Download citation
Download citation
link to html
In the title compound, 4,7,13,16,21,24-hexa­oxa-1,10-diazo­nia­bicyclo­[8.8.8]hexa­cosane dioxo[7,13,21,27-tetra­phenyl-3,17-di­oxa­penta­cyclo­[23.3.1.15,9.111,15.119,23]ditriaconta-1(29),5,7,9(30),11(31),12,14,19(32),20,22,25,27-dodeca­ene-29,30,31,32-tetra­olato]uranium dimethyl sulfoxide tri­solvate, (C18H38N2O6)[U(C54H40O6)O2]·3C2H6OS, the uranyl ion is bound to the four phenoxide groups of the deprotonated p-phenyl­tetra­homodioxacalix[4]arene ligand in a cone conformation, resulting in a dianionic complex. The diprotonated [2.2.2]cryptand counter-ion is located in the cavity defined by the eight aromatic rings of the homooxacalixarene, where it is held by cation–anion, cation–π and possibly C—H...π inter­actions. Dimerization in the packing leads to the formation of sandwich assemblages in which two diprotonated [2.2.2]cryptands are encompassed by two uranyl complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105030581/dn1098sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105030581/dn1098Isup2.hkl
Contains datablock I

CCDC reference: 290561

Comment top

The uranyl complexes of calixarenes and their derivatives homo-, homooxa- and homoazacalixarenes have been widely investigated in the past few years (Harrowfield, 1997; Thuéry, Nierlich, Harrowfield & Ogden, 2001). It has been shown in particular that uranyl complexes of homooxacalixarenes, in which at least one methylene bridge is replaced by a –CH2—O—CH2– link (Masci, 2001), could be used to build supramolecular architectures. The presence both of a hydrophobic cavity surrounded by aromatic rings, which can be involved in various weak interactions (cation–π and C—H···π), and of oxo (uranyl), ether and phenoxide groups directed either inside or outside the cavity provide several sites for counter-ion bonding. Primary, secondary and tertiary ammonium ions can thus give extended assemblages through hydrogen bonds and interactions with the aromatic rings (Masci et al., 2002, 2002a,b), whereas alkali metal counter-ions can bind to the uranyl oxo groups to give dimers or infinite chains (Thuéry & Masci, 2003, 2004). We have reported previously the synthesis and crystal structure of mono-anionic uranyl complexes with p-R-hexahomotrioxacalix[3]arene (R = tert-butyl or phenyl), with protonated [2.2.2]cryptand as counter-ion (Masci et al., 2002b). Depending on the stoichiometry, it is possible to obtain two different arrangements, with either the mono-protonated [2.2.2]cryptand nested in the cavity of one complex molecule or its di-protonated form sandwiched by two complexes facing each other. We report here the structure of the analogous complex with the larger p-phenyltetrahomodioxacalix[4]arene. This ligand, as well as the p-methyl and p-tert-butyl derivatives, is known to complex one uranyl ion with its four phenoxide groups, the ether O atoms being non-coordinating (Thuéry, Nierlich, Vicens et al., 2001; Masci et al., 2002; Thuéry & Masci, 2003).

The asymmetric unit in (I) contains one complex dianion, one dihydro[2.2.2]cryptand and three solvent dimethyl sulfoxide molecules. A view of the dianion and the cryptand is shown in Fig. 1. The uranyl ion lies at the centre of the homooxacalixarene, in a cone conformation, and it is bound to all four phenoxide O atoms with a mean U—O bond length of 2.278 (15) Å, as in the previously reported complexes with similar ligands. Ether atoms O3 and O6 are non-bonding, at 3.863 (5) and 3.846 (4) Å from the metal centre, respectively. The O—U—O angles involving successive phenoxide groups are larger by about 8–13° for the groups separated by an ether link. The U atom is located 0.059 (2) Å from the mean plane defined by the four phenoxide groups (r.m.s. deviation 0.027 Å), and ether atoms O3 and O6 are 1.784 (7) and 1.679 (7) Å from this plane, respectively. The four phenol rings make dihedral angles of 38.2 (2), 37.4 (2), 48.3 (2) and 43.0 (2)° with the O4 mean plane and would define a shallow cavity, similar to those observed in the previous compounds but for the presence of the p-phenyl substituents, which give it additional depth. These phenyl rings are differently oriented with respect to the phenol rings to which they are attached, with dihedral angles of 29.4 (3), 44.13 (17), 13.9 (4) and 49.5 (3)° for rings bearing atoms O1, O2, O4 and O5, respectively. The torsion angles in the ether bridges are all anti [164.3 (5)–170.5 (5)°], as usual in this family of complexes.

The [2.2.2]cryptand is doubly protonated in the so-called `in–in' conformation, with the two H atoms pointing inwards (endo protonation) and involved in trifurcated hydrogen bonds with the three proximal ether O atoms. This conformation, which is more stable than the `out–out' one, was also observed in the previous cases (Masci et al., 2002b) and precludes any cation–anion interaction through hydrogen bonding. The N1···N2 distance, 5.996 (9) Å, is much shorter than in the neutral (6.87 Å; Metz et al., 1976) or monoprotonated cryptand [6.787 (7) and 6.861 (6) Å; Masci et al., 2002b], and it is comparable to those in other diprotonated species with analogous geometry [5.710 (7) Å; Thuéry & Masci, 2002]. This shortening of the dication is a result of the presence of the six intramolecular hydrogen bonds. The O···O separations in each half-molecule are in the range 3.613 (7)–4.129 (7) Å, and the O9/O11/O13 and O10/O12/O14 planes are nearly parallel, with a dihedral angle of 1.69 (12)° between them. The N—C—C—O and O—C—C—O torsion angles are all gauche [in the range 45.3 (7)–66.9 (7)°], but three C—O—C—C angles are gauche instead of anti [67.6 (8), 68.2 (8) and 70.3 (7)°]. These values indicate slight distorsions with respect to the ideal geometry, as in the cases cited above.

The dihydro[2.2.2]cryptand moiety is included in the homooxacalixarene cavity in such a way that the angle between its principal axis (N1···N2 line) and the uranyl ion axis is 117°. This tilting is at variance with the nearly parallel arrangement found in the case of the narrower cavity of the uranyl complexes of hexahomotrioxacalix[3]arene derivatives. Electrostatic cation–anion interactions are likely to contribute to the cohesion of the assembly, but other weak interactions may be discerned as well. The presence of cation–π interactions (Ma & Dougherty, 1997) is suggested by the occurrence of short contacts between aromatic rings and the protonated N atoms or their α-C atoms (Masci et al., 2002b). The shortest contacts are between two of the C atoms bound to N1, C61 and C67, and the centroid of the phenol ring bearing O1, 3.77 and 4.00 Å, respectively, whereas the distance between N1 and this centroid is 4.47 Å. These distances agree with those measured in similar (Masci et al., 2002, 2002b) and different systems (Verdonk et al., 1993; Murayama & Aoki, 1997). The C atoms bound to N2 are farther from aromatic centroids, with the shortest contact at 4.35 Å between C66 and the p-phenyl ring attached to O4. Some C—H···π interactions may also be present, with the three shortest contacts reported in Table 2, Cg1, Cg2 and Cg3 being the centroids of the rings C1–C6, C41–C46 and C34–C39, respectively. Two C atoms of the dimethyl sulfoxide solvent molecules may also be involved in C—H···π interactions.

The packing brings together two cation–anion units related by the inversion centre at (1/2,1/2,0) in such a manner that the ensemble can be viewed as two homooxacalixarene uranyl complexes including two dihydro[2.2.2]cryptands (Fig. 2). After the 1:1 and 2:1 complex/cryptand stoichiometries previously encountered, the 2:2 dimeric assemblage described here is a new example of the versatility of such systems in supramolecular chemistry. However, by contrast with the previous cases in which the sandwich assemblages are held by cation–anion, cation–π and C—H···π interactions (with sufficient strength for the species characterized in the solid state to be stable in solution), the two halves of the dimer in (I) are likely to be held together by van der Waals forces alone.

Experimental top

p-Phenyltetrahomodioxacalix[4]arene was prepared as described by No (1999). For the synthesis of (I), a 0.20 M solution of UO2(NO3)2·6H2O (0.30 ml) in MeOH was added dropwise to a stirred and heated mixture of p-phenyltetrahomodioxacalix[4]arene (8.0 mg, 0.010 mmol) and [2.2.2]cryptand (4.1 mg, 0.011 mmol) in CHCl3 (5 ml). Stirring and heating were continued for 10 min. The red powder obtained on complete solvent evaporation was recovered, washed with acetone and dissolved in gently heated Me2SO. Red crystals of complex (I) formed in a few days.

Refinement top

The H atoms bound to N atoms were found in difference Fourier maps and refined with isotropic displacement parameters equal to 1.2Ueq of the parent atom. All other H atoms were introduced at calculated positions as riding atoms, with C—H bond lengths of 0.93 (CH), 0.97 (CH2) or 0.96 Å (CH3), and isotropic displacement parameters equal to 1.2Ueq (CH and CH2) or 1.5Ueq (CH3) of the parent atom. Restraints on displacement parameters were applied for atoms S2, O16, C73 and C77 of the badly resolved solvent molecules.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999); PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. The solvent molecules and the H atoms not involved in hydrogen bonds have been omitted. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the dimeric assemblage in (I). The solvent molecules and the H atoms have been omitted. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (') 1 − x, 1–y, 2–z.]
4,7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane [7,13,21,27-tetraphenyl-3,17- dioxapentacyclo[23.3.1.15,9.111,15.19,23]ditriaconta- 1(29),5,7,9(30),11 (31),12,14,19 (32),20,22,25,27-dodecaene-29,30,31,32- tetraolato]dioxouranium dimethylsulfoxide trisolvate top
Crystal data top
(C18H38N2O6)[U(C54H40O6)O2]·3C2H6OSF(000) = 3416
Mr = 1667.78Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 190557 reflections
a = 14.8955 (5) Åθ = 2.9–25.7°
b = 20.3681 (10) ŵ = 2.39 mm1
c = 24.9276 (11) ÅT = 100 K
β = 106.169 (3)°Irregular, translucent light orange
V = 7263.7 (5) Å30.15 × 0.14 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
13724 independent reflections
Radiation source: fine-focus sealed tube10606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
two ϕ and three ω scans with 2° stepsθmax = 25.7°, θmin = 2.9°
Absorption correction: part of the refinement model (ΔF)
[DELABS in PLATON (Spek, 2003)]
h = 018
Tmin = 0.603, Tmax = 0.787k = 024
190557 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0659P)2 + 43.6206P]
where P = (Fo2 + 2Fc2)/3
13724 reflections(Δ/σ)max = 0.001
922 parametersΔρmax = 2.54 e Å3
24 restraintsΔρmin = 1.26 e Å3
Crystal data top
(C18H38N2O6)[U(C54H40O6)O2]·3C2H6OSV = 7263.7 (5) Å3
Mr = 1667.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.8955 (5) ŵ = 2.39 mm1
b = 20.3681 (10) ÅT = 100 K
c = 24.9276 (11) Å0.15 × 0.14 × 0.10 mm
β = 106.169 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
13724 independent reflections
Absorption correction: part of the refinement model (ΔF)
[DELABS in PLATON (Spek, 2003)]
10606 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.787Rint = 0.082
190557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05224 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0659P)2 + 43.6206P]
where P = (Fo2 + 2Fc2)/3
13724 reflectionsΔρmax = 2.54 e Å3
922 parametersΔρmin = 1.26 e Å3
Special details top

Experimental. crystal-to-detector distance 30 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.133598 (17)0.197090 (12)0.733296 (10)0.02805 (9)
O10.1595 (3)0.2436 (2)0.65541 (19)0.0309 (10)
O20.2491 (3)0.1270 (2)0.72441 (19)0.0300 (10)
O30.3193 (3)0.1112 (2)0.8521 (2)0.0340 (11)
O40.1042 (3)0.1428 (2)0.80646 (19)0.0326 (10)
O50.0179 (3)0.2667 (2)0.7371 (2)0.0327 (10)
O60.1136 (3)0.3802 (2)0.69426 (19)0.0304 (10)
O70.0498 (3)0.1455 (2)0.6863 (2)0.0327 (10)
O80.2174 (3)0.2492 (2)0.77825 (19)0.0303 (10)
O90.5468 (3)0.4694 (2)0.87159 (19)0.0344 (11)
O100.5854 (3)0.4563 (2)0.9848 (2)0.0385 (11)
O110.4547 (3)0.3050 (2)0.8434 (2)0.0360 (11)
O120.5374 (4)0.2580 (2)0.9560 (2)0.0402 (12)
O130.2757 (3)0.4412 (2)0.8601 (2)0.0347 (11)
O140.3311 (3)0.3800 (2)0.9650 (2)0.0367 (11)
N10.4032 (4)0.4243 (3)0.7919 (2)0.0316 (12)
H10.417 (5)0.413 (4)0.829 (3)0.038*
N20.5027 (4)0.3527 (3)1.0346 (3)0.0370 (14)
H20.482 (5)0.361 (4)0.996 (3)0.044*
C10.2074 (5)0.3485 (3)0.6339 (3)0.0295 (14)
C20.2244 (5)0.2813 (3)0.6437 (3)0.0326 (15)
C30.3077 (5)0.2537 (3)0.6364 (3)0.0308 (14)
C40.3724 (5)0.2945 (3)0.6226 (3)0.0315 (15)
H40.42740.27630.61850.038*
C50.3579 (5)0.3623 (3)0.6145 (3)0.0330 (15)
C60.2723 (5)0.3881 (3)0.6195 (3)0.0332 (15)
H60.25960.43250.61300.040*
C70.4276 (5)0.4055 (4)0.5981 (3)0.0370 (16)
C80.4368 (5)0.4713 (4)0.6129 (3)0.0440 (18)
H80.40010.48860.63420.053*
C90.4981 (6)0.5115 (4)0.5971 (4)0.050 (2)
H90.50090.55580.60670.060*
C100.5557 (6)0.4876 (4)0.5673 (4)0.057 (2)
H100.59810.51510.55710.068*
C110.5496 (6)0.4216 (4)0.5525 (4)0.059 (2)
H110.58840.40500.53220.070*
C120.4878 (5)0.3808 (4)0.5671 (4)0.047 (2)
H120.48480.33670.55690.057*
C130.3232 (5)0.1800 (3)0.6399 (3)0.0316 (15)
H13A0.26260.15880.63170.038*
H13B0.35130.16740.61070.038*
C140.3832 (5)0.1527 (3)0.6944 (3)0.0295 (14)
C150.3403 (5)0.1266 (3)0.7337 (3)0.0302 (14)
C160.3987 (5)0.0956 (3)0.7823 (3)0.0297 (14)
C170.4947 (5)0.0936 (3)0.7903 (3)0.0310 (14)
H170.53200.07440.82270.037*
C180.5378 (5)0.1195 (3)0.7514 (3)0.0317 (15)
C190.4805 (5)0.1485 (3)0.7043 (3)0.0311 (14)
H190.50740.16600.67800.037*
C200.6403 (5)0.1103 (3)0.7599 (3)0.0343 (15)
C210.6723 (5)0.0895 (4)0.7153 (3)0.0401 (17)
H210.62990.08250.68050.048*
C220.7681 (5)0.0790 (4)0.7223 (4)0.0440 (18)
H220.78900.06500.69240.053*
C230.8313 (5)0.0895 (4)0.7741 (3)0.0443 (18)
H230.89490.08310.77900.053*
C240.8000 (5)0.1093 (4)0.8180 (3)0.0428 (18)
H240.84260.11590.85270.051*
C250.7043 (5)0.1199 (4)0.8113 (3)0.0362 (16)
H250.68390.13340.84160.043*
C260.3560 (5)0.0631 (3)0.8219 (3)0.0309 (14)
H26A0.30610.03430.80170.037*
H26B0.40250.03660.84790.037*
C270.2587 (5)0.0808 (3)0.8806 (3)0.0335 (15)
H27A0.29580.05650.91260.040*
H27B0.21760.05000.85570.040*
C280.2017 (4)0.1313 (3)0.8995 (3)0.0308 (14)
C290.1240 (5)0.1597 (3)0.8601 (3)0.0313 (15)
C300.0676 (5)0.2032 (3)0.8805 (3)0.0310 (14)
C310.0915 (5)0.2201 (3)0.9360 (3)0.0339 (15)
H310.05260.24860.94820.041*
C320.1724 (5)0.1961 (3)0.9754 (3)0.0334 (15)
C330.2247 (5)0.1503 (3)0.9549 (3)0.0326 (15)
H330.27730.13180.97960.039*
C340.2042 (5)0.2203 (3)1.0340 (3)0.0338 (15)
C350.1487 (5)0.2640 (4)1.0547 (3)0.0394 (17)
H350.08850.27381.03320.047*
C360.1827 (6)0.2929 (4)1.1070 (3)0.047 (2)
H360.14540.32241.11950.056*
C370.2712 (6)0.2783 (4)1.1406 (3)0.0463 (19)
H370.29430.29861.17510.056*
C380.3250 (5)0.2328 (4)1.1218 (3)0.0403 (17)
H380.38330.22081.14480.048*
C390.2928 (5)0.2050 (3)1.0693 (3)0.0385 (16)
H390.33070.17561.05710.046*
C400.0212 (5)0.2319 (3)0.8402 (3)0.0342 (15)
H40A0.03940.20440.80710.041*
H40B0.07130.23050.85800.041*
C410.0098 (4)0.3020 (3)0.8225 (3)0.0309 (14)
C420.0088 (4)0.3158 (3)0.7709 (3)0.0287 (14)
C430.0144 (4)0.3821 (3)0.7552 (3)0.0295 (14)
C440.0043 (5)0.4320 (3)0.7914 (3)0.0321 (15)
H440.00840.47530.78060.038*
C450.0114 (5)0.4204 (3)0.8425 (3)0.0327 (15)
C460.0197 (4)0.3535 (3)0.8566 (3)0.0306 (14)
H460.03220.34390.89030.037*
C470.0213 (5)0.4727 (3)0.8816 (3)0.0333 (15)
C480.0452 (5)0.5230 (4)0.8967 (3)0.0409 (17)
H480.09640.52380.88230.049*
C490.0338 (6)0.5718 (4)0.9335 (3)0.0410 (18)
H490.07690.60600.94230.049*
C500.0392 (6)0.5709 (4)0.9571 (3)0.0418 (18)
H500.04420.60310.98260.050*
C510.1053 (6)0.5215 (4)0.9426 (3)0.0418 (17)
H510.15560.52070.95780.050*
C520.0966 (5)0.4727 (4)0.9049 (3)0.0376 (16)
H520.14140.43980.89520.045*
C530.0234 (5)0.3969 (3)0.6982 (3)0.0325 (15)
H53A0.02320.37220.67060.039*
H53B0.01210.44320.69020.039*
C540.1159 (5)0.3771 (3)0.6374 (3)0.0314 (15)
H54A0.10830.42080.62130.038*
H54B0.06470.35010.61610.038*
C550.4382 (5)0.4925 (3)0.7859 (3)0.0346 (15)
H55A0.40110.52430.79930.042*
H55B0.43170.50160.74680.042*
C560.5394 (5)0.4988 (3)0.8187 (3)0.0329 (15)
H56A0.57930.47620.79980.039*
H56B0.55770.54460.82320.039*
C570.6411 (5)0.4597 (4)0.9036 (3)0.0414 (17)
H57A0.67190.50170.91370.050*
H57B0.67490.43520.88210.050*
C580.6401 (5)0.4224 (4)0.9552 (3)0.0413 (17)
H58A0.61420.37900.94490.050*
H58B0.70350.41730.97890.050*
C590.6141 (5)0.4482 (4)1.0441 (3)0.0395 (17)
H59A0.57900.47821.06080.047*
H59B0.67980.45931.05820.047*
C600.5992 (5)0.3788 (4)1.0613 (3)0.0417 (18)
H60A0.64440.35031.05150.050*
H60B0.61090.37741.10150.050*
C610.4524 (5)0.3741 (3)0.7667 (3)0.0351 (16)
H61A0.51900.38310.77820.042*
H61B0.43100.37750.72640.042*
C620.4355 (5)0.3051 (3)0.7841 (3)0.0344 (15)
H62A0.37120.29230.76690.041*
H62B0.47620.27440.77250.041*
C630.4423 (6)0.2394 (3)0.8621 (3)0.0388 (17)
H63A0.49150.21110.85680.047*
H63B0.38280.22190.84020.047*
C640.4450 (5)0.2404 (4)0.9226 (3)0.0369 (16)
H64A0.39990.27190.92850.044*
H64B0.42840.19740.93360.044*
C650.5535 (6)0.2407 (4)1.0129 (3)0.0437 (18)
H65A0.61930.24681.03180.052*
H65B0.53920.19451.01520.052*
C660.4960 (6)0.2804 (3)1.0429 (3)0.0407 (17)
H66A0.43100.26711.02940.049*
H66B0.51710.27071.08250.049*
C670.2984 (5)0.4204 (4)0.7684 (3)0.0352 (16)
H67A0.27900.37480.76730.042*
H67B0.28080.43700.73040.042*
C680.2480 (5)0.4596 (3)0.8030 (3)0.0338 (15)
H68A0.26070.50590.79990.041*
H68B0.18110.45290.78820.041*
C690.2430 (5)0.3770 (3)0.8696 (3)0.0368 (16)
H69A0.28520.34380.86290.044*
H69B0.18150.36940.84420.044*
C700.2384 (5)0.3727 (4)0.9287 (3)0.0381 (16)
H70A0.19830.40710.93610.046*
H70B0.21270.33060.93510.046*
C710.3332 (5)0.3732 (4)1.0223 (3)0.0370 (16)
H71A0.31680.32881.02990.044*
H71B0.28910.40321.03150.044*
C720.4311 (5)0.3890 (4)1.0561 (3)0.0395 (17)
H72A0.43870.37711.09480.047*
H72B0.44160.43591.05460.047*
S10.73142 (17)0.35714 (13)0.75263 (11)0.0609 (6)
S20.3033 (2)0.22662 (13)0.47080 (12)0.0747 (8)
S30.90902 (15)0.48657 (10)0.56530 (9)0.0476 (5)
O150.6919 (4)0.3921 (3)0.7943 (2)0.0563 (15)
O160.3995 (7)0.2231 (5)0.4860 (4)0.113 (3)
O170.9189 (4)0.4341 (3)0.5261 (3)0.0543 (15)
C730.6319 (9)0.3254 (7)0.7019 (6)0.100 (4)
H73A0.60650.28920.71750.150*
H73B0.65000.31070.66980.150*
H73C0.58540.35920.69090.150*
C740.7603 (8)0.4178 (6)0.7100 (4)0.077 (3)
H74A0.70750.44620.69570.116*
H74B0.77690.39730.67940.116*
H74C0.81220.44320.73160.116*
C750.2515 (7)0.2116 (4)0.3979 (4)0.059 (2)
H75A0.27660.24190.37640.088*
H75B0.18510.21740.38930.088*
H75C0.26520.16750.38910.088*
C760.2664 (7)0.3096 (5)0.4696 (4)0.063 (3)
H76A0.27900.32570.50710.095*
H76B0.20060.31220.45160.095*
H76C0.29970.33570.44940.095*
C770.7908 (7)0.4913 (6)0.5635 (5)0.076 (3)
H77A0.75350.49640.52560.114*
H77B0.78130.52840.58510.114*
H77C0.77280.45180.57890.114*
C780.9180 (8)0.5643 (5)0.5352 (5)0.069 (3)
H78A0.97920.56900.53000.103*
H78B0.90800.59830.55960.103*
H78C0.87170.56760.49980.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.03056 (14)0.02163 (13)0.03134 (14)0.00021 (10)0.00758 (10)0.00186 (11)
O10.031 (2)0.030 (2)0.033 (2)0.0069 (19)0.010 (2)0.001 (2)
O20.031 (2)0.023 (2)0.034 (2)0.0076 (18)0.008 (2)0.0026 (19)
O30.039 (3)0.024 (2)0.043 (3)0.0015 (19)0.019 (2)0.002 (2)
O40.037 (3)0.028 (2)0.034 (3)0.004 (2)0.014 (2)0.001 (2)
O50.029 (2)0.027 (2)0.041 (3)0.0067 (19)0.006 (2)0.004 (2)
O60.037 (3)0.020 (2)0.034 (2)0.0029 (19)0.009 (2)0.0034 (19)
O70.031 (2)0.028 (2)0.038 (3)0.0005 (19)0.008 (2)0.002 (2)
O80.033 (2)0.025 (2)0.033 (2)0.0010 (19)0.010 (2)0.0000 (19)
O90.036 (3)0.033 (3)0.034 (3)0.001 (2)0.010 (2)0.002 (2)
O100.044 (3)0.035 (3)0.035 (3)0.003 (2)0.009 (2)0.002 (2)
O110.044 (3)0.025 (2)0.038 (3)0.005 (2)0.009 (2)0.003 (2)
O120.045 (3)0.036 (3)0.036 (3)0.003 (2)0.006 (2)0.001 (2)
O130.036 (3)0.031 (3)0.037 (3)0.008 (2)0.009 (2)0.000 (2)
O140.036 (3)0.041 (3)0.032 (3)0.003 (2)0.007 (2)0.001 (2)
N10.036 (3)0.027 (3)0.032 (3)0.005 (2)0.008 (3)0.003 (2)
N20.048 (4)0.026 (3)0.033 (3)0.001 (3)0.006 (3)0.002 (2)
C10.038 (4)0.027 (3)0.024 (3)0.002 (3)0.009 (3)0.005 (3)
C20.038 (4)0.033 (4)0.028 (3)0.005 (3)0.011 (3)0.001 (3)
C30.030 (3)0.038 (4)0.024 (3)0.001 (3)0.007 (3)0.001 (3)
C40.030 (3)0.028 (4)0.036 (4)0.008 (3)0.009 (3)0.001 (3)
C50.036 (4)0.031 (4)0.034 (4)0.001 (3)0.013 (3)0.004 (3)
C60.044 (4)0.022 (3)0.033 (4)0.002 (3)0.009 (3)0.005 (3)
C70.033 (4)0.039 (4)0.039 (4)0.002 (3)0.010 (3)0.000 (3)
C80.044 (4)0.036 (4)0.055 (5)0.007 (3)0.018 (4)0.001 (4)
C90.046 (4)0.029 (4)0.081 (6)0.001 (3)0.027 (4)0.005 (4)
C100.052 (5)0.039 (5)0.090 (7)0.008 (4)0.038 (5)0.000 (4)
C110.061 (5)0.043 (5)0.088 (7)0.006 (4)0.048 (5)0.004 (5)
C120.047 (4)0.032 (4)0.071 (6)0.002 (3)0.030 (4)0.002 (4)
C130.037 (4)0.030 (4)0.026 (3)0.004 (3)0.008 (3)0.002 (3)
C140.034 (4)0.021 (3)0.033 (3)0.001 (3)0.008 (3)0.004 (3)
C150.032 (4)0.023 (3)0.037 (4)0.003 (3)0.011 (3)0.000 (3)
C160.037 (4)0.018 (3)0.036 (4)0.001 (3)0.012 (3)0.004 (3)
C170.037 (4)0.022 (3)0.033 (4)0.005 (3)0.009 (3)0.000 (3)
C180.036 (4)0.025 (3)0.036 (4)0.001 (3)0.013 (3)0.002 (3)
C190.037 (4)0.023 (3)0.035 (4)0.003 (3)0.012 (3)0.001 (3)
C200.039 (4)0.021 (3)0.043 (4)0.001 (3)0.013 (3)0.001 (3)
C210.037 (4)0.044 (4)0.041 (4)0.001 (3)0.014 (3)0.000 (3)
C220.045 (4)0.038 (4)0.053 (5)0.010 (3)0.021 (4)0.004 (4)
C230.035 (4)0.039 (4)0.061 (5)0.004 (3)0.017 (4)0.000 (4)
C240.034 (4)0.045 (5)0.047 (4)0.002 (3)0.009 (3)0.002 (4)
C250.035 (4)0.034 (4)0.041 (4)0.004 (3)0.013 (3)0.003 (3)
C260.031 (3)0.025 (3)0.034 (4)0.004 (3)0.005 (3)0.001 (3)
C270.036 (4)0.027 (4)0.042 (4)0.001 (3)0.016 (3)0.003 (3)
C280.029 (3)0.026 (3)0.039 (4)0.001 (3)0.013 (3)0.004 (3)
C290.036 (4)0.023 (3)0.042 (4)0.007 (3)0.021 (3)0.001 (3)
C300.034 (3)0.018 (3)0.043 (4)0.000 (3)0.013 (3)0.001 (3)
C310.036 (4)0.024 (3)0.044 (4)0.001 (3)0.015 (3)0.000 (3)
C320.035 (4)0.029 (3)0.037 (4)0.003 (3)0.011 (3)0.004 (3)
C330.036 (4)0.026 (3)0.037 (4)0.000 (3)0.012 (3)0.005 (3)
C340.041 (4)0.023 (3)0.040 (4)0.002 (3)0.016 (3)0.002 (3)
C350.043 (4)0.038 (4)0.039 (4)0.005 (3)0.013 (3)0.003 (3)
C360.060 (5)0.041 (5)0.041 (4)0.016 (4)0.016 (4)0.001 (3)
C370.064 (5)0.032 (4)0.040 (4)0.008 (4)0.009 (4)0.001 (3)
C380.037 (4)0.035 (4)0.045 (4)0.008 (3)0.006 (3)0.004 (3)
C390.042 (4)0.028 (4)0.044 (4)0.003 (3)0.010 (3)0.001 (3)
C400.036 (4)0.029 (4)0.041 (4)0.000 (3)0.015 (3)0.001 (3)
C410.029 (3)0.025 (3)0.037 (4)0.003 (3)0.008 (3)0.001 (3)
C420.022 (3)0.028 (4)0.035 (4)0.001 (2)0.007 (3)0.000 (3)
C430.030 (3)0.019 (3)0.036 (4)0.006 (3)0.004 (3)0.003 (3)
C440.036 (4)0.022 (3)0.037 (4)0.002 (3)0.008 (3)0.003 (3)
C450.031 (3)0.026 (4)0.042 (4)0.001 (3)0.011 (3)0.000 (3)
C460.030 (3)0.023 (3)0.040 (4)0.001 (3)0.011 (3)0.004 (3)
C470.041 (4)0.025 (3)0.034 (4)0.006 (3)0.010 (3)0.001 (3)
C480.048 (4)0.035 (4)0.043 (4)0.003 (3)0.016 (4)0.000 (3)
C490.061 (5)0.026 (4)0.036 (4)0.005 (3)0.014 (4)0.000 (3)
C500.058 (5)0.028 (4)0.038 (4)0.009 (3)0.010 (4)0.004 (3)
C510.048 (4)0.039 (4)0.043 (4)0.009 (3)0.019 (4)0.000 (3)
C520.036 (4)0.034 (4)0.044 (4)0.005 (3)0.013 (3)0.002 (3)
C530.033 (4)0.031 (4)0.033 (4)0.003 (3)0.007 (3)0.006 (3)
C540.044 (4)0.014 (3)0.036 (4)0.006 (3)0.012 (3)0.001 (3)
C550.041 (4)0.025 (4)0.038 (4)0.003 (3)0.011 (3)0.001 (3)
C560.036 (4)0.027 (4)0.036 (4)0.002 (3)0.011 (3)0.001 (3)
C570.036 (4)0.042 (4)0.046 (4)0.002 (3)0.011 (3)0.006 (3)
C580.042 (4)0.038 (4)0.042 (4)0.003 (3)0.011 (3)0.001 (3)
C590.046 (4)0.036 (4)0.036 (4)0.003 (3)0.010 (3)0.004 (3)
C600.050 (5)0.038 (4)0.033 (4)0.001 (3)0.005 (3)0.001 (3)
C610.036 (4)0.033 (4)0.036 (4)0.005 (3)0.010 (3)0.002 (3)
C620.037 (4)0.032 (4)0.034 (4)0.001 (3)0.010 (3)0.005 (3)
C630.052 (4)0.022 (3)0.038 (4)0.002 (3)0.006 (3)0.002 (3)
C640.042 (4)0.028 (4)0.036 (4)0.002 (3)0.005 (3)0.003 (3)
C650.054 (5)0.035 (4)0.038 (4)0.004 (3)0.005 (4)0.002 (3)
C660.056 (5)0.024 (4)0.039 (4)0.003 (3)0.009 (4)0.002 (3)
C670.029 (4)0.033 (4)0.041 (4)0.001 (3)0.004 (3)0.002 (3)
C680.035 (4)0.030 (4)0.037 (4)0.001 (3)0.012 (3)0.001 (3)
C690.047 (4)0.027 (4)0.033 (4)0.000 (3)0.006 (3)0.006 (3)
C700.036 (4)0.034 (4)0.041 (4)0.001 (3)0.006 (3)0.002 (3)
C710.041 (4)0.032 (4)0.037 (4)0.000 (3)0.009 (3)0.001 (3)
C720.051 (4)0.033 (4)0.030 (4)0.004 (3)0.003 (3)0.002 (3)
S10.0542 (13)0.0646 (15)0.0661 (15)0.0134 (11)0.0205 (11)0.0112 (12)
S20.0722 (16)0.0530 (14)0.0792 (17)0.0167 (12)0.0115 (13)0.0111 (12)
S30.0528 (12)0.0385 (11)0.0481 (11)0.0042 (9)0.0084 (9)0.0026 (9)
O150.054 (4)0.063 (4)0.052 (3)0.010 (3)0.017 (3)0.008 (3)
O160.107 (5)0.113 (5)0.118 (5)0.000 (4)0.029 (4)0.002 (4)
O170.053 (3)0.050 (4)0.062 (4)0.009 (3)0.018 (3)0.011 (3)
C730.096 (6)0.107 (6)0.103 (6)0.006 (4)0.035 (4)0.024 (4)
C740.080 (7)0.093 (9)0.063 (6)0.015 (6)0.027 (6)0.010 (6)
C750.069 (6)0.040 (5)0.073 (6)0.006 (4)0.030 (5)0.012 (4)
C760.082 (7)0.057 (6)0.040 (5)0.012 (5)0.001 (5)0.007 (4)
C770.076 (5)0.075 (5)0.084 (5)0.008 (4)0.033 (4)0.014 (4)
C780.089 (7)0.043 (5)0.085 (7)0.013 (5)0.041 (6)0.013 (5)
Geometric parameters (Å, º) top
U1—O12.288 (4)C38—C391.384 (10)
U1—O22.292 (4)C38—H380.9300
U1—O42.277 (5)C39—H390.9300
U1—O52.254 (4)C40—C411.518 (9)
U1—O71.794 (5)C40—H40A0.9700
U1—O81.778 (4)C40—H40B0.9700
O1—C21.329 (8)C41—C461.385 (9)
O2—C151.314 (8)C41—C421.417 (10)
O3—C261.433 (8)C42—C431.415 (9)
O3—C271.434 (8)C43—C441.395 (9)
O4—C291.333 (8)C43—C531.494 (9)
O5—C421.338 (8)C44—C451.376 (10)
O6—C531.415 (8)C44—H440.9300
O6—C541.430 (8)C45—C461.422 (9)
O9—C561.423 (8)C45—C471.480 (10)
O9—C571.423 (9)C46—H460.9300
O10—C581.422 (9)C47—C521.399 (10)
O10—C591.430 (8)C47—C481.401 (10)
O11—C621.425 (8)C48—C491.395 (10)
O11—C631.444 (8)C48—H480.9300
O12—C651.414 (9)C49—C501.374 (11)
O12—C641.442 (8)C49—H490.9300
O13—C681.417 (8)C50—C511.384 (11)
O13—C691.437 (8)C50—H500.9300
O14—C711.428 (8)C51—C521.397 (10)
O14—C701.433 (8)C51—H510.9300
N1—C611.493 (9)C52—H520.9300
N1—C551.507 (8)C53—H53A0.9700
N1—C671.509 (9)C53—H53B0.9700
N1—H10.92 (8)C54—H54A0.9700
N2—C661.494 (9)C54—H54B0.9700
N2—C601.502 (10)C55—C561.507 (10)
N2—C721.515 (10)C55—H55A0.9700
N2—H20.95 (8)C55—H55B0.9700
C1—C61.380 (10)C56—H56A0.9700
C1—C21.400 (10)C56—H56B0.9700
C1—C541.507 (9)C57—C581.496 (11)
C2—C31.419 (10)C57—H57A0.9700
C3—C41.387 (10)C57—H57B0.9700
C3—C131.519 (9)C58—H58A0.9700
C4—C51.404 (9)C58—H58B0.9700
C4—H40.9300C59—C601.511 (10)
C5—C61.416 (10)C59—H59A0.9700
C5—C71.501 (10)C59—H59B0.9700
C6—H60.9300C60—H60A0.9700
C7—C81.388 (11)C60—H60B0.9700
C7—C121.428 (10)C61—C621.513 (10)
C8—C91.364 (11)C61—H61A0.9700
C8—H80.9300C61—H61B0.9700
C9—C101.371 (12)C62—H62A0.9700
C9—H90.9300C62—H62B0.9700
C10—C111.390 (12)C63—C641.496 (10)
C10—H100.9300C63—H63A0.9700
C11—C121.365 (11)C63—H63B0.9700
C11—H110.9300C64—H64A0.9700
C12—H120.9300C64—H64B0.9700
C13—C141.509 (9)C65—C661.519 (11)
C13—H13A0.9700C65—H65A0.9700
C13—H13B0.9700C65—H65B0.9700
C14—C191.403 (9)C66—H66A0.9700
C14—C151.413 (10)C66—H66B0.9700
C15—C161.427 (9)C67—C681.518 (10)
C16—C171.388 (9)C67—H67A0.9700
C16—C261.472 (9)C67—H67B0.9700
C17—C181.405 (10)C68—H68A0.9700
C17—H170.9300C68—H68B0.9700
C18—C191.378 (9)C69—C701.496 (10)
C18—C201.493 (9)C69—H69A0.9700
C19—H190.9300C69—H69B0.9700
C20—C251.381 (10)C70—H70A0.9700
C20—C211.394 (10)C70—H70B0.9700
C21—C221.404 (10)C71—C721.501 (10)
C21—H210.9300C71—H71A0.9700
C22—C231.388 (11)C71—H71B0.9700
C22—H220.9300C72—H72A0.9700
C23—C241.362 (11)C72—H72B0.9700
C23—H230.9300S1—O151.507 (6)
C24—C251.406 (10)S1—C741.760 (12)
C24—H240.9300S1—C731.781 (13)
C25—H250.9300S2—O161.378 (10)
C26—H26A0.9700S2—C761.775 (9)
C26—H26B0.9700S2—C751.791 (10)
C27—C281.493 (9)S3—O171.484 (6)
C27—H27A0.9700S3—C771.752 (11)
C27—H27B0.9700S3—C781.772 (9)
C28—C331.382 (10)C73—H73A0.9600
C28—C291.415 (10)C73—H73B0.9600
C29—C301.408 (9)C73—H73C0.9600
C30—C311.374 (10)C74—H74A0.9600
C30—C401.536 (9)C74—H74B0.9600
C31—C321.414 (10)C74—H74C0.9600
C31—H310.9300C75—H75A0.9600
C32—C331.401 (10)C75—H75B0.9600
C32—C341.488 (10)C75—H75C0.9600
C33—H330.9300C76—H76A0.9600
C34—C391.402 (10)C76—H76B0.9600
C34—C351.408 (10)C76—H76C0.9600
C35—C361.389 (11)C77—H77A0.9600
C35—H350.9300C77—H77B0.9600
C36—C371.383 (11)C77—H77C0.9600
C36—H360.9300C78—H78A0.9600
C37—C381.389 (11)C78—H78B0.9600
C37—H370.9300C78—H78C0.9600
O1—U1—O282.39 (16)C44—C43—C53121.6 (6)
O2—U1—O495.26 (16)C42—C43—C53118.9 (6)
O4—U1—O587.27 (17)C45—C44—C43123.4 (6)
O5—U1—O194.96 (17)C45—C44—H44118.3
O1—U1—O786.57 (19)C43—C44—H44118.3
O1—U1—O891.88 (18)C44—C45—C46116.3 (6)
O2—U1—O788.67 (18)C44—C45—C47124.0 (6)
O2—U1—O891.10 (18)C46—C45—C47119.7 (6)
O4—U1—O789.09 (19)C41—C46—C45122.8 (7)
O4—U1—O892.46 (19)C41—C46—H46118.6
O5—U1—O789.69 (19)C45—C46—H46118.6
O5—U1—O890.47 (18)C52—C47—C48118.5 (7)
O8—U1—O7178.4 (2)C52—C47—C45120.8 (6)
O4—U1—O1175.10 (16)C48—C47—C45120.7 (7)
O5—U1—O2176.96 (16)C49—C48—C47119.4 (7)
O8—U1—O664.62 (16)C49—C48—H48120.3
O7—U1—O6114.34 (16)C47—C48—H48120.3
O5—U1—O652.70 (14)C50—C49—C48121.9 (7)
O4—U1—O6130.92 (14)C50—C49—H49119.1
O1—U1—O653.34 (14)C48—C49—H49119.1
O2—U1—O6125.93 (14)C49—C50—C51119.2 (7)
O8—U1—O363.94 (16)C49—C50—H50120.4
O7—U1—O3117.02 (16)C51—C50—H50120.4
O5—U1—O3130.20 (14)C50—C51—C52120.0 (7)
O4—U1—O354.70 (14)C50—C51—H51120.0
O1—U1—O3125.76 (13)C52—C51—H51120.0
O2—U1—O352.83 (13)C51—C52—C47120.9 (7)
O6—U1—O3128.47 (10)C51—C52—H52119.5
C2—O1—U1136.9 (4)C47—C52—H52119.5
C15—O2—U1138.9 (4)O6—C53—C43110.9 (5)
C26—O3—C27110.4 (5)O6—C53—H53A109.5
C26—O3—U1101.8 (3)C43—C53—H53A109.5
C27—O3—U199.2 (4)O6—C53—H53B109.5
C29—O4—U1129.9 (4)C43—C53—H53B109.5
C42—O5—U1135.1 (4)H53A—C53—H53B108.1
C53—O6—C54111.4 (5)O6—C54—C1110.3 (5)
C53—O6—U1102.9 (3)O6—C54—H54A109.6
C54—O6—U1100.7 (3)C1—C54—H54A109.6
C56—O9—C57112.8 (5)O6—C54—H54B109.6
C58—O10—C59115.6 (6)C1—C54—H54B109.6
C62—O11—C63109.3 (5)H54A—C54—H54B108.1
C65—O12—C64112.7 (6)N1—C55—C56110.2 (6)
C68—O13—C69112.8 (5)N1—C55—H55A109.6
C71—O14—C70111.7 (5)C56—C55—H55A109.6
C61—N1—C55111.4 (6)N1—C55—H55B109.6
C61—N1—C67112.2 (5)C56—C55—H55B109.6
C55—N1—C67111.1 (5)H55A—C55—H55B108.1
C61—N1—H1105 (5)O9—C56—C55106.0 (5)
C55—N1—H1110 (5)O9—C56—H56A110.5
C67—N1—H1107 (5)C55—C56—H56A110.5
C66—N2—C60112.4 (6)O9—C56—H56B110.5
C66—N2—C72110.6 (6)C55—C56—H56B110.5
C60—N2—C72110.6 (6)H56A—C56—H56B108.7
C66—N2—H2108 (5)O9—C57—C58107.9 (6)
C60—N2—H2112 (5)O9—C57—H57A110.1
C72—N2—H2103 (5)C58—C57—H57A110.1
C6—C1—C2120.7 (6)O9—C57—H57B110.1
C6—C1—C54119.9 (6)C58—C57—H57B110.1
C2—C1—C54119.4 (6)H57A—C57—H57B108.4
O1—C2—C1119.7 (6)O10—C58—C57110.1 (6)
O1—C2—C3120.9 (6)O10—C58—H58A109.6
C1—C2—C3119.2 (6)C57—C58—H58A109.6
C4—C3—C2119.1 (6)O10—C58—H58B109.6
C4—C3—C13120.1 (6)C57—C58—H58B109.6
C2—C3—C13120.6 (6)H58A—C58—H58B108.2
C3—C4—C5122.3 (6)O10—C59—C60112.0 (6)
C3—C4—H4118.8O10—C59—H59A109.2
C5—C4—H4118.8C60—C59—H59A109.2
C4—C5—C6117.3 (6)O10—C59—H59B109.2
C4—C5—C7121.6 (6)C60—C59—H59B109.2
C6—C5—C7121.0 (6)H59A—C59—H59B107.9
C1—C6—C5121.2 (6)N2—C60—C59113.8 (6)
C1—C6—H6119.4N2—C60—H60A108.8
C5—C6—H6119.4C59—C60—H60A108.8
C8—C7—C12117.0 (7)N2—C60—H60B108.8
C8—C7—C5121.2 (7)C59—C60—H60B108.8
C12—C7—C5121.8 (7)H60A—C60—H60B107.7
C9—C8—C7121.9 (8)N1—C61—C62112.0 (6)
C9—C8—H8119.1N1—C61—H61A109.2
C7—C8—H8119.1C62—C61—H61A109.2
C8—C9—C10120.9 (8)N1—C61—H61B109.2
C8—C9—H9119.5C62—C61—H61B109.2
C10—C9—H9119.5H61A—C61—H61B107.9
C9—C10—C11118.9 (8)O11—C62—C61107.2 (5)
C9—C10—H10120.6O11—C62—H62A110.3
C11—C10—H10120.6C61—C62—H62A110.3
C12—C11—C10121.1 (8)O11—C62—H62B110.3
C12—C11—H11119.4C61—C62—H62B110.3
C10—C11—H11119.4H62A—C62—H62B108.5
C11—C12—C7120.2 (8)O11—C63—C64110.1 (6)
C11—C12—H12119.9O11—C63—H63A109.6
C7—C12—H12119.9C64—C63—H63A109.6
C14—C13—C3117.3 (5)O11—C63—H63B109.6
C14—C13—H13A108.0C64—C63—H63B109.6
C3—C13—H13A108.0H63A—C63—H63B108.2
C14—C13—H13B108.0O12—C64—C63109.8 (6)
C3—C13—H13B108.0O12—C64—H64A109.7
H13A—C13—H13B107.2C63—C64—H64A109.7
C19—C14—C15120.0 (6)O12—C64—H64B109.7
C19—C14—C13120.2 (6)C63—C64—H64B109.7
C15—C14—C13119.6 (6)H64A—C64—H64B108.2
O2—C15—C14121.3 (6)O12—C65—C66113.5 (6)
O2—C15—C16120.6 (6)O12—C65—H65A108.9
C14—C15—C16118.0 (6)C66—C65—H65A108.9
C17—C16—C15119.6 (6)O12—C65—H65B108.9
C17—C16—C26120.7 (6)C66—C65—H65B108.9
C15—C16—C26119.6 (6)H65A—C65—H65B107.7
C16—C17—C18122.8 (6)N2—C66—C65112.8 (6)
C16—C17—H17118.6N2—C66—H66A109.0
C18—C17—H17118.6C65—C66—H66A109.0
C19—C18—C17117.0 (6)N2—C66—H66B109.0
C19—C18—C20122.7 (6)C65—C66—H66B109.0
C17—C18—C20120.1 (6)H66A—C66—H66B107.8
C18—C19—C14122.7 (6)N1—C67—C68112.0 (6)
C18—C19—H19118.7N1—C67—H67A109.2
C14—C19—H19118.7C68—C67—H67A109.2
C25—C20—C21118.9 (7)N1—C67—H67B109.2
C25—C20—C18121.8 (6)C68—C67—H67B109.2
C21—C20—C18119.2 (6)H67A—C67—H67B107.9
C20—C21—C22120.5 (7)O13—C68—C67112.3 (6)
C20—C21—H21119.7O13—C68—H68A109.1
C22—C21—H21119.7C67—C68—H68A109.1
C23—C22—C21119.7 (7)O13—C68—H68B109.1
C23—C22—H22120.2C67—C68—H68B109.1
C21—C22—H22120.2H68A—C68—H68B107.9
C24—C23—C22119.8 (7)O13—C69—C70109.1 (6)
C24—C23—H23120.1O13—C69—H69A109.9
C22—C23—H23120.1C70—C69—H69A109.9
C23—C24—C25120.9 (7)O13—C69—H69B109.9
C23—C24—H24119.6C70—C69—H69B109.9
C25—C24—H24119.6H69A—C69—H69B108.3
C20—C25—C24120.2 (7)O14—C70—C69108.3 (6)
C20—C25—H25119.9O14—C70—H70A110.0
C24—C25—H25119.9C69—C70—H70A110.0
O3—C26—C16110.1 (5)O14—C70—H70B110.0
O3—C26—H26A109.6C69—C70—H70B110.0
C16—C26—H26A109.6H70A—C70—H70B108.4
O3—C26—H26B109.6O14—C71—C72106.8 (6)
C16—C26—H26B109.6O14—C71—H71A110.4
H26A—C26—H26B108.2C72—C71—H71A110.4
O3—C27—C28110.5 (5)O14—C71—H71B110.4
O3—C27—H27A109.6C72—C71—H71B110.4
C28—C27—H27A109.6H71A—C71—H71B108.6
O3—C27—H27B109.6C71—C72—N2111.5 (6)
C28—C27—H27B109.6C71—C72—H72A109.3
H27A—C27—H27B108.1N2—C72—H72A109.3
C33—C28—C29120.4 (6)C71—C72—H72B109.3
C33—C28—C27120.3 (6)N2—C72—H72B109.3
C29—C28—C27119.4 (6)H72A—C72—H72B108.0
O4—C29—C30122.4 (6)O15—S1—C74107.0 (5)
O4—C29—C28119.9 (6)O15—S1—C73104.7 (5)
C30—C29—C28117.6 (6)C74—S1—C7396.9 (6)
C31—C30—C29120.4 (6)O16—S2—C76110.3 (6)
C31—C30—C40119.9 (6)O16—S2—C75113.0 (6)
C29—C30—C40119.7 (6)C76—S2—C7595.8 (4)
C30—C31—C32123.1 (6)O17—S3—C77107.8 (4)
C30—C31—H31118.5O17—S3—C78109.4 (4)
C32—C31—H31118.5C77—S3—C7897.7 (5)
C33—C32—C31115.4 (6)S1—C73—H73A109.5
C33—C32—C34121.5 (6)S1—C73—H73B109.5
C31—C32—C34123.0 (6)H73A—C73—H73B109.5
C28—C33—C32122.9 (6)S1—C73—H73C109.5
C28—C33—H33118.6H73A—C73—H73C109.5
C32—C33—H33118.6H73B—C73—H73C109.5
C39—C34—C35117.2 (7)S1—C74—H74A109.5
C39—C34—C32121.9 (6)S1—C74—H74B109.5
C35—C34—C32120.7 (6)H74A—C74—H74B109.5
C36—C35—C34120.9 (7)S1—C74—H74C109.5
C36—C35—H35119.5H74A—C74—H74C109.5
C34—C35—H35119.5H74B—C74—H74C109.5
C37—C36—C35121.0 (7)S2—C75—H75A109.5
C37—C36—H36119.5S2—C75—H75B109.5
C35—C36—H36119.5H75A—C75—H75B109.5
C36—C37—C38118.7 (7)S2—C75—H75C109.5
C36—C37—H37120.6H75A—C75—H75C109.5
C38—C37—H37120.6H75B—C75—H75C109.5
C39—C38—C37120.8 (7)S2—C76—H76A109.5
C39—C38—H38119.6S2—C76—H76B109.5
C37—C38—H38119.6H76A—C76—H76B109.5
C38—C39—C34121.3 (7)S2—C76—H76C109.5
C38—C39—H39119.3H76A—C76—H76C109.5
C34—C39—H39119.3H76B—C76—H76C109.5
C41—C40—C30113.8 (6)S3—C77—H77A109.5
C41—C40—H40A108.8S3—C77—H77B109.5
C30—C40—H40A108.8H77A—C77—H77B109.5
C41—C40—H40B108.8S3—C77—H77C109.5
C30—C40—H40B108.8H77A—C77—H77C109.5
H40A—C40—H40B107.7H77B—C77—H77C109.5
C46—C41—C42119.2 (6)S3—C78—H78A109.5
C46—C41—C40119.6 (6)S3—C78—H78B109.5
C42—C41—C40121.1 (6)H78A—C78—H78B109.5
O5—C42—C43121.0 (6)S3—C78—H78C109.5
O5—C42—C41120.1 (6)H78A—C78—H78C109.5
C43—C42—C41118.8 (6)H78B—C78—H78C109.5
C44—C43—C42119.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O90.92 (8)2.24 (7)2.647 (7)106 (6)
N1—H1···O110.92 (8)2.28 (8)2.756 (8)112 (6)
N1—H1···O130.92 (8)2.50 (8)2.901 (8)107 (5)
N2—H2···O100.95 (8)2.53 (8)2.892 (8)103 (5)
N2—H2···O120.95 (8)2.55 (8)2.895 (8)101 (5)
N2—H2···O140.95 (8)2.20 (8)2.718 (8)113 (6)
C61—H61B···Cg10.972.973.77141
C69—H69B···Cg20.972.643.56159
C71—H71A···Cg30.972.663.52148

Experimental details

Crystal data
Chemical formula(C18H38N2O6)[U(C54H40O6)O2]·3C2H6OS
Mr1667.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.8955 (5), 20.3681 (10), 24.9276 (11)
β (°) 106.169 (3)
V3)7263.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.15 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
[DELABS in PLATON (Spek, 2003)]
Tmin, Tmax0.603, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
190557, 13724, 10606
Rint0.082
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.04
No. of reflections13724
No. of parameters922
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0659P)2 + 43.6206P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.54, 1.26

Computer programs: COLLECT (Hooft, 1998), HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999); PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
U1—O12.288 (4)U1—O52.254 (4)
U1—O22.292 (4)U1—O71.794 (5)
U1—O42.277 (5)U1—O81.778 (4)
O1—U1—O282.39 (16)O2—U1—O891.10 (18)
O2—U1—O495.26 (16)O4—U1—O789.09 (19)
O4—U1—O587.27 (17)O4—U1—O892.46 (19)
O5—U1—O194.96 (17)O5—U1—O789.69 (19)
O1—U1—O786.57 (19)O5—U1—O890.47 (18)
O1—U1—O891.88 (18)O8—U1—O7178.4 (2)
O2—U1—O788.67 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O90.92 (8)2.24 (7)2.647 (7)106 (6)
N1—H1···O110.92 (8)2.28 (8)2.756 (8)112 (6)
N1—H1···O130.92 (8)2.50 (8)2.901 (8)107 (5)
N2—H2···O100.95 (8)2.53 (8)2.892 (8)103 (5)
N2—H2···O120.95 (8)2.55 (8)2.895 (8)101 (5)
N2—H2···O140.95 (8)2.20 (8)2.718 (8)113 (6)
C61—H61B···Cg10.972.973.77141
C69—H69B···Cg20.972.643.56159
C71—H71A···Cg30.972.663.52148
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds