Download citation
Download citation
link to html
The structure of the title compound (35DMPA), C10H13NO, closely resembles those of N-(3,5-dichloro­phen­yl)acetamide (35DCPA) and other amides. 35DMPA has two mol­ecules in its asymmetric unit, in contrast to the single mol­ecule observed in the asymmetric unit of 35DCPA. In addition, 35DMPA and 35DCPA crystallize in different crystal systems. The mol­ecules in 35DMPA are packed into chains via N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019812/dn2166sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019812/dn2166Isup2.hkl
Contains datablock I

CCDC reference: 647705

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.066
  • wR factor = 0.175
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 48 Perc. PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.31 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.31 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C20
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the present work, the structure of N-(3,5-dimethylphenyl)acetamide (35DMPA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda, Foro & Fuess, 2007; Gowda et al., 2007, 2007a, 2007b). 35DMPA has two molecules in its asymmetric unit (Fig. 1), in contrast to single molecule observed in the asymmetric unit of N-(3,5-dichlorophenyl)acetamide (35DCPA). Further, 35DMPA and 35DCPA crystallize in different space group, 35DMPA in monoclinic, P21/c and 35DCPA in orthorhombic, Pna21 (Gowda et al., 2007b), respectively. The bond lengths and angles in 35DMPA show normal values. Molecules in 35DMPA form chains by hydrogen bonding, along the base vector [201] (Table 1 and Fig. 2).

Related literature top

For related structures, see: Gowda, Foro & Fuess (2007); Gowda et al., 2007; Gowda et al., 2007a,b; Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method of Shilpa and Gowda (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from a slow evaporation of its ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms were placed geometrically and refined using a riding model with C—H distances of 0.93 Å for the ring hydrogen atoms, 0.96 Å for the methyl groups and 0.86 Å for the NH hydrogen atom.

Structure description top

In the present work, the structure of N-(3,5-dimethylphenyl)acetamide (35DMPA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda, Foro & Fuess, 2007; Gowda et al., 2007, 2007a, 2007b). 35DMPA has two molecules in its asymmetric unit (Fig. 1), in contrast to single molecule observed in the asymmetric unit of N-(3,5-dichlorophenyl)acetamide (35DCPA). Further, 35DMPA and 35DCPA crystallize in different space group, 35DMPA in monoclinic, P21/c and 35DCPA in orthorhombic, Pna21 (Gowda et al., 2007b), respectively. The bond lengths and angles in 35DMPA show normal values. Molecules in 35DMPA form chains by hydrogen bonding, along the base vector [201] (Table 1 and Fig. 2).

For related structures, see: Gowda, Foro & Fuess (2007); Gowda et al., 2007; Gowda et al., 2007a,b; Shilpa & Gowda (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing formation of a chain along the base vector [2 0 1]. H atoms not involved in hydrogen bonding are omitted. Symmetry codes: (i): -1 + x,y,z (ii): x,1/2 - y,1/2 + z
N-(3,5-dimethylphenyl)acetamide top
Crystal data top
C10H13NOF(000) = 704
Mr = 163.21Dx = 1.165 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2654 reflections
a = 8.7925 (12) Åθ = 3.0–29.5°
b = 27.690 (5) ŵ = 0.08 mm1
c = 7.6525 (15) ÅT = 295 K
β = 92.65 (1)°Block, colourless transparent
V = 1861.1 (6) Å30.31 × 0.26 × 0.08 mm
Z = 8
Data collection top
Xcalibur System, Oxford Diffraction, Ltd.
diffractometer
3638 independent reflections
Graphite monochromator1750 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.076
φ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 5.1°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 1010
Tmin = 0.965, Tmax = 0.991k = 3434
17320 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0775P)2]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.16 e Å3
56 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H13NOV = 1861.1 (6) Å3
Mr = 163.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.7925 (12) ŵ = 0.08 mm1
b = 27.690 (5) ÅT = 295 K
c = 7.6525 (15) Å0.31 × 0.26 × 0.08 mm
β = 92.65 (1)°
Data collection top
Xcalibur System, Oxford Diffraction, Ltd.
diffractometer
3638 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1750 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.991Rint = 0.076
17320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06656 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 0.99Δρmax = 0.16 e Å3
3638 reflectionsΔρmin = 0.15 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1177 (3)0.19573 (10)0.7152 (4)0.0686 (8)
H1A0.18290.1780.6410.103*
H1B0.01960.19990.65670.103*
H1C0.10660.17820.82210.103*
C20.1856 (3)0.24375 (10)0.7550 (3)0.0571 (7)
C30.1248 (3)0.33115 (10)0.7634 (3)0.0521 (7)
C40.2699 (3)0.34970 (10)0.7820 (3)0.0556 (7)
H40.35390.33020.76420.067*
C50.2888 (3)0.39746 (11)0.8275 (4)0.0606 (8)
C60.1616 (3)0.42655 (11)0.8545 (4)0.0654 (8)
H60.17640.45860.88720.079*
C70.0158 (3)0.40896 (11)0.8341 (4)0.0628 (8)
C80.0000 (3)0.36131 (11)0.7880 (3)0.0584 (7)
H80.09750.34850.77250.07*
C90.4470 (3)0.41717 (12)0.8490 (4)0.0808 (10)
H9A0.50210.39980.94030.121*
H9B0.44270.45080.87930.121*
H9C0.49770.41350.74140.121*
C100.1225 (4)0.44042 (12)0.8622 (5)0.0896 (11)
H10A0.19690.43540.76810.134*
H10B0.09240.47380.86520.134*
H10C0.16560.4320.97110.134*
O10.3102 (2)0.24743 (7)0.8168 (3)0.0835 (7)
N10.0982 (2)0.28246 (8)0.7227 (3)0.0581 (6)
H1N0.01230.27660.66860.07*
C110.6329 (3)0.20839 (10)0.4921 (4)0.0673 (8)
H11A0.62610.19790.37230.101*
H11B0.53450.20610.54080.101*
H11C0.70380.18830.55750.101*
C120.6859 (3)0.25926 (10)0.5005 (3)0.0570 (7)
C130.6067 (3)0.34252 (10)0.4195 (3)0.0524 (7)
C140.7468 (3)0.36566 (11)0.4156 (3)0.0609 (8)
H140.83530.34780.43720.073*
C150.7582 (3)0.41434 (11)0.3807 (4)0.0637 (8)
C160.6270 (3)0.44056 (11)0.3536 (4)0.0662 (8)
H160.6330.47350.33170.079*
C170.4852 (3)0.41861 (11)0.3583 (4)0.0616 (8)
C180.4771 (3)0.36980 (11)0.3900 (3)0.0582 (7)
H180.38230.35490.39160.07*
C190.9129 (4)0.43826 (12)0.3724 (5)0.0913 (11)
H19A0.95690.43020.26360.137*
H19B0.97830.4270.46780.137*
H19C0.90140.47270.38050.137*
C200.3427 (4)0.44701 (12)0.3315 (5)0.0924 (11)
H20A0.28490.43460.23180.139*
H20B0.36760.48030.31160.139*
H20C0.28370.44450.43350.139*
N20.5871 (2)0.29262 (8)0.4446 (3)0.0582 (6)
H2N0.49670.28210.41980.07*
O20.8109 (2)0.27020 (8)0.5515 (3)0.0881 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0605 (19)0.0674 (19)0.076 (2)0.0005 (15)0.0193 (15)0.0054 (15)
C20.0450 (18)0.0666 (19)0.0580 (18)0.0047 (15)0.0150 (13)0.0017 (14)
C30.0402 (16)0.0650 (19)0.0497 (16)0.0012 (14)0.0127 (12)0.0051 (13)
C40.0363 (15)0.0679 (19)0.0617 (17)0.0008 (13)0.0081 (12)0.0058 (14)
C50.0473 (17)0.071 (2)0.0624 (18)0.0075 (15)0.0144 (13)0.0086 (15)
C60.0603 (19)0.0638 (19)0.070 (2)0.0034 (16)0.0170 (15)0.0000 (15)
C70.0484 (18)0.071 (2)0.0676 (19)0.0063 (15)0.0132 (14)0.0010 (15)
C80.0393 (16)0.070 (2)0.0639 (18)0.0022 (14)0.0156 (13)0.0031 (14)
C90.0557 (19)0.086 (2)0.099 (2)0.0193 (17)0.0199 (17)0.0031 (18)
C100.066 (2)0.088 (2)0.113 (3)0.0159 (19)0.0173 (19)0.019 (2)
O10.0508 (13)0.0751 (15)0.1202 (18)0.0053 (10)0.0443 (12)0.0007 (12)
N10.0388 (13)0.0666 (15)0.0665 (15)0.0002 (12)0.0235 (10)0.0009 (12)
C110.062 (2)0.069 (2)0.0695 (18)0.0019 (16)0.0153 (15)0.0027 (15)
C120.0457 (18)0.072 (2)0.0519 (17)0.0032 (15)0.0154 (13)0.0010 (14)
C130.0362 (15)0.0675 (18)0.0522 (16)0.0022 (14)0.0114 (12)0.0044 (13)
C140.0398 (16)0.079 (2)0.0622 (18)0.0015 (14)0.0139 (13)0.0002 (14)
C150.0537 (18)0.071 (2)0.0650 (19)0.0126 (16)0.0125 (14)0.0045 (15)
C160.062 (2)0.0641 (19)0.071 (2)0.0038 (16)0.0116 (16)0.0013 (15)
C170.0486 (18)0.070 (2)0.0643 (19)0.0029 (15)0.0119 (14)0.0073 (15)
C180.0393 (16)0.0691 (19)0.0648 (18)0.0050 (14)0.0124 (13)0.0065 (14)
C190.062 (2)0.098 (3)0.111 (3)0.0287 (19)0.0228 (18)0.022 (2)
C200.065 (2)0.088 (2)0.121 (3)0.0169 (19)0.0273 (19)0.000 (2)
N20.0366 (13)0.0624 (15)0.0735 (15)0.0044 (11)0.0189 (11)0.0011 (12)
O20.0526 (14)0.0954 (16)0.1113 (17)0.0062 (12)0.0497 (12)0.0078 (12)
Geometric parameters (Å, º) top
C1—C21.483 (4)C11—C121.484 (4)
C1—H1A0.96C11—H11A0.96
C1—H1B0.96C11—H11B0.96
C1—H1C0.96C11—H11C0.96
C2—O11.178 (3)C12—O21.189 (3)
C2—N11.335 (3)C12—N21.325 (3)
C3—C41.377 (3)C13—C181.377 (3)
C3—C81.399 (3)C13—C141.390 (3)
C3—N11.401 (3)C13—N21.407 (3)
C4—C51.375 (4)C14—C151.379 (4)
C4—H40.93C14—H140.93
C5—C61.401 (4)C15—C161.371 (4)
C5—C91.496 (4)C15—C191.517 (4)
C6—C71.374 (4)C16—C171.389 (4)
C6—H60.93C16—H160.93
C7—C81.371 (4)C17—C181.375 (4)
C7—C101.519 (4)C17—C201.485 (4)
C8—H80.93C18—H180.93
C9—H9A0.96C19—H19A0.96
C9—H9B0.96C19—H19B0.96
C9—H9C0.96C19—H19C0.96
C10—H10A0.96C20—H20A0.96
C10—H10B0.96C20—H20B0.96
C10—H10C0.96C20—H20C0.96
N1—H1N0.86N2—H2N0.86
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—N1121.4 (3)O2—C12—N2120.7 (3)
O1—C2—C1121.2 (3)O2—C12—C11122.7 (3)
N1—C2—C1117.3 (2)N2—C12—C11116.6 (2)
C4—C3—C8119.5 (3)C18—C13—C14118.1 (3)
C4—C3—N1121.8 (2)C18—C13—N2117.1 (2)
C8—C3—N1118.7 (2)C14—C13—N2124.7 (2)
C5—C4—C3119.0 (3)C15—C14—C13121.8 (3)
C5—C4—H4120.5C15—C14—H14119.1
C3—C4—H4120.5C13—C14—H14119.1
C4—C5—C6120.1 (3)C16—C15—C14118.6 (3)
C4—C5—C9118.6 (3)C16—C15—C19120.8 (3)
C6—C5—C9121.2 (3)C14—C15—C19120.5 (3)
C7—C6—C5121.8 (3)C15—C16—C17121.0 (3)
C7—C6—H6119.1C15—C16—H16119.5
C5—C6—H6119.1C17—C16—H16119.5
C8—C7—C6116.9 (3)C18—C17—C16119.2 (3)
C8—C7—C10121.1 (3)C18—C17—C20119.7 (3)
C6—C7—C10122.0 (3)C16—C17—C20121.1 (3)
C7—C8—C3122.6 (3)C17—C18—C13121.3 (3)
C7—C8—H8118.7C17—C18—H18119.4
C3—C8—H8118.7C13—C18—H18119.4
C5—C9—H9A109.5C15—C19—H19A109.5
C5—C9—H9B109.5C15—C19—H19B109.5
H9A—C9—H9B109.5H19A—C19—H19B109.5
C5—C9—H9C109.5C15—C19—H19C109.5
H9A—C9—H9C109.5H19A—C19—H19C109.5
H9B—C9—H9C109.5H19B—C19—H19C109.5
C7—C10—H10A109.5C17—C20—H20A109.5
C7—C10—H10B109.5C17—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C7—C10—H10C109.5C17—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
C2—N1—C3130.0 (2)C12—N2—C13130.3 (2)
C2—N1—H1N115C12—N2—H2N114.9
C3—N1—H1N115C13—N2—H2N114.9
C8—C3—C4—C51.1 (4)C18—C13—C14—C151.1 (4)
N1—C3—C4—C5178.0 (2)N2—C13—C14—C15176.3 (2)
C3—C4—C5—C60.1 (4)C13—C14—C15—C161.7 (4)
C3—C4—C5—C9179.4 (2)C13—C14—C15—C19178.3 (3)
C4—C5—C6—C71.1 (4)C14—C15—C16—C171.0 (4)
C9—C5—C6—C7179.6 (3)C19—C15—C16—C17179.0 (3)
C5—C6—C7—C80.8 (4)C15—C16—C17—C180.3 (4)
C5—C6—C7—C10179.6 (3)C15—C16—C17—C20179.2 (3)
C6—C7—C8—C30.5 (4)C16—C17—C18—C130.9 (4)
C10—C7—C8—C3179.1 (3)C20—C17—C18—C13178.5 (3)
C4—C3—C8—C71.4 (4)C14—C13—C18—C170.3 (4)
N1—C3—C8—C7177.7 (2)N2—C13—C18—C17177.8 (2)
O1—C2—N1—C35.6 (5)O2—C12—N2—C135.9 (4)
C1—C2—N1—C3172.5 (2)C11—C12—N2—C13172.9 (2)
C4—C3—N1—C226.9 (4)C18—C13—N2—C12168.5 (3)
C8—C3—N1—C2152.1 (3)C14—C13—N2—C1214.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.362.865 (4)114
N1—H1N···O2i0.861.962.812 (3)174
C14—H14···O20.932.332.886 (4)118
N2—H2N···O1ii0.861.962.810 (3)167
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.7925 (12), 27.690 (5), 7.6525 (15)
β (°) 92.65 (1)
V3)1861.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.26 × 0.08
Data collection
DiffractometerXcalibur System, Oxford Diffraction, Ltd.
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.965, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
17320, 3638, 1750
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.175, 0.99
No. of reflections3638
No. of parameters231
No. of restraints56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.362.865 (4)113.6
N1—H1N···O2i0.861.962.812 (3)174
C14—H14···O20.932.332.886 (4)117.7
N2—H2N···O1ii0.861.962.810 (3)167.4
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds