Download citation
Download citation
link to html
The title complex, [Cu(C11H14BrN2O)(NCS)]n, is an inter­esting thio­cyanate-bridged polynuclear copper(II) compound, which crystallizes with two independent mol­ecules in the asymmetric unit. Each CuII atom is five-coordinate in a square-pyramidal configuration, with one O and two N atoms of one Schiff base ligand and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the apical position. The {4-bromo-2-[2-(dimethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II) units are linked by the bridging thio­cyanate ligands, forming polymeric chains running along the a axis. There are weak inter­molecular C—H...O and C—H...S hydrogen bonds between the chains in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023139/dn1095sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023139/dn1095Isup2.hkl
Contains datablock I

CCDC reference: 285639

Comment top

The magnetic properties of extended coordination compounds featuring exchange-coupled magnetic centers have become a fascinating subject in recent years (Dalai et al., 2002; Bhaduri et al., 2003). The prime strategy for designing these molecular materials is to use a suitable bridging ligand that determines the nature of the magnetic interactions (Koner et al., 2003). Owing to the versatile coordination modes of the ambidentate thiocyanate ligand and the wide range of magnetic coupling mediated by thiocyanate bridges, this pseudohalide ligand has become one of the most extensively studied building blocks in the field (Sailaja et al., 2003; Dey et al., 2004). Thiocyanate complexes of various dimensionalities have been obtained (Zurowska et al., 2002; Zhang et al., 2003; You, 2005a). These also include some examples of the so-called alternating one-dimensional magnetic systems, which have two or more different structural bridges and which are of considerable interest in terms of their magnetic behavior (Vicente et al., 1992; Escuer et al., 1994; Ribas et al., 1995; Vicente & Escuer, 1995). A major obstacle to a more comprehensive study of such thiocyanate-based polymeric coordination compounds is the lack of rational synthetic procedures, since with the present state of knowledge it is hardly possible to determine which coordination mode will be adopted by the thiocyanate ligand and whether the sought-after alternating chain structure will finally be formed (Tercero et al., 2002; Ribas et al., 1999; Liu et al., 2003).

Our work is aimed at obtaining multidimensional polymetallic complexes. On the basis of the above considerations, we designed and synthesized a flexible tridentate ligand, 4-bromo-2-[2-(dimethylamino)ethyliminomethyl]phenol (BDMP). The reason we do not use a rigid ligand is that the flexible BDMP ligand can adopt a different coordination mode according to the geometric need of transition metal ions and the coordination environment (Mondal et al., 2001). The second ligand, viz. thiocyanate, is a well known bridging group. It readily bridges different metal ions through the terminal donor atoms, forming polynuclear complexes (Kuang et al., 2001). Copper(II) is a good candidate of octahedral coordination geometry. We report here a new one-dimensional infinite-chain complex, (I), formed by the reaction of the BDMP ligand, ammonium thiocyanate and copper(II) acetate.

Complex (I) is a thiocyanate-bridged polynuclear copper(II) compound. The asymmetric unit contains two independent molecules, A (Fig 1) and B (Fig. 2). Each of the molecules contains two BDMP–CuII cations and two bridging thiocyanate anions. The CuII atom is in a square-pyramidal coordination configuration and is five-coordinated by the NNO donor set of one Schiff base and by one terminal N atom of a bridging thiocyanate ligand defining the basal plane, and by one terminal N atom of another bridging thiocyanate ligand occupying the apical position. The Schiff base acts as a tridentate ligand and ligates to the metal via the three O and N donor atoms. The thiocyanate anion acts as a bridging ligand and ligates to two different but symmetry-related CuII atoms via the terminal N and S atoms. The significant distortion of the square pyramid is revealed by the bond angles between the apical and basal donor atoms (Table 1). The N1—Cu1—N2 and N4—Cu2—N5 bond angles deviate from 90° by 6.10 (14) and 4.65 (14)°, respectively, as a result of the strain created by the five-membered chelate rings Cu1/N1/C8/C9/N2 and Cu2/N4/C20/C21/N5. The apical bonds [Cu1—S1i and Cu2—S2ii; symmetry codes: (i) x − 1/2, −y, z; (ii) x − 1/2, −y + 1, z] are much longer than the basal bonds, indicating that the Cu—S bond is not very strong. The Cu—O and Cu—N bond lengths are comparable to the corresponding values observed in other Schiff base copper(II) complexes (You & Zhu, 2004; You et al., 2004; Zhang et al., 2001; Elmali et al., 2000), and as expected, the bonds involving amine atoms N2 [2.068 (3) Å] or N5 [2.067 (3) Å] are longer than those involving imine atoms N1 [1.943 (3) Å] or N4 [1.948 (3) Å] (Mondal et al., 2001). The bridging NCS groups are nearly linear and show bent coordination modes with the metal atoms [N3—C12—S1 = 179.9 (5)°, Cu1—N3—C12 = 169.7 (4)°, Cu1ii—S1—C12 = 102.12 (4)°, N6—C24—S2 = 177.7 (4)°, Cu2—N6—C24 = 166.8 (4)° and Cu2iv—S2—C24 =101.98 (4)°].

The basal least-square planes defined by the four donor atoms of the adjacent two CuII centres are not parallel and form dihedral angles of 74.1 (2)° for the Cu1 moiety and 75.0 (2)° for the Cu2 moiety, which can decrease the steric effects among the molecules. The deviation of atom Cu1 from the least-squares plane is 0.180 (2) Å, and the corresponding value for Cu2 is 0.176 (2) Å.

The C7N1 [1.283 (5) Å] and C19N4 bond lengths [1.264 (6) Å] conform to the values for double bonds, while the C8—N1 [1.452 (5) Å] and C20—N4 bond lengths [1.487 (6) Å] conform to the values for single bonds (You, 2005b).

In the crystal structure, the {4-bromo-2-[2-(dimethylamino)ethyliminomethyl]phenolato}copper(II) moieties are linked by the bridging thiocyanate ligands, forming polymeric chains running along the a axis; adjacent chains are further linked by weak intermolecular C—H···O and C—H···S hydrogen bonds, forming dimeric chains running along the a axis (Table 2 and Fig. 3).

Experimental top

5-Bromosalicylaldehyde (0.1 mmol, 20.1 mg) and N,N-dimethylethane-1,2-diamine (0.1 mmol, 8.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a yellow solution. To the solution was added an aqueous solution (2 ml) of NH4NCS (0.1 mmol, 6.5 mg) and an MeOH solution (3 ml) of Cu(CH3COO)2·H2O (0.1 mmol, 19.9 mg), with stirring. The mixture was stirred for another 10 min at room temperature. After the filtrate had been kept in air for 12 d, blue block-shaped crystals were formed.

Refinement top

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H distances of 0.93–0.97 Å, and with Uiso(H) values of 1.2 or 1.5 times Ueq(C). An unassigned maximum residual density was observed 0.81 Å from atom Br1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of molecule A, showing the atom-numbering scheme and the formation of the polymeric chain. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x − 1/2, −y, z; (iii) x + 1/2, −y, z.]
[Figure 2] Fig. 2. The structure of molecule B, showing the atom-numbering scheme and the formation of the polymeric chain. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (ii) x − 1/2, − y + 1, z; (iv) x + 1/2, 1 − y, z.]
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the b axis. Dashed lines show the weak intermolecular C—H···O and C—H···S hydrogen bonds.
catena-Poly[[{4-bromo-2-[2- (dimethylamino)ethyliminomethyl]phenolato}copper(II)]-µ-thiocyanato] top
Crystal data top
[Cu(C11H14BrN2O)(NCS)]F(000) = 1560
Mr = 391.77Dx = 1.760 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 12201 reflections
a = 11.767 (2) Åθ = 2.4–28.0°
b = 7.4180 (15) ŵ = 4.32 mm1
c = 33.870 (7) ÅT = 298 K
V = 2956.4 (10) Å3Block, blue
Z = 80.24 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6447 independent reflections
Radiation source: fine-focus sealed tube5729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.424, Tmax = 0.625k = 99
30513 measured reflectionsl = 4343
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0383P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6447 reflectionsΔρmax = 1.09 e Å3
347 parametersΔρmin = 0.65 e Å3
1 restraintAbsolute structure: Flack (1983), 3160 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.083 (9)
Crystal data top
[Cu(C11H14BrN2O)(NCS)]V = 2956.4 (10) Å3
Mr = 391.77Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 11.767 (2) ŵ = 4.32 mm1
b = 7.4180 (15) ÅT = 298 K
c = 33.870 (7) Å0.24 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5729 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 0.625Rint = 0.039
30513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 1.09 e Å3
S = 1.06Δρmin = 0.65 e Å3
6447 reflectionsAbsolute structure: Flack (1983), 3160 Friedel pairs
347 parametersAbsolute structure parameter: 0.083 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.33425 (3)0.09184 (6)0.667215 (13)0.03169 (11)
Cu20.06807 (4)0.58332 (6)0.972960 (14)0.03352 (12)
Br10.07567 (5)0.48361 (11)0.820328 (19)0.0850 (2)
Br20.17916 (4)0.04140 (9)0.826859 (16)0.06374 (15)
S10.70441 (9)0.11723 (15)0.61383 (4)0.0467 (3)
S20.43749 (9)0.62730 (16)1.02598 (4)0.0474 (3)
O10.3730 (2)0.0981 (4)0.70337 (9)0.0457 (7)
O20.1110 (2)0.3937 (4)0.93729 (9)0.0474 (8)
N10.1976 (3)0.1526 (5)0.69653 (9)0.0343 (7)
N20.2980 (3)0.3253 (4)0.63632 (11)0.0383 (7)
N30.4850 (3)0.0758 (5)0.64335 (12)0.0468 (9)
N40.0690 (3)0.6343 (5)0.94268 (10)0.0362 (8)
N50.0290 (3)0.8161 (4)1.00366 (11)0.0398 (8)
N60.2195 (3)0.5719 (5)0.99760 (12)0.0470 (9)
C10.1920 (3)0.1184 (6)0.73626 (12)0.0390 (9)
C20.3036 (3)0.1779 (6)0.72835 (12)0.0395 (9)
C30.3432 (3)0.3259 (7)0.74964 (16)0.0504 (11)
H30.41740.36500.74560.060*
C40.2769 (4)0.4157 (6)0.77633 (15)0.0537 (12)
H40.30620.51280.79040.064*
C50.1642 (4)0.3602 (8)0.78237 (14)0.0540 (12)
C60.1232 (3)0.2129 (7)0.76302 (13)0.0467 (10)
H60.04910.17470.76760.056*
C70.1461 (3)0.0470 (6)0.72063 (12)0.0409 (10)
H70.07340.07980.72860.049*
C80.1430 (3)0.3195 (6)0.68465 (15)0.0467 (10)
H8A0.16770.41740.70160.056*
H8B0.06120.30800.68700.056*
C90.1750 (3)0.3588 (6)0.64241 (15)0.0439 (10)
H9A0.13120.28240.62480.053*
H9B0.15750.48340.63620.053*
C100.3214 (4)0.3243 (8)0.59389 (16)0.0584 (13)
H10A0.27390.23650.58120.088*
H10B0.39980.29440.58950.088*
H10C0.30590.44150.58310.088*
C110.3676 (4)0.4688 (7)0.6555 (2)0.0718 (17)
H11A0.34830.58390.64440.108*
H11B0.44680.44490.65110.108*
H11C0.35260.47000.68340.108*
C120.5756 (3)0.0927 (5)0.63116 (12)0.0350 (8)
C130.0689 (3)0.3627 (7)0.90387 (12)0.0403 (10)
C140.0439 (3)0.3088 (6)0.91264 (11)0.0387 (9)
C150.0872 (4)0.1556 (8)0.89327 (14)0.0501 (12)
H150.16220.12150.89760.060*
C160.0212 (4)0.0561 (7)0.86824 (14)0.0496 (11)
H160.05110.04570.85610.059*
C170.0912 (4)0.1068 (7)0.86090 (12)0.0457 (11)
C180.1353 (3)0.2565 (6)0.87778 (12)0.0413 (10)
H180.20980.29000.87220.050*
C190.1168 (3)0.5282 (6)0.91865 (12)0.0398 (9)
H190.18900.55960.90980.048*
C200.1267 (4)0.8041 (6)0.95454 (15)0.0482 (11)
H20A0.20840.79050.95220.058*
H20B0.10290.90210.93750.058*
C210.0952 (3)0.8449 (6)0.99657 (16)0.0481 (11)
H21A0.11460.96901.00260.058*
H21B0.13850.76761.01410.058*
C220.0489 (4)0.8138 (8)1.04632 (16)0.0635 (15)
H22A0.12880.80131.05140.095*
H22B0.00890.71421.05790.095*
H22C0.02210.92451.05770.095*
C230.0980 (4)0.9591 (7)0.9845 (2)0.0713 (18)
H23A0.09161.06870.99940.107*
H23B0.07080.97880.95820.107*
H23C0.17610.92210.98360.107*
C240.3086 (3)0.5982 (5)1.00904 (12)0.0335 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0218 (2)0.0395 (2)0.0338 (2)0.00508 (17)0.00411 (18)0.0036 (2)
Cu20.0211 (2)0.0453 (3)0.0342 (2)0.00549 (17)0.00437 (18)0.0020 (2)
Br10.0706 (4)0.1115 (5)0.0728 (4)0.0320 (4)0.0057 (3)0.0429 (4)
Br20.0488 (3)0.0842 (3)0.0582 (3)0.0135 (2)0.0110 (2)0.0123 (3)
S10.0297 (5)0.0510 (6)0.0595 (7)0.0030 (4)0.0134 (5)0.0171 (5)
S20.0307 (5)0.0520 (6)0.0594 (7)0.0042 (4)0.0127 (5)0.0214 (6)
O10.0284 (14)0.0650 (19)0.0436 (16)0.0085 (13)0.0038 (12)0.0225 (15)
O20.0256 (15)0.075 (2)0.0413 (17)0.0125 (14)0.0063 (12)0.0111 (15)
N10.0234 (15)0.0497 (18)0.0299 (16)0.0026 (14)0.0011 (12)0.0001 (14)
N20.0298 (17)0.0293 (16)0.056 (2)0.0005 (13)0.0051 (15)0.0074 (15)
N30.0286 (19)0.061 (2)0.051 (2)0.0118 (16)0.0111 (16)0.0126 (18)
N40.0244 (16)0.0475 (19)0.0368 (18)0.0065 (13)0.0014 (13)0.0116 (15)
N50.0283 (16)0.0308 (17)0.060 (2)0.0015 (14)0.0064 (15)0.0006 (15)
N60.031 (2)0.060 (2)0.050 (2)0.0102 (16)0.0090 (17)0.0110 (18)
C10.0261 (19)0.059 (3)0.032 (2)0.0010 (17)0.0043 (15)0.0083 (17)
C20.031 (2)0.055 (3)0.033 (2)0.0017 (18)0.0004 (16)0.0062 (18)
C30.037 (2)0.067 (3)0.047 (2)0.012 (2)0.002 (2)0.014 (2)
C40.055 (3)0.059 (3)0.047 (3)0.003 (2)0.007 (2)0.017 (2)
C50.046 (3)0.073 (3)0.042 (2)0.022 (2)0.002 (2)0.015 (2)
C60.029 (2)0.076 (3)0.035 (2)0.004 (2)0.0013 (16)0.001 (2)
C70.0221 (18)0.067 (3)0.033 (2)0.0031 (18)0.0044 (15)0.002 (2)
C80.0256 (19)0.053 (3)0.062 (3)0.0123 (18)0.0042 (19)0.002 (2)
C90.033 (2)0.033 (2)0.066 (3)0.0086 (16)0.000 (2)0.011 (2)
C100.054 (3)0.065 (3)0.057 (3)0.008 (2)0.011 (2)0.024 (3)
C110.044 (3)0.045 (3)0.126 (5)0.013 (2)0.004 (3)0.013 (3)
C120.031 (2)0.036 (2)0.038 (2)0.0070 (15)0.0022 (17)0.0067 (16)
C130.027 (2)0.067 (3)0.0264 (19)0.0009 (18)0.0011 (15)0.0095 (19)
C140.0235 (18)0.064 (3)0.0286 (19)0.0048 (18)0.0001 (15)0.0019 (18)
C150.025 (2)0.077 (3)0.048 (3)0.009 (2)0.0111 (18)0.009 (2)
C160.044 (2)0.068 (3)0.036 (2)0.004 (2)0.0028 (19)0.005 (2)
C170.035 (2)0.073 (3)0.029 (2)0.010 (2)0.0017 (17)0.001 (2)
C180.0288 (19)0.064 (3)0.032 (2)0.0056 (18)0.0047 (15)0.0046 (19)
C190.0253 (19)0.062 (3)0.032 (2)0.0029 (19)0.0046 (15)0.011 (2)
C200.035 (2)0.046 (3)0.064 (3)0.0100 (19)0.0103 (19)0.009 (2)
C210.026 (2)0.037 (2)0.082 (3)0.0045 (17)0.007 (2)0.006 (2)
C220.057 (3)0.068 (3)0.066 (3)0.013 (2)0.018 (3)0.029 (3)
C230.045 (3)0.048 (3)0.121 (6)0.006 (2)0.002 (3)0.025 (3)
C240.032 (2)0.0323 (19)0.036 (2)0.0123 (15)0.0050 (16)0.0066 (15)
Geometric parameters (Å, º) top
Cu1—O11.922 (3)C5—C61.363 (7)
Cu1—N11.943 (3)C6—H60.9300
Cu1—N31.953 (3)C7—H70.9300
Cu1—N22.068 (3)C8—C91.508 (7)
Cu1—S1i2.8300 (14)C8—H8A0.9700
Cu2—O21.922 (3)C8—H8B0.9700
Cu2—N41.948 (3)C9—H9A0.9700
Cu2—N61.969 (3)C9—H9B0.9700
Cu2—N52.067 (3)C10—H10A0.9600
Cu2—S2ii2.8332 (14)C10—H10B0.9600
Br1—C51.891 (4)C10—H10C0.9600
Br2—C171.900 (4)C11—H11A0.9600
S1—C121.635 (4)C11—H11B0.9600
S2—C241.636 (4)C11—H11C0.9600
O1—C21.317 (5)C13—C141.417 (5)
O2—C141.310 (5)C13—C181.419 (6)
N1—C71.283 (5)C13—C191.441 (7)
N1—C81.452 (5)C14—C151.407 (7)
N2—C101.463 (6)C15—C161.367 (7)
N2—C91.483 (5)C15—H150.9300
N2—C111.492 (6)C16—C171.397 (6)
N3—C121.151 (5)C16—H160.9300
N4—C191.264 (6)C17—C181.352 (6)
N4—C201.487 (6)C18—H180.9300
N5—C221.464 (6)C19—H190.9300
N5—C231.484 (6)C20—C211.502 (7)
N5—C211.496 (5)C20—H20A0.9700
N6—C241.135 (5)C20—H20B0.9700
C1—C61.403 (6)C21—H21A0.9700
C1—C21.410 (6)C21—H21B0.9700
C1—C71.442 (6)C22—H22A0.9600
C2—C31.394 (6)C22—H22B0.9600
C3—C41.367 (7)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C4—C51.403 (7)C23—H23B0.9600
C4—H40.9300C23—H23C0.9600
O1—Cu1—N192.34 (13)C9—C8—H8B110.0
O1—Cu1—N390.21 (14)H8A—C8—H8B108.4
N1—Cu1—N3167.79 (16)N2—C9—C8110.1 (4)
O1—Cu1—N2170.22 (15)N2—C9—H9A109.6
N1—Cu1—N283.90 (14)C8—C9—H9A109.6
N3—Cu1—N291.65 (13)N2—C9—H9B109.6
O1—Cu1—S1i97.67 (15)C8—C9—H9B109.6
N1—Cu1—S1i90.39 (15)H9A—C9—H9B108.2
N3—Cu1—S1i101.10 (15)N2—C10—H10A109.5
N2—Cu1—S1i91.40 (15)N2—C10—H10B109.5
O2—Cu2—N491.63 (13)H10A—C10—H10B109.5
O2—Cu2—N689.85 (14)N2—C10—H10C109.5
N4—Cu2—N6168.63 (16)H10A—C10—H10C109.5
O2—Cu2—N5170.39 (15)H10B—C10—H10C109.5
N4—Cu2—N585.35 (14)N2—C11—H11A109.5
N6—Cu2—N591.36 (14)N2—C11—H11B109.5
O2—Cu2—S2iii97.89 (15)H11A—C11—H11B109.5
N4—Cu2—S2iii89.52 (15)N2—C11—H11C109.5
N6—Cu2—S2iii101.44 (15)H11A—C11—H11C109.5
N5—Cu2—S2iii91.22 (15)H11B—C11—H11C109.5
C2—O1—Cu1126.3 (3)N3—C12—S1179.9 (5)
C14—O2—Cu2126.4 (3)C14—C13—C18119.3 (4)
C7—N1—C8119.2 (3)C14—C13—C19122.3 (4)
C7—N1—Cu1125.1 (3)C18—C13—C19118.3 (4)
C8—N1—Cu1115.0 (3)O2—C14—C15117.8 (3)
C10—N2—C9108.7 (4)O2—C14—C13124.2 (4)
C10—N2—C11109.2 (4)C15—C14—C13118.0 (4)
C9—N2—C11110.8 (4)C16—C15—C14121.3 (4)
C10—N2—Cu1117.0 (3)C16—C15—H15119.4
C9—N2—Cu1105.7 (2)C14—C15—H15119.4
C11—N2—Cu1105.3 (3)C15—C16—C17120.2 (5)
C12—N3—Cu1169.7 (4)C15—C16—H16119.9
C19—N4—C20119.9 (3)C17—C16—H16119.9
C19—N4—Cu2125.9 (3)C18—C17—C16120.6 (4)
C20—N4—Cu2113.6 (3)C18—C17—Br2121.5 (3)
C22—N5—C23110.6 (4)C16—C17—Br2117.9 (4)
C22—N5—C21108.4 (4)C17—C18—C13120.5 (4)
C23—N5—C21111.2 (4)C17—C18—H18119.7
C22—N5—Cu2116.8 (3)C13—C18—H18119.7
C23—N5—Cu2104.8 (3)N4—C19—C13125.4 (4)
C21—N5—Cu2104.8 (3)N4—C19—H19117.3
C24—N6—Cu2166.8 (4)C13—C19—H19117.3
C6—C1—C2120.3 (4)N4—C20—C21108.3 (3)
C6—C1—C7116.5 (4)N4—C20—H20A110.0
C2—C1—C7123.0 (4)C21—C20—H20A110.0
O1—C2—C3118.6 (4)N4—C20—H20B110.0
O1—C2—C1124.0 (4)C21—C20—H20B110.0
C3—C2—C1117.3 (4)H20A—C20—H20B108.4
C4—C3—C2122.3 (4)N5—C21—C20111.4 (4)
C4—C3—H3118.8N5—C21—H21A109.4
C2—C3—H3118.8C20—C21—H21A109.4
C3—C4—C5119.6 (4)N5—C21—H21B109.4
C3—C4—H4120.2C20—C21—H21B109.4
C5—C4—H4120.2H21A—C21—H21B108.0
C6—C5—C4120.0 (4)N5—C22—H22A109.5
C6—C5—Br1121.3 (4)N5—C22—H22B109.5
C4—C5—Br1118.6 (4)H22A—C22—H22B109.5
C5—C6—C1120.4 (4)N5—C22—H22C109.5
C5—C6—H6119.8H22A—C22—H22C109.5
C1—C6—H6119.8H22B—C22—H22C109.5
N1—C7—C1125.2 (4)N5—C23—H23A109.5
N1—C7—H7117.4N5—C23—H23B109.5
C1—C7—H7117.4H23A—C23—H23B109.5
N1—C8—C9108.5 (3)N5—C23—H23C109.5
N1—C8—H8A110.0H23A—C23—H23C109.5
C9—C8—H8A110.0H23B—C23—H23C109.5
N1—C8—H8B110.0N6—C24—S2177.7 (4)
Symmetry codes: (i) x1/2, y, z; (ii) x1/2, y+2, z; (iii) x1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.513.285 (7)141
C19—H19···O2iii0.932.553.316 (4)139
C20—H20A···O2iii0.972.583.468 (7)153
Symmetry codes: (i) x1/2, y, z; (iii) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C11H14BrN2O)(NCS)]
Mr391.77
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)11.767 (2), 7.4180 (15), 33.870 (7)
V3)2956.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)4.32
Crystal size (mm)0.24 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.424, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
30513, 6447, 5729
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.06
No. of reflections6447
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.65
Absolute structureFlack (1983), 3160 Friedel pairs
Absolute structure parameter0.083 (9)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.922 (3)Cu2—N61.969 (3)
Cu1—N11.943 (3)Cu2—N52.067 (3)
Cu1—N31.953 (3)Cu2—S2ii2.8332 (14)
Cu1—N22.068 (3)N1—C71.283 (5)
Cu1—S1i2.8300 (14)N1—C81.452 (5)
Cu2—O21.922 (3)N4—C191.264 (6)
Cu2—N41.948 (3)N4—C201.487 (6)
O1—Cu1—N192.34 (13)O2—Cu2—N491.63 (13)
O1—Cu1—N390.21 (14)O2—Cu2—N689.85 (14)
N1—Cu1—N3167.79 (16)N4—Cu2—N6168.63 (16)
O1—Cu1—N2170.22 (15)O2—Cu2—N5170.39 (15)
N1—Cu1—N283.90 (14)N4—Cu2—N585.35 (14)
N3—Cu1—N291.65 (13)N6—Cu2—N591.36 (14)
O1—Cu1—S1i97.67 (15)O2—Cu2—S2iii97.89 (15)
N1—Cu1—S1i90.39 (15)N4—Cu2—S2iii89.52 (15)
N3—Cu1—S1i101.10 (15)N6—Cu2—S2iii101.44 (15)
N2—Cu1—S1i91.40 (15)N5—Cu2—S2iii91.22 (15)
Symmetry codes: (i) x1/2, y, z; (ii) x1/2, y+2, z; (iii) x1/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.513.285 (7)141
C19—H19···O2iii0.932.553.316 (4)139
C20—H20A···O2iii0.972.583.468 (7)153
Symmetry codes: (i) x1/2, y, z; (iii) x1/2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds