Download citation
Download citation
link to html
The title compound, [Bi(C4H8NS2)2(NO3)(C10H8N2)], is monomeric, with the Bi atom chelated by the S atoms of two pyrrolidine-1-dithio­carboxyl­ate ligands and the N atoms of a 2,2′-bipyridine ligand. A nitrate ligand completes the coordination, with the eight-coordinated Bi atom adopting a highly distorted capped penta­gonal–bipyramidal geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021137/dn2168sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021137/dn2168Isup2.hkl
Contains datablock I

CCDC reference: 650529

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.021 Å
  • R factor = 0.063
  • wR factor = 0.163
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds (x 1000) Ang ... 21
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.94 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 400 Deg. PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S4 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Bi1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.10
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.942 Tmax scaled 0.200 Tmin scaled 0.140 PLAT794_ALERT_5_G Check Predicted Bond Valency for Bi1 (3) 2.96
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Dithiocarbamates have been known as effective ligands for transition metal ions for many years. They can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). However, the chemistry of main-group metal complexes with dithiocarbamates has been less extensively studied, and only a few reports describing bismuth(III) dithiocarbamate complexes have appeared (Yin et al., 2003). As a continuation of our interest in sulfur-containing ligands, we report here the synthesis and structure of the title compound, (I).

The title compound, (I), is monomeric, with the Bi atom chelated by the S atoms of two pyrrolidine-1-dithiocarboxylate ligands and the N atoms of 2,2'-bipyridine. A nitrate ligand completes the coordination environment of the eight coordinated Bi atom (Fig. 1). The Bi atom is in a distorted pentagonal bipyramid environment, with atoms S1 and O2 in axial positions, and atoms S2, S3, S4, N3 and N4 in the equatorial plane. The remaining O atom (O1) of the nitrate ligand caps the O2/S2/N3 face of this pentagonal bipyramid, giving a highly distorted capped pentagonal bipyramid coordination geometry. One of the bidentate pyrrolidine-1-dithiocarboxylate ligands forms a significantly longer Bi—S bond [Bi1—S4 = 2.900 (4) Å] than the others in the complex. This variation in coordination strength is also signalled by the fact that the C6—S4 bond is significantly shorter than the other C—S bonds, suggesting some delocalization in the system. In addition, the chelating phenanthroline ligands are bonded to the Bi atom through two N atoms. The Bi1—N3 and Bi1—N4 distances fall in the same range as in other Bi/N complexes (Baraanyi et al., 1977).

Related literature top

For related literature, see: Baraanyi et al. (1977); Bardaji et al. (1994); Xu et al. (2001); Yin et al. (2003).

Experimental top

To an aqueous solution of Bi(NO3)35H2O (2.0 mmol) and mannite (2.0 mmol) was added another aqueous solution of sodium pyrrolidine-1-dithiocarboxylate (4.0 mmol) and 2,2'-bipyridine (2.0 mmol). The resulted solution was stirred for 2 h at 298 K, and then yellow solid was obtained by filtration. The solid was recrystallized from ethanol and yellow crystals of (I) were formed.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H = 0.97 Å with Uiso(H) = 1.2Ueq for CH2, and C—H =0.93 Å with Uiso(H) = 1.2Ueq for aromatic H atoms].

Structure description top

Dithiocarbamates have been known as effective ligands for transition metal ions for many years. They can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). However, the chemistry of main-group metal complexes with dithiocarbamates has been less extensively studied, and only a few reports describing bismuth(III) dithiocarbamate complexes have appeared (Yin et al., 2003). As a continuation of our interest in sulfur-containing ligands, we report here the synthesis and structure of the title compound, (I).

The title compound, (I), is monomeric, with the Bi atom chelated by the S atoms of two pyrrolidine-1-dithiocarboxylate ligands and the N atoms of 2,2'-bipyridine. A nitrate ligand completes the coordination environment of the eight coordinated Bi atom (Fig. 1). The Bi atom is in a distorted pentagonal bipyramid environment, with atoms S1 and O2 in axial positions, and atoms S2, S3, S4, N3 and N4 in the equatorial plane. The remaining O atom (O1) of the nitrate ligand caps the O2/S2/N3 face of this pentagonal bipyramid, giving a highly distorted capped pentagonal bipyramid coordination geometry. One of the bidentate pyrrolidine-1-dithiocarboxylate ligands forms a significantly longer Bi—S bond [Bi1—S4 = 2.900 (4) Å] than the others in the complex. This variation in coordination strength is also signalled by the fact that the C6—S4 bond is significantly shorter than the other C—S bonds, suggesting some delocalization in the system. In addition, the chelating phenanthroline ligands are bonded to the Bi atom through two N atoms. The Bi1—N3 and Bi1—N4 distances fall in the same range as in other Bi/N complexes (Baraanyi et al., 1977).

For related literature, see: Baraanyi et al. (1977); Bardaji et al. (1994); Xu et al. (2001); Yin et al. (2003).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering schemes. H atoms have been omitted for clarity.
(2,2'-Bipyridine-κ2N,N')(nitrato-κ2O,O')bis(pyrrolidine-1- dithiocarboxylato-κ2S,S')bismuth(III) top
Crystal data top
[Bi(C4H8NS2)2(NO3)(C10H8N2)]Z = 2
Mr = 719.66F(000) = 700
Triclinic, P1Dx = 1.887 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.565 (4) ÅCell parameters from 3168 reflections
b = 10.171 (4) Åθ = 2.2–27.3°
c = 14.555 (5) ŵ = 7.32 mm1
α = 73.634 (4)°T = 298 K
β = 76.032 (4)°Block, yellow
γ = 70.916 (4)°0.28 × 0.24 × 0.22 mm
V = 1266.5 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4305 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.149, Tmax = 0.212k = 1211
6375 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0971P)2]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 2.34 e Å3
0 restraintsΔρmin = 5.28 e Å3
Crystal data top
[Bi(C4H8NS2)2(NO3)(C10H8N2)]γ = 70.916 (4)°
Mr = 719.66V = 1266.5 (8) Å3
Triclinic, P1Z = 2
a = 9.565 (4) ÅMo Kα radiation
b = 10.171 (4) ŵ = 7.32 mm1
c = 14.555 (5) ÅT = 298 K
α = 73.634 (4)°0.28 × 0.24 × 0.22 mm
β = 76.032 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3408 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.212Rint = 0.048
6375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 0.99Δρmax = 2.34 e Å3
4305 reflectionsΔρmin = 5.28 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.23149 (5)0.12616 (4)0.76237 (3)0.03393 (19)
N10.1198 (11)0.1522 (10)0.4758 (7)0.039 (2)
N20.4937 (11)0.4557 (10)0.6654 (7)0.039 (2)
N30.0613 (13)0.0558 (13)0.8613 (7)0.051 (3)
N40.0642 (12)0.2242 (10)0.8629 (7)0.038 (2)
N50.4987 (12)0.1193 (12)0.8582 (8)0.045 (3)
O10.4437 (13)0.1199 (11)0.7882 (8)0.065 (3)
O20.4517 (13)0.0073 (12)0.8887 (7)0.065 (3)
O30.5935 (13)0.2224 (11)0.8937 (9)0.076 (3)
S10.0555 (4)0.2701 (4)0.6269 (2)0.0454 (8)
S20.2802 (4)0.0071 (3)0.6127 (2)0.0426 (8)
S30.4664 (4)0.2134 (4)0.6517 (3)0.0509 (9)
S40.2474 (4)0.3986 (4)0.7783 (3)0.0541 (9)
C10.1489 (12)0.1406 (12)0.5627 (8)0.033 (3)
C20.2027 (15)0.0460 (15)0.4155 (9)0.047 (3)
H2A0.19170.04820.44860.057*
H2B0.30850.04120.39890.057*
C30.126 (2)0.105 (2)0.3250 (12)0.074 (5)
H3A0.19950.09150.26700.088*
H3B0.05120.05750.32980.088*
C40.057 (2)0.2562 (18)0.3221 (11)0.078 (5)
H4A0.02970.29040.28960.093*
H4B0.12770.31040.28690.093*
C50.0100 (15)0.2742 (16)0.4259 (9)0.052 (4)
H5A0.01800.36420.43130.062*
H5B0.09180.26830.45140.062*
C60.4078 (15)0.3696 (13)0.6979 (9)0.042 (3)
C70.6380 (16)0.4308 (14)0.6002 (12)0.0552 (19)
H7A0.62470.43490.53540.066*
H7B0.70500.33880.62430.066*
C80.6979 (16)0.5501 (14)0.6004 (11)0.0552 (19)
H8A0.76320.52000.64860.066*
H8B0.75380.58110.53720.066*
C90.5667 (16)0.6638 (14)0.6241 (11)0.0552 (19)
H9A0.52920.72380.56540.066*
H9B0.59150.72240.65660.066*
C100.4503 (16)0.5946 (14)0.6899 (11)0.0552 (19)
H10A0.45370.58470.75760.066*
H10B0.35030.64900.67670.066*
C110.1268 (17)0.1947 (15)0.8675 (10)0.054 (4)
H110.22760.22370.84100.065*
C120.0511 (19)0.2988 (15)0.9121 (9)0.055 (4)
H120.10090.39500.91590.066*
C130.0973 (18)0.2565 (16)0.9498 (10)0.056 (4)
H130.15090.32340.97890.068*
C140.1677 (16)0.1112 (14)0.9441 (9)0.049 (3)
H140.26760.07970.97180.059*
C150.0852 (14)0.0156 (13)0.8964 (8)0.037 (3)
C160.1560 (14)0.1400 (14)0.8881 (8)0.038 (3)
C170.3107 (15)0.2003 (16)0.9061 (10)0.057 (4)
H170.37400.14180.92150.069*
C180.3706 (17)0.3411 (16)0.9016 (11)0.064 (5)
H180.47410.37970.91400.077*
C190.2774 (15)0.4260 (14)0.8787 (10)0.051 (4)
H190.31480.52310.87710.062*
C200.1275 (16)0.3639 (15)0.8580 (10)0.050 (3)
H200.06440.42290.83910.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0336 (3)0.0278 (3)0.0343 (3)0.00256 (18)0.00025 (18)0.01551 (18)
N10.036 (6)0.039 (6)0.032 (6)0.004 (5)0.002 (4)0.012 (4)
N20.030 (5)0.029 (6)0.050 (6)0.003 (5)0.009 (5)0.023 (5)
N30.056 (8)0.061 (8)0.029 (6)0.014 (6)0.007 (5)0.015 (5)
N40.041 (6)0.028 (6)0.036 (6)0.004 (5)0.000 (5)0.017 (4)
N50.034 (6)0.043 (7)0.049 (7)0.003 (5)0.005 (5)0.017 (5)
O10.076 (7)0.060 (7)0.065 (7)0.003 (5)0.032 (6)0.034 (5)
O20.084 (8)0.062 (7)0.049 (6)0.010 (6)0.010 (5)0.025 (5)
O30.070 (8)0.047 (7)0.099 (9)0.020 (6)0.044 (7)0.016 (6)
S10.0452 (19)0.0365 (18)0.0375 (17)0.0169 (14)0.0010 (14)0.0202 (14)
S20.051 (2)0.0252 (16)0.0432 (18)0.0126 (14)0.0111 (15)0.0183 (13)
S30.0430 (19)0.043 (2)0.062 (2)0.0057 (16)0.0204 (16)0.0368 (17)
S40.0420 (19)0.050 (2)0.067 (2)0.0104 (17)0.0253 (17)0.0395 (18)
C10.024 (6)0.034 (7)0.032 (6)0.001 (5)0.003 (5)0.009 (5)
C20.048 (8)0.050 (9)0.043 (8)0.005 (7)0.003 (6)0.029 (6)
C30.081 (12)0.091 (14)0.052 (10)0.011 (10)0.009 (9)0.037 (9)
C40.115 (16)0.064 (12)0.054 (10)0.001 (11)0.039 (10)0.021 (8)
C50.040 (8)0.062 (10)0.045 (8)0.003 (7)0.014 (6)0.005 (7)
C60.042 (7)0.028 (7)0.044 (7)0.011 (6)0.002 (6)0.019 (5)
C70.045 (4)0.036 (4)0.070 (5)0.002 (3)0.010 (4)0.019 (3)
C80.045 (4)0.036 (4)0.070 (5)0.002 (3)0.010 (4)0.019 (3)
C90.045 (4)0.036 (4)0.070 (5)0.002 (3)0.010 (4)0.019 (3)
C100.045 (4)0.036 (4)0.070 (5)0.002 (3)0.010 (4)0.019 (3)
C110.054 (9)0.046 (9)0.056 (9)0.000 (7)0.002 (7)0.021 (7)
C120.093 (12)0.039 (8)0.039 (8)0.025 (8)0.012 (8)0.008 (6)
C130.065 (10)0.058 (10)0.048 (9)0.029 (8)0.002 (7)0.010 (7)
C140.050 (8)0.046 (9)0.048 (8)0.007 (7)0.011 (6)0.028 (6)
C150.038 (7)0.045 (8)0.026 (6)0.003 (6)0.002 (5)0.022 (5)
C160.039 (7)0.046 (8)0.023 (6)0.009 (6)0.002 (5)0.004 (5)
C170.031 (7)0.061 (10)0.063 (10)0.002 (7)0.001 (7)0.005 (7)
C180.038 (8)0.048 (9)0.070 (11)0.005 (7)0.005 (7)0.011 (8)
C190.045 (8)0.030 (7)0.056 (9)0.020 (6)0.006 (7)0.013 (6)
C200.046 (8)0.049 (9)0.045 (8)0.004 (7)0.005 (6)0.016 (6)
Geometric parameters (Å, º) top
Bi1—O12.653 (10)C4—H4B0.9700
Bi1—S32.680 (3)C5—H5A0.9700
Bi1—S12.688 (3)C5—H5B0.9700
Bi1—N32.736 (11)C7—C81.503 (19)
Bi1—S22.749 (3)C7—H7A0.9700
Bi1—S42.900 (4)C7—H7B0.9700
N1—C11.326 (14)C8—C91.448 (18)
N1—C51.475 (15)C8—H8A0.9700
N1—C21.484 (16)C8—H8B0.9700
N2—C61.309 (16)C9—C101.507 (18)
N2—C101.458 (16)C9—H9A0.9700
N2—C71.464 (16)C9—H9B0.9700
N3—C111.331 (17)C10—H10A0.9700
N3—C151.338 (16)C10—H10B0.9700
N4—C201.338 (16)C11—C121.398 (18)
N4—C161.341 (15)C11—H110.9300
N5—O31.220 (13)C12—C131.36 (2)
N5—O21.245 (14)C12—H120.9300
N5—O11.257 (14)C13—C141.397 (19)
S1—C11.711 (12)C13—H130.9300
S2—C11.719 (12)C14—C151.381 (17)
S3—C61.768 (13)C14—H140.9300
S4—C61.686 (13)C15—C161.486 (17)
C2—C31.54 (2)C16—C171.395 (19)
C2—H2A0.9700C17—C181.35 (2)
C2—H2B0.9700C17—H170.9300
C3—C41.45 (2)C18—C191.36 (2)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C19—C201.361 (19)
C4—C51.51 (2)C19—H190.9300
C4—H4A0.9700C20—H200.9300
O1—Bi1—S380.9 (3)H5A—C5—H5B109.3
O1—Bi1—S1135.0 (2)N2—C6—S4124.8 (10)
S3—Bi1—S192.34 (12)N2—C6—S3116.4 (9)
O1—Bi1—N379.5 (4)S4—C6—S3118.8 (8)
S3—Bi1—N3158.8 (3)N2—C7—C8103.9 (11)
S1—Bi1—N395.9 (3)N2—C7—H7A111.0
O1—Bi1—S269.1 (2)C8—C7—H7A111.0
S3—Bi1—S280.63 (11)N2—C7—H7B111.0
S1—Bi1—S265.96 (10)C8—C7—H7B111.0
N3—Bi1—S285.0 (2)H7A—C7—H7B109.0
O1—Bi1—S4126.4 (2)C9—C8—C7105.1 (12)
S3—Bi1—S464.27 (9)C9—C8—H8A110.7
S1—Bi1—S487.93 (12)C7—C8—H8A110.7
N3—Bi1—S4135.3 (3)C9—C8—H8B110.7
S2—Bi1—S4135.41 (10)C7—C8—H8B110.7
C1—N1—C5124.5 (11)H8A—C8—H8B108.8
C1—N1—C2122.7 (10)C8—C9—C10107.1 (11)
C5—N1—C2112.7 (10)C8—C9—H9A110.3
C6—N2—C10121.8 (10)C10—C9—H9A110.3
C6—N2—C7126.6 (11)C8—C9—H9B110.3
C10—N2—C7111.6 (10)C10—C9—H9B110.3
C11—N3—C15117.6 (12)H9A—C9—H9B108.5
C11—N3—Bi1117.1 (9)N2—C10—C9102.9 (10)
C15—N3—Bi1125.0 (9)N2—C10—H10A111.2
C20—N4—C16117.3 (11)C9—C10—H10A111.2
O3—N5—O2122.0 (12)N2—C10—H10B111.2
O3—N5—O1121.8 (12)C9—C10—H10B111.2
O2—N5—O1116.3 (11)H10A—C10—H10B109.1
N5—O1—Bi1104.5 (8)N3—C11—C12123.1 (14)
C1—S1—Bi188.3 (4)N3—C11—H11118.5
C1—S2—Bi186.2 (4)C12—C11—H11118.5
C6—S3—Bi191.2 (4)C13—C12—C11118.7 (15)
C6—S4—Bi185.7 (5)C13—C12—H12120.7
N1—C1—S1120.8 (9)C11—C12—H12120.7
N1—C1—S2119.9 (9)C12—C13—C14119.0 (13)
S1—C1—S2119.3 (7)C12—C13—H13120.5
N1—C2—C3102.5 (11)C14—C13—H13120.5
N1—C2—H2A111.3C15—C14—C13118.4 (13)
C3—C2—H2A111.3C15—C14—H14120.8
N1—C2—H2B111.3C13—C14—H14120.8
C3—C2—H2B111.3N3—C15—C14123.1 (12)
H2A—C2—H2B109.2N3—C15—C16116.6 (11)
C4—C3—C2105.9 (13)C14—C15—C16120.1 (11)
C4—C3—H3A110.6N4—C16—C17119.6 (13)
C2—C3—H3A110.6N4—C16—C15117.3 (11)
C4—C3—H3B110.6C17—C16—C15123.2 (12)
C2—C3—H3B110.6C18—C17—C16121.6 (14)
H3A—C3—H3B108.7C18—C17—H17119.2
C3—C4—C5107.5 (12)C16—C17—H17119.2
C3—C4—H4A110.2C17—C18—C19118.9 (14)
C5—C4—H4A110.2C17—C18—H18120.6
C3—C4—H4B110.2C19—C18—H18120.6
C5—C4—H4B110.2C18—C19—C20117.7 (14)
H4A—C4—H4B108.5C18—C19—H19121.1
N1—C5—C4101.8 (12)C20—C19—H19121.1
N1—C5—H5A111.4N4—C20—C19124.9 (13)
C4—C5—H5A111.4N4—C20—H20117.6
N1—C5—H5B111.4C19—C20—H20117.6
C4—C5—H5B111.4

Experimental details

Crystal data
Chemical formula[Bi(C4H8NS2)2(NO3)(C10H8N2)]
Mr719.66
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.565 (4), 10.171 (4), 14.555 (5)
α, β, γ (°)73.634 (4), 76.032 (4), 70.916 (4)
V3)1266.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)7.32
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.149, 0.212
No. of measured, independent and
observed [I > 2σ(I)] reflections
6375, 4305, 3408
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.163, 0.99
No. of reflections4305
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.34, 5.28

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds