4)0.015 (4)0.001 (4)
C60.040 (5)0.067 (6)0.051 (4)0.008 (4)0.012 (4)0.010 (4)
C70.058 (6)0.088 (8)0.059 (6)0.003 (5)0.001 (4)0.003 (5)
C80.052 (6)0.084 (8)0.082 (6)0.010 (5)0.012 (5)0.002 (6)
C90.061 (6)0.060 (6)0.063 (5)0.016 (5)0.014 (4)0.000 (4)
C100.041 (5)0.059 (6)0.066 (5)0.002 (4)0.005 (4)0.006 (4)
C110.045 (5)0.064 (5)0.040 (4)0.005 (4)0.016 (4)0.003 (4)
C120.034 (5)0.081 (7)0.063 (5)0.001 (4)0.004 (4)0.002 (5)
C130.047 (5)0.079 (7)0.065 (5)0.015 (5)0.007 (4)0.010 (5)
C140.046 (5)0.072 (6)0.066 (5)0.018 (4)0.006 (4)0.002 (5)
C150.050 (5)0.065 (6)0.056 (5)0.003 (4)0.004 (4)0.012 (4)
C160.052 (5)0.045 (5)0.045 (4)0.003 (4)0.008 (4)0.005 (4)
C170.076 (6)0.038 (5)0.072 (6)0.009 (4)0.018 (5)0.008 (4)
C180.077 (7)0.063 (6)0.082 (7)0.008 (5)0.019 (5)0.006 (5)
C190.065 (6)0.065 (6)0.055 (5)0.015 (5)0.013 (4)0.004 (4)
C200.060 (6)0.051 (5)0.058 (5)0.007 (4)0.004 (4)0.001 (4)
C210.046 (5)0.050 (5)0.046 (4)0.005 (4)0.009 (4)0.008 (4)
C220.046 (5)0.058 (6)0.062 (5)0.003 (4)0.006 (4)0.012 (4)
C230.079 (7)0.052 (6)0.057 (5)0.013 (5)0.003 (5)0.005 (4)
C240.064 (6)0.044 (5)0.058 (5)0.004 (4)0.007 (4)0.003 (4)
C250.050 (5)0.050 (5)0.049 (4)0.010 (4)0.005 (4)0.001 (4)
C260.034 (4)0.076 (6)0.044 (4)0.002 (4)0.007 (3)0.006 (4)
C270.050 (5)0.079 (7)0.054 (5)0.005 (5)0.006 (4)0.011 (5)
C280.051 (6)0.082 (7)0.085 (7)0.015 (5)0.005 (5)0.020 (6)
C290.063 (6)0.066 (6)0.068 (6)0.006 (5)0.016 (5)0.012 (5)
C300.054 (5)0.075 (7)0.055 (5)0.012 (5)0.002 (4)0.003 (5)
Geometric parameters (Å, º) top
Cu1—N11.980 (6)C4—H40.9300
Cu1—N22.028 (6)C6—C71.405 (11)
Cu1—Cl1i2.361 (2)C7—C81.374 (12)
Cu1—Cl12.450 (2)C7—H70.9300
Cu2—N41.990 (6)C8—C91.360 (11)
Cu2—N32.022 (6)C8—H80.9300
Cu2—Cl32.393 (2)C9—C101.370 (10)
Cu2—Cl22.437 (2)C9—H90.9300
Cu2—Cu32.9959 (14)C10—H100.9300
Cu3—N62.013 (6)C11—C121.378 (10)
Cu3—N52.015 (6)C12—C131.381 (11)
Cu3—Cl22.370 (2)C12—H120.9300
Cu3—Cl32.427 (2)C13—C141.370 (11)
Cl1—Cu1i2.361 (2)C13—H130.9300
S1—C61.779 (8)C14—C151.353 (10)
S1—S22.046 (4)C14—H140.9300
S2—C51.786 (8)C15—H150.9300
S3—C161.796 (7)C16—C171.361 (10)
S3—S42.044 (3)C17—C181.393 (11)
S4—C111.783 (8)C17—H170.9300
S5—C251.790 (8)C18—C191.355 (12)
S5—S62.037 (3)C18—H180.9300
S6—C261.791 (8)C19—C201.390 (10)
N1—C11.348 (9)C19—H190.9300
N1—C51.349 (9)C20—H200.9300
N2—C61.331 (9)C21—C221.366 (10)
N2—C101.347 (9)C21—H210.9300
N3—C151.341 (9)C22—C231.389 (11)
N3—C111.345 (9)C22—H220.9300
N4—C201.336 (9)C23—C241.363 (10)
N4—C161.338 (9)C23—H230.9300
N5—C301.345 (10)C24—C251.386 (10)
N5—C261.346 (9)C24—H240.9300
N6—C251.346 (9)C26—C271.352 (10)
N6—C211.353 (8)C27—C281.371 (12)
C1—C21.376 (10)C27—H270.9300
C1—H10.9300C28—C291.392 (12)
C2—C31.383 (12)C28—H280.9300
C2—H20.9300C29—C301.373 (11)
C3—C41.350 (11)C29—H290.9300
C3—H30.9300C30—H300.9300
C4—C51.386 (11)
N1—Cu1—N2123.7 (3)C8—C9—C10118.0 (8)
N1—Cu1—Cl1i113.69 (18)C8—C9—H9121.0
N2—Cu1—Cl1i107.54 (17)C10—C9—H9121.0
N1—Cu1—Cl1103.82 (18)N2—C10—C9124.4 (8)
N2—Cu1—Cl1104.49 (19)N2—C10—H10117.8
Cl1i—Cu1—Cl1100.54 (7)C9—C10—H10117.8
N4—Cu2—N3124.5 (2)N3—C11—C12122.8 (8)
N4—Cu2—Cl3111.84 (17)N3—C11—S4120.5 (6)
N3—Cu2—Cl3104.99 (18)C12—C11—S4116.5 (6)
N4—Cu2—Cl2104.46 (18)C11—C12—C13119.0 (8)
N3—Cu2—Cl2106.35 (19)C11—C12—H12120.5
Cl3—Cu2—Cl2102.51 (7)C13—C12—H12120.5
N6—Cu3—N5120.4 (3)C14—C13—C12118.1 (8)
N6—Cu3—Cl2113.55 (18)C14—C13—H13120.9
N5—Cu3—Cl2107.74 (17)C12—C13—H13120.9
N6—Cu3—Cl3103.16 (17)C15—C14—C13119.7 (9)
N5—Cu3—Cl3106.90 (19)C15—C14—H14120.1
Cl2—Cu3—Cl3103.49 (7)C13—C14—H14120.1
C6—S1—S2107.8 (3)N3—C15—C14123.6 (8)
C5—S2—S1103.9 (3)N3—C15—H15118.2
C16—S3—S4105.1 (3)C14—C15—H15118.2
C11—S4—S3107.5 (3)N4—C16—C17124.1 (7)
C25—S5—S6102.2 (3)N4—C16—S3116.8 (5)
C26—S6—S5107.7 (3)C17—C16—S3119.0 (6)
C1—N1—C5116.7 (7)C16—C17—C18117.6 (8)
C1—N1—Cu1123.3 (5)C16—C17—H17121.2
C5—N1—Cu1119.8 (5)C18—C17—H17121.2
C6—N2—C10116.3 (7)C19—C18—C17120.1 (9)
C6—N2—Cu1127.9 (6)C19—C18—H18119.9
C10—N2—Cu1115.8 (5)C17—C18—H18119.9
C15—N3—C11116.6 (7)C18—C19—C20118.0 (8)
C15—N3—Cu2115.6 (5)C18—C19—H19121.0
C11—N3—Cu2127.8 (5)C20—C19—H19121.0
C20—N4—C16116.9 (7)N4—C20—C19123.3 (8)
C20—N4—Cu2121.6 (5)N4—C20—H20118.4
C16—N4—Cu2121.2 (5)C19—C20—H20118.4
C30—N5—C26115.7 (7)N6—C21—C22123.6 (7)
C30—N5—Cu3116.7 (5)N6—C21—H21118.2
C26—N5—Cu3127.1 (5)C22—C21—H21118.2
C25—N6—C21116.5 (6)C21—C22—C23118.3 (8)
C25—N6—Cu3119.6 (5)C21—C22—H22120.8
C21—N6—Cu3121.4 (5)C23—C22—H22120.8
N1—C1—C2122.8 (8)C24—C23—C22119.9 (8)
N1—C1—H1118.6C24—C23—H23120.0
C2—C1—H1118.6C22—C23—H23120.0
C1—C2—C3119.9 (8)C23—C24—C25118.1 (8)
C1—C2—H2120.1C23—C24—H24121.0
C3—C2—H2120.1C25—C24—H24121.0
C4—C3—C2117.6 (8)N6—C25—C24123.6 (7)
C4—C3—H3121.2N6—C25—S5116.6 (6)
C2—C3—H3121.2C24—C25—S5119.8 (6)
C3—C4—C5120.9 (9)N5—C26—C27123.2 (8)
C3—C4—H4119.6N5—C26—S6120.0 (6)
C5—C4—H4119.6C27—C26—S6116.6 (6)
N1—C5—C4122.1 (8)C26—C27—C28120.7 (8)
N1—C5—S2117.0 (6)C26—C27—H27119.7
C4—C5—S2120.8 (7)C28—C27—H27119.7
N2—C6—C7123.3 (8)C27—C28—C29117.9 (8)
N2—C6—S1121.1 (6)C27—C28—H28121.1
C7—C6—S1115.4 (6)C29—C28—H28121.1
C8—C7—C6117.4 (8)C30—C29—C28117.6 (9)
C8—C7—H7121.3C30—C29—H29121.2
C6—C7—H7121.3C28—C29—H29121.2
C9—C8—C7120.4 (9)N5—C30—C29124.8 (8)
C9—C8—H8119.8N5—C30—H30117.6
C7—C8—H8119.8C29—C30—H30117.6
N4—Cu2—Cu3—N6178.2 (3)Cu1—N1—C1—C2172.4 (6)
N3—Cu2—Cu3—N67.0 (3)N1—C1—C2—C31.4 (13)
Cl3—Cu2—Cu3—N683.4 (2)C1—C2—C3—C40.0 (13)
Cl2—Cu2—Cu3—N698.6 (2)C2—C3—C4—C50.4 (14)
N4—Cu2—Cu3—N56.7 (3)C1—N1—C5—C41.8 (11)
N3—Cu2—Cu3—N5178.4 (3)Cu1—N1—C5—C4173.1 (6)
Cl3—Cu2—Cu3—N588.0 (2)C1—N1—C5—S2178.0 (5)
Cl2—Cu2—Cu3—N590.0 (2)Cu1—N1—C5—S23.2 (8)
N4—Cu2—Cu3—Cl283.3 (2)C3—C4—C5—N10.5 (14)
N3—Cu2—Cu3—Cl291.5 (2)C3—C4—C5—S2176.6 (7)
Cl3—Cu2—Cu3—Cl2178.07 (9)S1—S2—C5—N172.0 (6)
N4—Cu2—Cu3—Cl394.8 (2)S1—S2—C5—C4111.7 (7)
N3—Cu2—Cu3—Cl390.4 (2)C10—N2—C6—C71.8 (11)
Cl2—Cu2—Cu3—Cl3178.07 (9)Cu1—N2—C6—C7175.6 (6)
N1—Cu1—Cl1—Cu1i117.82 (19)C10—N2—C6—S1177.3 (5)
N2—Cu1—Cl1—Cu1i111.39 (18)Cu1—N2—C6—S10.1 (9)
Cl1i—Cu1—Cl1—Cu1i0.0S2—S1—C6—N242.7 (6)
N6—Cu3—Cl2—Cu2109.55 (19)S2—S1—C6—C7141.5 (6)
N5—Cu3—Cl2—Cu2114.5 (2)N2—C6—C7—C80.5 (12)
Cl3—Cu3—Cl2—Cu21.55 (7)S1—C6—C7—C8176.2 (6)
N4—Cu2—Cl2—Cu3118.35 (17)C6—C7—C8—C92.2 (13)
N3—Cu2—Cl2—Cu3108.39 (18)C7—C8—C9—C103.4 (13)
Cl3—Cu2—Cl2—Cu31.56 (7)C6—N2—C10—C90.5 (11)
N4—Cu2—Cl3—Cu3112.90 (19)Cu1—N2—C10—C9177.2 (6)
N3—Cu2—Cl3—Cu3109.4 (2)C8—C9—C10—N22.1 (12)
Cl2—Cu2—Cl3—Cu31.53 (7)C15—N3—C11—C123.8 (11)
N6—Cu3—Cl3—Cu2116.99 (19)Cu2—N3—C11—C12176.5 (6)
N5—Cu3—Cl3—Cu2115.18 (19)C15—N3—C11—S4178.2 (5)
Cl2—Cu3—Cl3—Cu21.58 (7)Cu2—N3—C11—S42.1 (9)
C6—S1—S2—C5103.2 (4)S3—S4—C11—N346.4 (6)
C16—S3—S4—C11104.1 (4)S3—S4—C11—C12138.9 (5)
C25—S5—S6—C26105.7 (4)N3—C11—C12—C132.7 (12)
N2—Cu1—N1—C1138.7 (6)S4—C11—C12—C13177.3 (6)
Cl1i—Cu1—N1—C187.8 (6)C11—C12—C13—C141.0 (12)
Cl1—Cu1—N1—C120.4 (6)C12—C13—C14—C150.7 (12)
N2—Cu1—N1—C546.8 (7)C11—N3—C15—C143.5 (11)
Cl1i—Cu1—N1—C586.7 (6)Cu2—N3—C15—C14176.8 (6)
Cl1—Cu1—N1—C5165.1 (5)C13—C14—C15—N32.0 (13)
N1—Cu1—N2—C612.4 (7)C20—N4—C16—C170.4 (11)
Cl1i—Cu1—N2—C6123.5 (6)Cu2—N4—C16—C17172.6 (6)
Cl1—Cu1—N2—C6130.3 (6)C20—N4—C16—S3177.4 (5)
N1—Cu1—N2—C10165.0 (5)Cu2—N4—C16—S34.3 (8)
Cl1i—Cu1—N2—C1059.1 (5)S4—S3—C16—N469.1 (6)
Cl1—Cu1—N2—C1047.1 (5)S4—S3—C16—C17113.7 (6)
N4—Cu2—N3—C15170.8 (5)N4—C16—C17—C182.2 (12)
Cl3—Cu2—N3—C1558.6 (6)S3—C16—C17—C18174.7 (6)
Cl2—Cu2—N3—C1549.6 (6)C16—C17—C18—C192.3 (13)
Cu3—Cu2—N3—C153.8 (6)C17—C18—C19—C200.1 (13)
N4—Cu2—N3—C119.5 (7)C16—N4—C20—C193.0 (10)
Cl3—Cu2—N3—C11121.2 (6)Cu2—N4—C20—C19170.0 (6)
Cl2—Cu2—N3—C11130.6 (6)C18—C19—C20—N42.9 (12)
Cu3—Cu2—N3—C11175.9 (5)C25—N6—C21—C220.9 (10)
N3—Cu2—N4—C20143.4 (5)Cu3—N6—C21—C22161.1 (6)
Cl3—Cu2—N4—C2088.7 (5)N6—C21—C22—C230.1 (11)
Cl2—Cu2—N4—C2021.4 (6)C21—C22—C23—C241.8 (11)
Cu3—Cu2—N4—C2030.8 (6)C22—C23—C24—C252.3 (11)
N3—Cu2—N4—C1643.8 (6)C21—N6—C25—C240.3 (11)
Cl3—Cu2—N4—C1684.0 (5)Cu3—N6—C25—C24162.0 (6)
Cl2—Cu2—N4—C16165.9 (5)C21—N6—C25—S5179.2 (5)
Cu3—Cu2—N4—C16141.9 (5)Cu3—N6—C25—S518.4 (8)
N6—Cu3—N5—C30165.7 (5)C23—C24—C25—N61.3 (11)
Cl2—Cu3—N5—C3061.9 (5)C23—C24—C25—S5179.2 (6)
Cl3—Cu3—N5—C3048.7 (5)S6—S5—C25—N661.2 (6)
Cu2—Cu3—N5—C305.6 (6)S6—S5—C25—C24118.3 (6)
N6—Cu3—N5—C265.9 (7)C30—N5—C26—C272.9 (11)
Cl2—Cu3—N5—C26126.5 (6)Cu3—N5—C26—C27168.7 (6)
Cl3—Cu3—N5—C26122.8 (6)C30—N5—C26—S6178.4 (5)
Cu2—Cu3—N5—C26177.2 (5)Cu3—N5—C26—S66.8 (9)
N5—Cu3—N6—C2556.6 (6)S5—S6—C26—N543.0 (6)
Cl2—Cu3—N6—C2573.3 (6)S5—S6—C26—C27141.2 (6)
Cl3—Cu3—N6—C25175.4 (5)N5—C26—C27—C281.5 (12)
Cu2—Cu3—N6—C25132.1 (5)S6—C26—C27—C28177.1 (6)
N5—Cu3—N6—C21142.0 (5)C26—C27—C28—C291.9 (12)
Cl2—Cu3—N6—C2188.2 (5)C27—C28—C29—C303.6 (12)
Cl3—Cu3—N6—C2123.1 (6)C26—N5—C30—C291.0 (11)
Cu2—Cu3—N6—C2129.4 (6)Cu3—N5—C30—C29171.5 (6)
C5—N1—C1—C22.3 (11)C28—C29—C30—N52.2 (13)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C10H8N2S2)2]
Mr638.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.838 (3), 9.4102 (17), 21.309 (4)
β (°) 92.594 (3)
V3)3573.2 (11)
Z6
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.33 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.511, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
17489, 6349, 3331
Rint0.073
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.199, 1.03
No. of reflections6349
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.47

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N11.980 (6)Cu2—Cl32.393 (2)
Cu1—N22.028 (6)Cu2—Cl22.437 (2)
Cu1—Cl1i2.361 (2)Cu3—N62.013 (6)
Cu1—Cl12.450 (2)Cu3—N52.015 (6)
Cu2—N41.990 (6)Cu3—Cl22.370 (2)
Cu2—N32.022 (6)Cu3—Cl32.427 (2)
N1—Cu1—N2123.7 (3)N4—Cu2—Cl2104.46 (18)
N1—Cu1—Cl1i113.69 (18)N3—Cu2—Cl2106.35 (19)
N2—Cu1—Cl1i107.54 (17)Cl3—Cu2—Cl2102.51 (7)
N1—Cu1—Cl1103.82 (18)N6—Cu3—N5120.4 (3)
N2—Cu1—Cl1104.49 (19)N6—Cu3—Cl2113.55 (18)
Cl1i—Cu1—Cl1100.54 (7)N5—Cu3—Cl2107.74 (17)
N4—Cu2—N3124.5 (2)N6—Cu3—Cl3103.16 (17)
N4—Cu2—Cl3111.84 (17)N5—Cu3—Cl3106.90 (19)
N3—Cu2—Cl3104.99 (18)Cl2—Cu3—Cl3103.49 (7)
C6—S1—S2—C5103.2 (4)C25—S5—S6—C26105.7 (4)
C16—S3—S4—C11104.1 (4)
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds