Download citation
Download citation
link to html
The α,β-dehydro­phenyl­alanine residues influence the conformation of the title penta­peptide Boc0–Gly1–ΔZPhe2–Gly3–ΔEPhe4L-Phe5p-NA ethanol solvate, C42H43N7O9·C2H5OH. The first unsaturated phenyl­alanyl (ΔZPhe2) and the third glycyl (Gly3) residues form a type I β turn, while the second unsaturated phenyl­alanyl (ΔEPhe4) and the last phenyl­alanyl (L-Phe5) residues are part of a type II β turn. All the amino acids in the peptide are linked trans to one another. The crystal structure is stabilized by intra- and inter­molecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105015258/dn1081sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105015258/dn1081Isup2.hkl
Contains datablock I

CCDC reference: 278557

Comment top

α,β-Dehydroamino acid residues (amino acids with a double bond between the Cα and Cβ atoms) have been found in many biologically active peptides having antibiotic properties (Noda et al., 1983). Incorporation of a dehydroamino acid into a peptide decreases conformational flexibility (Aubry et al., 1984). The molecular structures of α,β-dehydrophenylalanine-containing (ΔPhe) peptides have shown that α,β-dehydrophenylalanine induces β turns (Venkatachalam, 1968) in short sequences with one ΔPhe residue (Główka et al., 1987; Główka, 1988) and a 310 helical conformation in longer sequences (Rajashankar et al., 1992; Rajashankar, Ramakumar, Jain et al., 1995; Rajashankar, Ramakumar, Mal et al., 1995; Padmanabhan & Singh, 1993; Jain et al., 1997). The number and position of ΔPhe residues and the type of neighbouring amino acids also play an important role in peptide chain conformation (Rajashankar et al., 1996).

The present paper reports the crystal structure of the title pentapeptide Boc0—Gly1–ΔZPhe2—Gly3–ΔEPhe4L-Phe5p-NA ethanol solvate, (I) (p-NA is para-nitroaniline), containing one ΔZPhe (isomer Z of an α,β-dehydrophenylalanine residue, i.e. with the aromatic ring cis to the N atom) between two flexible glycine residues and one ΔEPhe (isomer E of an α,β-dehydrophenylalanine residue, i.e. with the aromatic ring trans to the N atom) between glycine and phenylalanine residues. There is one molecule in the asymmetric part of the unit cell. The atom-numbering scheme and a general view of the molecule are shown in Fig. 1, while selected bond lengths and angles are given in Table 1.

The CαCβ (C8C9 and C19C20) distances for the ΔPhe residues of (I) are in agreement with those found in other structures containing ΔPhe (Główka, 1988). A shortening of about 0.045 (7) Å for the N2—Cα8 bond in ΔZPhe2 and 0.041 (7) Å for the N4—Cα19 bond in ΔEPhe4 is observed with respect to the corresponding bonds in the saturated Phe5 residue (N5—Cα28). The torsion angles χ2 [6.3 (11)°], χ2,1 [22.3 (11)°] and χ2,2 [−160.4 (7)°] of the ΔZPhe2 residue suggest that its side chain is almost planar. The torsion angles χ4 [−172.3 (6)°], χ4,1 [38.3 (11)°] and χ4,2 [−144.2 (7)°] of the ΔEPhe4 residue suggest that, in this case, the side chain is antiperiplanar (Table 1). Are definitions needed for these χ angles? The steric contacts between the side-chain and main-chain atoms of ΔZPhe2 and ΔEPhe4 are partially relaxed by rearrangement of the bond angles at the Cα and Cβ atoms of these residues. As in other cases (Pieroni et al., 1975, 1976/77; Aubry et al., 1985), the cinnamic moieties of the ΔPhe residues in the title peptide are not planar. The torsion angles between the CC and CO bonds of ΔZPhe2 and ΔEPhe4 are 29.1 (9) and −113.2 (8)°, respectively.

All the amino acids in the title pentapeptide are linked trans to each other. The deviations of all ω angles are not larger than 9°. The values of torsion angles ϕ and ψ of the ΔZPhe2 and Gly3 residues suggest a type I β turn conformation, while the torsion angles of ΔEPhe4 and Phe5 indicate that these residues form a type II β turn. The torsion angles of the tert-butoxycarbonyl group (ϕ0 and ω0) correspond to a transtrans conformation.

The conformation of (I) is stabilized by nine intramolecular and four intermolecular hydrogen bonds of different types, namely N—H···O, C—H···N, N—H···N and C—H···O (Table 2). The carbonyl O atoms of Gly1 (O3) and Gly3 (O5) take part in the N4—H4D···O3 and N6—H6C···O5 hydrogen bonds, respectively, as shown in Fig. 1. The π electrons of the aromatic ring of ΔEPhe4 take part in C—H···π interactions with atom H4B of Boc and atom H35A of L-Phe5. The distances and angles between C—H in alkyl group and the centre of the ΔEPhe4 ring (denoted Cg1) are 3.883 Å and 150° for the C4—H4B···Cg1 contact and 3.557 Å and 172° for the C35—H35A···Cg1 contact, respectively (Table 2).

These results show that the presence of two α,β-dehydrophenylalanyl residues induces β turns in the pentapeptide Boc0—Gly1–ΔZPhe2—Gly3–ΔEPhe4L-Phe5p-NA. This is consistent with the results for other short peptides, such as the tetrapeptide Boc0—Gly1–ΔZPhe2—Gly3—Phe4p-NA (Ejsmont et al., 2001).

Table 2. Hydrogen-bonding geometry (Å, °). The C—H···π interaction is a hydrogen bond occurring between C—H in an alkyl group and the π system of ΔEPhe4. The centroid of the ΔEPhe4 ring is denoted Cg1.

Experimental top

The synthesis of Boc-Gly ΔZPhe has been described by Makowski et al. (1985). Boc-Gly ΔEPhe-L-Phe-p-NA was obtained in the same manner as its Z isomer (Makowski et al., 2001); instead of TBTU [2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate], isobutyl chloroformate (0.26 ml, 2 mmol) in tetrahydrofuran (3.5 ml) was used. Isomers E and Z of Boc-Gly ΔPhe-L-Phe-p-NA were separated on a silica gel H-60 (Merck) column eluted with EtOAc (1–40%) in benzene. Yields of isomers E and Z were 18% and 53%, respectively. Gly ΔEPhe-L-Phe-p-NA was obtained according to the method described by Makowski et al. (2001) and used for further synthesis without characterization. The only modification was that, instead of dissolution in ethyl ether and evaporation, the oily deblocked peptide was dissolved in propan-2-ol (20 ml) and precipitated with hexane. TFA (trifluoroacetic acid) (0.139 ml, 1 mmol) was added to a solution of Boc-Gly–ΔZPhe (0.16 g, 0.5 mmol) in tetrahydrofuran (2 ml) and the solution was cooled to 263 K. Isobutyl chloroformate (0.066 ml, 0.5 mmol) was then added and the mixture was left for 1.5 min at this temperature. Finally, Gly ΔEPhe-L-Phe-p-NA (0.3 g, 0.5 mmol) was added and the reaction was carried out for 22 h at room temperature. The precipitate which formed was filtered off and the solvent was removed under reduced pressure. The resulting oil was dissolved in EtOAc (50 ml) and washed successively with 2 M HCl (2 × 3 ml), saturated potassium bicarbonate (3 × 3 ml) and brine (3 ml). The organic layer was dried over MgSO4, the drying agent was removed by filtration and the solvent was evaporated. The product was crystallized from EtOAc–benzene (1:1)/hexane. The purity of the peptide (100%) was checked by high-perfomance liquid chromatography, using an Alltech Alltima column (C-18, 5 µm, 150 × 4.6 mm). Solvent system: A 0.1% TFA, B ACN (acetonitrile?), A:B 35:65, flow rate 1 ml min−1. Yield 0.305 g (77%), m.p. 476–478 K. Elemental analysis, calculated for C42H43N7O9 (789.844): C 63.87, H 5.49%; found: C 64.04, H 5.28%. Long thin needle crystals of Boc0—Gly1ZPhe2—Gly3EPhe4L-Phe5-p-NA·C2H5OH, (I), suitable for X-ray structure analysis were grown at room temperature from a solution in ethanol. The crystals are sensitive and decompose in air.

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.95–1.00 Å and N—H distances of 0.88 Å, and were allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). Please check added text. The absolute structure was chosen on the basis of the known absolute configuration of the L-phenylalanine residue. The Friedel pairs were merged. Owing to the large anisotropic displacement parameter, the ethanol molecule is certainly slightly disordered but the type of disorder could not be resolved.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXD (Sheldrick, 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level and H atoms are shown as small spheres of arbitrary radii. Please provide missing information. Dashed lines indicate intramolecular hydrogen bonds.
N-[tert-Butoxycarbonylglycyl-(Z)-α,β-dehydrophenylalanylglycyl-(E)- α,β-dehydrophenylalanylphenylalanyl]-4-nitroaniline ethanol solvate top
Crystal data top
C42H43N7O9·C2H6OF(000) = 884
Mr = 835.90Dx = 1.299 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 7064 reflections
a = 13.080 (4) Åθ = 3–73°
b = 8.998 (3) ŵ = 0.77 mm1
c = 18.406 (5) ÅT = 100 K
β = 99.37 (3)°Long thin needle, yellow
V = 2137.4 (11) Å30.45 × 0.04 × 0.02 mm
Z = 2
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
4423 independent reflections
Radiation source: fine-focus sealed tube2794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω and ϕ scansθmax = 73.5°, θmin = 3.9°
Absorption correction: analytical
CrysAlis RED (Oxford Diffraction, 2003)
h = 1613
Tmin = 0.828, Tmax = 0.988k = 911
14511 measured reflectionsl = 2219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4423 reflectionsΔρmax = 0.57 e Å3
552 parametersΔρmin = 0.32 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (7)
Crystal data top
C42H43N7O9·C2H6OV = 2137.4 (11) Å3
Mr = 835.90Z = 2
Monoclinic, P21Cu Kα radiation
a = 13.080 (4) ŵ = 0.77 mm1
b = 8.998 (3) ÅT = 100 K
c = 18.406 (5) Å0.45 × 0.04 × 0.02 mm
β = 99.37 (3)°
Data collection top
Oxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
4423 independent reflections
Absorption correction: analytical
CrysAlis RED (Oxford Diffraction, 2003)
2794 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.988Rint = 0.085
14511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.192H-atom parameters constrained
S = 1.10Δρmax = 0.57 e Å3
4423 reflectionsΔρmin = 0.32 e Å3
552 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0130 (5)0.3239 (9)0.9257 (5)0.049 (2)
C20.0488 (6)0.4123 (11)0.8636 (5)0.057 (2)
H2A0.07240.50530.88310.068*
H2B0.10890.35400.84090.068*
H2C0.00500.43480.82650.068*
C30.0471 (6)0.2995 (12)0.9868 (6)0.066 (3)
H3A0.06530.39571.00620.079*
H3B0.00500.24251.02620.079*
H3C0.11050.24410.96830.079*
C40.0535 (7)0.1804 (10)0.8964 (6)0.068 (3)
H4A0.09110.12290.93750.081*
H4B0.10020.20450.86150.081*
H4C0.00490.12170.87140.081*
O10.1017 (3)0.4236 (5)0.9486 (3)0.0401 (12)
C50.1721 (5)0.3895 (7)1.0076 (4)0.0343 (15)
O20.1736 (4)0.2795 (6)1.0468 (3)0.0461 (13)
N10.2432 (4)0.5021 (7)1.0207 (4)0.0420 (15)
H1D0.23450.58190.99270.050*
C60.3318 (5)0.4949 (9)1.0784 (4)0.0387 (16)
H6A0.31270.43931.12070.046*
H6B0.35140.59701.09540.046*
C70.4232 (5)0.4213 (7)1.0541 (3)0.0276 (13)
O30.4193 (3)0.3411 (5)0.9989 (3)0.0334 (10)
N20.5136 (4)0.4473 (6)1.1016 (3)0.0295 (12)
H2D0.51420.51201.13750.035*
C80.6062 (5)0.3713 (7)1.0937 (3)0.0259 (13)
C90.6604 (5)0.2886 (8)1.1474 (4)0.0304 (14)
H9A0.72460.25251.13680.037*
C100.6370 (5)0.2449 (7)1.2194 (4)0.0315 (14)
C110.5348 (5)0.2412 (8)1.2368 (4)0.0370 (16)
H11A0.47780.27281.20140.044*
C120.5184 (6)0.1917 (9)1.3051 (4)0.0422 (17)
H12A0.45000.18641.31610.051*
C130.6018 (6)0.1497 (9)1.3575 (4)0.0465 (18)
H13A0.59010.11731.40450.056*
C140.7019 (6)0.1543 (8)1.3422 (4)0.0446 (18)
H14A0.75850.12721.37900.053*
C150.7197 (5)0.1987 (8)1.2728 (4)0.0358 (15)
H15A0.78810.19771.26170.043*
C160.6463 (5)0.3885 (7)1.0232 (4)0.0299 (14)
O40.7000 (4)0.2891 (6)1.0008 (3)0.0469 (13)
N30.6195 (4)0.5096 (6)0.9815 (3)0.0291 (12)
H3D0.58120.57930.99710.035*
C170.6542 (5)0.5249 (8)0.9105 (4)0.0333 (15)
H17A0.72640.48840.91540.040*
H17B0.65450.63170.89770.040*
C180.5882 (5)0.4418 (7)0.8476 (4)0.0309 (14)
O50.6208 (3)0.4256 (6)0.7890 (2)0.0343 (10)
N40.4946 (4)0.3907 (6)0.8597 (3)0.0295 (12)
H4D0.47770.40040.90380.035*
C190.4231 (5)0.3222 (7)0.8030 (4)0.0279 (13)
C200.3204 (5)0.3393 (8)0.8024 (4)0.0328 (15)
H20A0.30040.40750.83690.039*
C210.2354 (5)0.2618 (7)0.7531 (4)0.0312 (14)
C220.2420 (5)0.1139 (7)0.7331 (4)0.0322 (15)
H22A0.30380.05990.74990.039*
C230.1603 (5)0.0435 (8)0.6893 (4)0.0392 (17)
H23A0.16580.05800.67620.047*
C240.0710 (5)0.1222 (8)0.6648 (4)0.0394 (17)
H24A0.01490.07440.63440.047*
C250.0617 (5)0.2686 (8)0.6835 (4)0.0401 (17)
H25A0.00030.32170.66630.048*
C260.1435 (5)0.3383 (8)0.7278 (4)0.0357 (16)
H26A0.13710.43940.74120.043*
C270.4695 (5)0.2233 (7)0.7526 (4)0.0277 (13)
O60.5207 (3)0.1116 (5)0.7765 (3)0.0301 (10)
N50.4520 (4)0.2578 (5)0.6804 (3)0.0283 (11)
H5A0.41750.33970.66660.034*
C280.4876 (5)0.1657 (7)0.6239 (3)0.0269 (13)
H28A0.51800.07450.64990.032*
C290.3986 (5)0.1114 (7)0.5656 (4)0.0301 (14)
H29A0.42760.04710.53030.036*
H29B0.35170.04940.59010.036*
C300.3360 (5)0.2317 (7)0.5233 (4)0.0305 (14)
C310.3610 (5)0.2834 (9)0.4570 (4)0.0417 (17)
H31A0.42010.24370.43990.050*
C320.3033 (6)0.3893 (10)0.4157 (5)0.054 (2)
H32A0.32110.41930.36980.064*
C330.2190 (6)0.4529 (9)0.4406 (5)0.053 (2)
H33A0.18000.52890.41290.064*
C340.1924 (6)0.4046 (9)0.5061 (4)0.0450 (19)
H34A0.13470.44740.52390.054*
C350.2498 (5)0.2937 (8)0.5461 (4)0.0386 (16)
H35A0.22930.25930.59040.046*
C360.5741 (5)0.2364 (7)0.5911 (4)0.0295 (13)
O70.5864 (3)0.2075 (6)0.5281 (3)0.0391 (12)
N60.6379 (4)0.3314 (6)0.6366 (3)0.0278 (11)
H6C0.62080.34810.68020.033*
C370.7281 (5)0.4057 (7)0.6213 (4)0.0287 (13)
C380.7667 (5)0.3841 (7)0.5549 (4)0.0302 (14)
H38A0.73620.31370.51940.036*
C390.8513 (5)0.4699 (7)0.5433 (4)0.0335 (15)
H39A0.87800.45970.49860.040*
C400.8962 (5)0.5682 (8)0.5953 (4)0.0320 (14)
C410.8597 (5)0.5863 (8)0.6616 (4)0.0356 (15)
H41A0.89240.65380.69780.043*
C420.7747 (5)0.5037 (8)0.6736 (4)0.0329 (15)
H42A0.74840.51510.71840.039*
N70.9832 (4)0.6591 (6)0.5827 (4)0.0367 (14)
O81.0103 (4)0.6543 (6)0.5212 (3)0.0459 (14)
O91.0280 (4)0.7377 (7)0.6329 (4)0.0580 (16)
O100.1999 (6)0.2949 (8)1.2030 (4)0.085 (2)
H10A0.19100.29091.15680.127*
C430.1370 (10)0.4094 (13)1.2255 (8)0.101 (5)
H43A0.11920.38451.27430.121*
H43C0.07160.41631.18990.121*
C440.1953 (9)0.5664 (13)1.2301 (7)0.086 (4)
H44A0.20120.60011.18030.129*
H44B0.26470.55561.25910.129*
H44D0.15580.63941.25360.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.044 (4)0.073 (6)0.008 (3)0.000 (4)0.004 (4)
C20.043 (4)0.055 (5)0.066 (6)0.002 (4)0.012 (4)0.011 (5)
C30.037 (4)0.067 (6)0.095 (8)0.004 (4)0.016 (5)0.021 (6)
C40.062 (5)0.037 (5)0.097 (8)0.005 (4)0.009 (5)0.012 (5)
O10.031 (2)0.032 (3)0.055 (3)0.004 (2)0.002 (2)0.009 (3)
C50.028 (3)0.028 (3)0.043 (4)0.004 (3)0.003 (3)0.001 (3)
O20.047 (3)0.032 (3)0.058 (4)0.002 (2)0.005 (3)0.015 (3)
N10.038 (3)0.031 (3)0.053 (4)0.002 (3)0.003 (3)0.007 (3)
C60.031 (3)0.044 (4)0.040 (4)0.007 (3)0.003 (3)0.005 (3)
C70.033 (3)0.024 (3)0.025 (3)0.005 (3)0.002 (2)0.002 (3)
O30.042 (2)0.031 (2)0.027 (2)0.006 (2)0.004 (2)0.003 (2)
N20.031 (3)0.031 (3)0.025 (3)0.004 (2)0.002 (2)0.007 (2)
C80.031 (3)0.026 (3)0.021 (3)0.003 (2)0.004 (2)0.003 (3)
C90.032 (3)0.033 (3)0.027 (3)0.002 (3)0.007 (3)0.002 (3)
C100.044 (3)0.026 (3)0.026 (3)0.002 (3)0.009 (3)0.003 (3)
C110.045 (4)0.036 (4)0.032 (4)0.000 (3)0.010 (3)0.000 (3)
C120.054 (4)0.041 (4)0.035 (4)0.006 (3)0.018 (3)0.004 (3)
C130.065 (5)0.038 (4)0.034 (4)0.009 (4)0.001 (4)0.003 (3)
C140.057 (5)0.030 (4)0.044 (4)0.001 (3)0.000 (4)0.002 (3)
C150.042 (4)0.028 (3)0.035 (4)0.008 (3)0.001 (3)0.011 (3)
C160.034 (3)0.031 (3)0.026 (3)0.001 (3)0.007 (3)0.003 (3)
O40.060 (3)0.039 (3)0.048 (3)0.018 (2)0.027 (3)0.007 (3)
N30.039 (3)0.023 (3)0.028 (3)0.002 (2)0.013 (2)0.001 (2)
C170.036 (3)0.038 (4)0.027 (3)0.007 (3)0.008 (3)0.006 (3)
C180.037 (3)0.024 (3)0.033 (4)0.004 (3)0.008 (3)0.000 (3)
O50.038 (2)0.039 (3)0.028 (2)0.007 (2)0.012 (2)0.002 (2)
N40.025 (2)0.032 (3)0.031 (3)0.010 (2)0.006 (2)0.004 (2)
C190.031 (3)0.031 (3)0.024 (3)0.002 (3)0.009 (3)0.001 (3)
C200.031 (3)0.032 (3)0.035 (4)0.001 (3)0.004 (3)0.000 (3)
C210.028 (3)0.025 (3)0.040 (4)0.002 (2)0.004 (3)0.002 (3)
C220.032 (3)0.025 (3)0.040 (4)0.001 (3)0.005 (3)0.003 (3)
C230.038 (4)0.030 (4)0.049 (5)0.001 (3)0.005 (3)0.005 (3)
C240.032 (3)0.036 (4)0.048 (4)0.003 (3)0.001 (3)0.000 (3)
C250.029 (3)0.039 (4)0.052 (5)0.003 (3)0.005 (3)0.000 (4)
C260.032 (3)0.026 (3)0.047 (4)0.007 (3)0.000 (3)0.001 (3)
C270.031 (3)0.018 (3)0.035 (4)0.002 (2)0.010 (3)0.004 (3)
O60.031 (2)0.025 (2)0.033 (2)0.0011 (18)0.0034 (19)0.006 (2)
N50.039 (3)0.018 (2)0.028 (3)0.002 (2)0.006 (2)0.001 (2)
C280.030 (3)0.025 (3)0.027 (3)0.005 (2)0.008 (3)0.011 (3)
C290.031 (3)0.029 (3)0.028 (3)0.001 (3)0.004 (3)0.006 (3)
C300.032 (3)0.023 (3)0.036 (3)0.003 (2)0.003 (3)0.002 (3)
C310.029 (3)0.056 (5)0.038 (4)0.000 (3)0.000 (3)0.004 (4)
C320.039 (4)0.061 (5)0.056 (5)0.004 (4)0.007 (4)0.022 (5)
C330.047 (4)0.036 (4)0.069 (6)0.005 (3)0.015 (4)0.006 (4)
C340.043 (4)0.034 (4)0.051 (5)0.009 (3)0.010 (3)0.015 (4)
C350.037 (3)0.038 (4)0.038 (4)0.002 (3)0.000 (3)0.013 (3)
C360.030 (3)0.029 (3)0.029 (3)0.001 (3)0.005 (3)0.001 (3)
O70.039 (2)0.053 (3)0.027 (3)0.001 (2)0.010 (2)0.013 (2)
N60.029 (2)0.027 (3)0.028 (3)0.008 (2)0.007 (2)0.003 (2)
C370.030 (3)0.031 (3)0.027 (3)0.002 (3)0.011 (3)0.008 (3)
C380.035 (3)0.028 (3)0.028 (3)0.003 (3)0.006 (3)0.001 (3)
C390.032 (3)0.034 (4)0.036 (4)0.003 (3)0.009 (3)0.009 (3)
C400.026 (3)0.029 (3)0.042 (4)0.003 (3)0.010 (3)0.005 (3)
C410.032 (3)0.032 (3)0.042 (4)0.001 (3)0.005 (3)0.001 (3)
C420.034 (3)0.036 (4)0.029 (3)0.010 (3)0.007 (3)0.005 (3)
N70.031 (3)0.031 (3)0.050 (4)0.004 (2)0.012 (3)0.005 (3)
O80.038 (3)0.046 (3)0.058 (4)0.003 (2)0.021 (3)0.012 (3)
O90.046 (3)0.059 (4)0.073 (4)0.019 (3)0.020 (3)0.013 (3)
O100.114 (6)0.070 (5)0.075 (5)0.030 (5)0.026 (5)0.026 (4)
C430.117 (9)0.073 (8)0.127 (11)0.045 (7)0.062 (9)0.061 (8)
C440.093 (8)0.070 (7)0.097 (9)0.001 (6)0.023 (7)0.016 (7)
Geometric parameters (Å, º) top
C1—O11.472 (8)C20—H20A0.9500
C1—C31.489 (12)C21—C221.387 (9)
C1—C21.514 (11)C21—C261.397 (9)
C1—C41.528 (12)C22—C231.383 (9)
C2—H2A0.9800C22—H22A0.9500
C2—H2B0.9800C23—C241.379 (10)
C2—H2C0.9800C23—H23A0.9500
C3—H3A0.9800C24—C251.372 (10)
C3—H3B0.9800C24—H24A0.9500
C3—H3C0.9800C25—C261.385 (10)
C4—H4A0.9800C25—H25A0.9500
C4—H4B0.9800C26—H26A0.9500
C4—H4C0.9800C27—O61.247 (7)
O1—C51.340 (8)C27—N51.348 (8)
C5—O21.223 (8)N5—H5A0.8800
C5—N11.370 (9)C28—C361.507 (8)
N1—C61.441 (9)C28—H28A1.0000
N1—H1D0.8800C29—C301.497 (9)
C6—C71.497 (9)C29—H29A0.9900
C6—H6A0.9900C29—H29B0.9900
C6—H6B0.9900C30—C351.383 (9)
C7—O31.241 (7)C30—C311.394 (10)
C7—N21.371 (7)C31—C321.367 (11)
N2—C81.419 (7)C31—H31A0.9500
N4—C191.423 (8)C32—C331.386 (12)
N5—C281.464 (7)C32—H32A0.9500
N2—H2D0.8800C33—C341.379 (12)
C8—C91.344 (9)C33—H33A0.9500
C19—C201.351 (8)C34—C351.387 (10)
C28—C291.529 (8)C34—H34A0.9500
C8—C161.484 (9)C35—H35A0.9500
C9—C101.462 (9)C36—O71.225 (8)
C9—H9A0.9500C36—N61.378 (8)
C10—C151.400 (9)N6—C371.424 (8)
C10—C111.425 (9)N6—H6C0.8800
C11—C121.383 (10)C37—C421.373 (9)
C11—H11A0.9500C37—C381.410 (9)
C12—C131.386 (11)C38—C391.393 (9)
C12—H12A0.9500C38—H38A0.9500
C13—C141.384 (11)C39—C401.363 (10)
C13—H13A0.9500C39—H39A0.9500
C14—C151.394 (10)C40—C411.391 (10)
C14—H14A0.9500C40—N71.450 (8)
C15—H15A0.9500C41—C421.385 (9)
C16—O41.248 (8)C41—H41A0.9500
C16—N31.345 (8)C42—H42A0.9500
N3—C171.457 (8)N7—O91.234 (8)
N3—H3D0.8800N7—O81.242 (8)
C17—C181.523 (9)O10—C431.422 (13)
C17—H17A0.9900O10—H10A0.8400
C17—H17B0.9900C43—C441.601 (17)
C18—O51.230 (8)C43—H43A0.9900
C18—N41.360 (8)C43—H43C0.9900
N4—H4D0.8800C44—H44A0.9800
C19—C271.485 (8)C44—H44B0.9800
C20—C211.490 (9)C44—H44D0.9800
O1—C1—C3111.2 (7)C26—C21—C20119.2 (6)
O1—C1—C2101.3 (6)C23—C22—C21121.2 (6)
C3—C1—C2111.4 (7)C23—C22—H22A119.4
O1—C1—C4108.3 (6)C21—C22—H22A119.4
C3—C1—C4113.4 (8)C24—C23—C22119.3 (7)
C2—C1—C4110.5 (8)C24—C23—H23A120.4
C1—C2—H2A109.5C22—C23—H23A120.4
C1—C2—H2B109.5C25—C24—C23121.0 (7)
H2A—C2—H2B109.5C25—C24—H24A119.5
C1—C2—H2C109.5C23—C24—H24A119.5
H2A—C2—H2C109.5C24—C25—C26119.4 (7)
H2B—C2—H2C109.5C24—C25—H25A120.3
C1—C3—H3A109.5C26—C25—H25A120.3
C1—C3—H3B109.5C25—C26—C21120.8 (7)
H3A—C3—H3B109.5C25—C26—H26A119.6
C1—C3—H3C109.5C21—C26—H26A119.6
H3A—C3—H3C109.5O6—C27—N5121.9 (6)
H3B—C3—H3C109.5O6—C27—C19120.9 (6)
C1—C4—H4A109.5N5—C27—C19117.2 (5)
C1—C4—H4B109.5C27—N5—C28123.2 (5)
H4A—C4—H4B109.5C27—N5—H5A118.4
C1—C4—H4C109.5C28—N5—H5A118.4
H4A—C4—H4C109.5N5—C28—C36113.1 (5)
H4B—C4—H4C109.5N5—C28—C29112.7 (5)
C5—O1—C1119.9 (6)C36—C28—C29112.9 (5)
O2—C5—O1127.3 (6)N5—C28—H28A105.8
O2—C5—N1123.4 (6)C36—C28—H28A105.8
O1—C5—N1109.3 (6)C29—C28—H28A105.8
C5—N1—C6122.5 (6)C30—C29—C28115.1 (5)
C5—N1—H1D118.7C30—C29—H29A108.5
C6—N1—H1D118.7C28—C29—H29A108.5
N1—C6—C7112.6 (6)C30—C29—H29B108.5
N1—C6—H6A109.1C28—C29—H29B108.5
C7—C6—H6A109.1H29A—C29—H29B107.5
N1—C6—H6B109.1C35—C30—C31116.8 (6)
C7—C6—H6B109.1C35—C30—C29122.5 (7)
H6A—C6—H6B107.8C31—C30—C29120.7 (6)
O3—C7—N2122.4 (6)C32—C31—C30122.2 (7)
O3—C7—C6125.0 (6)C32—C31—H31A118.9
N2—C7—C6112.5 (5)C30—C31—H31A118.9
C7—N2—C8121.0 (5)C31—C32—C33120.1 (8)
C7—N2—H2D119.5C31—C32—H32A120.0
C8—N2—H2D119.5C33—C32—H32A120.0
C9—C8—N2123.2 (6)C34—C33—C32119.2 (8)
C9—C8—C16118.8 (6)C34—C33—H33A120.4
N2—C8—C16117.9 (5)C32—C33—H33A120.4
C8—C9—C10130.8 (6)C33—C34—C35120.0 (7)
C8—C9—H9A114.6C33—C34—H34A120.0
C10—C9—H9A114.6C35—C34—H34A120.0
C15—C10—C11118.8 (6)C30—C35—C34121.8 (7)
C15—C10—C9117.7 (6)C30—C35—H35A119.1
C11—C10—C9123.5 (6)C34—C35—H35A119.1
C12—C11—C10120.1 (7)O7—C36—N6123.1 (6)
C12—C11—H11A120.0O7—C36—C28120.8 (6)
C10—C11—H11A120.0N6—C36—C28116.0 (5)
C11—C12—C13120.0 (7)C36—N6—C37127.6 (5)
C11—C12—H12A120.0C36—N6—H6C116.2
C13—C12—H12A120.0C37—N6—H6C116.2
C14—C13—C12121.0 (8)C42—C37—C38121.0 (6)
C14—C13—H13A119.5C42—C37—N6116.8 (5)
C12—C13—H13A119.5C38—C37—N6122.1 (6)
C13—C14—C15119.9 (7)C39—C38—C37117.5 (6)
C13—C14—H14A120.0C39—C38—H38A121.3
C15—C14—H14A120.0C37—C38—H38A121.3
C14—C15—C10120.2 (7)C40—C39—C38121.0 (6)
C14—C15—H15A119.9C40—C39—H39A119.5
C10—C15—H15A119.9C38—C39—H39A119.5
O4—C16—N3120.0 (6)C39—C40—C41121.4 (6)
O4—C16—C8120.8 (6)C39—C40—N7121.0 (6)
N3—C16—C8119.1 (5)C41—C40—N7117.6 (6)
C16—N3—C17119.8 (5)C42—C41—C40118.5 (7)
C16—N3—H3D120.1C42—C41—H41A120.8
C17—N3—H3D120.1C40—C41—H41A120.8
N3—C17—C18114.5 (5)C37—C42—C41120.6 (6)
N3—C17—H17A108.6C37—C42—H42A119.7
C18—C17—H17A108.6C41—C42—H42A119.7
N3—C17—H17B108.6O9—N7—O8122.1 (6)
C18—C17—H17B108.6O9—N7—C40119.6 (6)
H17A—C17—H17B107.6O8—N7—C40118.3 (6)
O5—C18—N4123.6 (6)C43—O10—H10A109.5
O5—C18—C17119.4 (6)O10—C43—C44111.1 (9)
N4—C18—C17117.1 (6)O10—C43—H43A109.4
C18—N4—C19121.9 (6)C44—C43—H43A109.4
C18—N4—H4D119.0O10—C43—H43C109.4
C19—N4—H4D119.0C44—C43—H43C109.4
C20—C19—N4119.4 (6)H43A—C43—H43C108.0
C20—C19—C27124.8 (6)C43—C44—H44A109.5
N4—C19—C27115.5 (5)C43—C44—H44B109.5
C19—C20—C21126.5 (6)H44A—C44—H44B109.5
C19—C20—H20A116.8C43—C44—H44D109.5
C21—C20—H20A116.8H44A—C44—H44D109.5
C22—C21—C26118.2 (6)H44B—C44—H44D109.5
C22—C21—C20122.6 (6)
C3—C1—O1—C556.3 (9)C23—C24—C25—C260.0 (12)
C2—C1—O1—C5174.8 (7)C24—C25—C26—C210.5 (11)
C4—C1—O1—C569.0 (9)C22—C21—C26—C250.6 (11)
C1—O1—C5—O21.1 (11)C20—C21—C26—C25178.2 (7)
O1—C5—N1—C6176.9 (6)C20—C19—C27—O6113.2 (8)
C1—O1—C5—N1176.4 (6)N4—C19—C27—O660.5 (8)
O2—C5—N1—C65.5 (11)C20—C19—C27—N565.4 (9)
C5—N1—C6—C787.5 (8)N4—C19—C27—N5120.8 (6)
N1—C6—C7—O317.8 (10)O6—C27—N5—C282.4 (9)
N1—C6—C7—N2164.5 (6)C19—C27—N5—C28176.3 (5)
O3—C7—N2—C86.3 (9)C27—N5—C28—C36109.7 (7)
C6—C7—N2—C8171.5 (6)C27—N5—C28—C29120.7 (6)
C7—N2—C8—C9122.8 (7)N5—C28—C29—C3060.4 (7)
C7—N2—C8—C1659.1 (8)C36—C28—C29—C3069.3 (7)
N2—C8—C9—C106.3 (11)C28—C29—C30—C3589.6 (8)
C16—C8—C9—C10175.6 (7)C28—C29—C30—C3192.3 (8)
C8—C9—C10—C15160.4 (7)C35—C30—C31—C320.5 (11)
C8—C9—C10—C1122.3 (11)C29—C30—C31—C32177.6 (7)
C15—C10—C11—C120.5 (10)C30—C31—C32—C332.4 (13)
C9—C10—C11—C12176.8 (7)C31—C32—C33—C342.0 (12)
C10—C11—C12—C131.9 (11)C32—C33—C34—C350.0 (12)
C11—C12—C13—C141.0 (12)C31—C30—C35—C341.6 (10)
C12—C13—C14—C151.3 (12)C29—C30—C35—C34179.8 (6)
C13—C14—C15—C102.8 (11)C33—C34—C35—C301.9 (11)
C11—C10—C15—C141.9 (10)N5—C28—C36—O7152.2 (6)
C9—C10—C15—C14179.3 (7)C29—C28—C36—O722.7 (9)
C9—C8—C16—O429.1 (9)N5—C28—C36—N628.9 (8)
N2—C8—C16—O4152.8 (6)C29—C28—C36—N6158.4 (5)
C9—C8—C16—N3154.5 (6)O7—C36—N6—C372.7 (10)
N2—C8—C16—N323.7 (9)C28—C36—N6—C37176.1 (6)
O4—C16—N3—C170.6 (9)C36—N6—C37—C42175.4 (6)
C8—C16—N3—C17177.1 (6)C36—N6—C37—C382.7 (10)
C16—N3—C17—C1882.2 (8)C42—C37—C38—C392.3 (9)
N3—C17—C18—O5167.2 (6)N6—C37—C38—C39175.7 (6)
N3—C17—C18—N413.6 (9)C37—C38—C39—C401.6 (9)
O5—C18—N4—C194.2 (10)C38—C39—C40—C410.1 (10)
C17—C18—N4—C19174.9 (6)C38—C39—C40—N7179.0 (6)
C18—N4—C19—C20147.2 (7)C39—C40—C41—C421.1 (10)
C18—N4—C19—C2738.6 (8)N7—C40—C41—C42178.0 (6)
N4—C19—C20—C21172.3 (6)C38—C37—C42—C411.4 (10)
C27—C19—C20—C211.2 (11)N6—C37—C42—C41176.7 (6)
C19—C20—C21—C2238.3 (11)C40—C41—C42—C370.4 (10)
C19—C20—C21—C26144.2 (7)C39—C40—N7—O9173.8 (6)
C26—C21—C22—C230.2 (11)C41—C40—N7—O97.1 (9)
C20—C21—C22—C23177.7 (7)C39—C40—N7—O85.8 (9)
C21—C22—C23—C240.3 (11)C41—C40—N7—O8173.3 (6)
C22—C23—C24—C250.4 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O4i0.882.052.734 (8)134
N2—H2D···O6i0.881.942.784 (7)161
N3—H3D···O3i0.882.363.057 (7)137
C6—H6B···O4i0.992.493.018 (10)113
C13—H13A···O7ii0.952.423.222 (9)142
C3—H3B···O20.982.332.924 (10)118
C4—H4A···O20.982.553.085 (12)114
C31—H31A···O70.952.513.101 (8)120
C38—H38A···O70.952.212.820 (8)121
C11—H11A···N20.952.523.080 (9)118
N4—H4D···O30.882.092.925 (7)158
N6—H6C···O50.882.122.974 (7)163
N4—H4D···N30.882.362.766 (8)108
N6—H6C···N50.882.352.764 (7)109
O10—H10A···O20.842.002.843 (10)178
C4—H4B···Cg10.983.003.883150
C35—H35A···Cg10.952.613.557172
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC42H43N7O9·C2H6O
Mr835.90
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)13.080 (4), 8.998 (3), 18.406 (5)
β (°) 99.37 (3)
V3)2137.4 (11)
Z2
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.45 × 0.04 × 0.02
Data collection
DiffractometerOxford Xcalibur PX κ-geometry
diffractometer with CCD area detector
Absorption correctionAnalytical
CrysAlis RED (Oxford Diffraction, 2003)
Tmin, Tmax0.828, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14511, 4423, 2794
Rint0.085
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.192, 1.10
No. of reflections4423
No. of parameters552
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SHELXD (Sheldrick, 2002), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
N2—C81.419 (7)C8—C91.344 (9)
N4—C191.423 (8)C19—C201.351 (8)
N5—C281.464 (7)C28—C291.529 (8)
C9—C8—N2123.2 (6)N4—C19—C27115.5 (5)
C9—C8—C16118.8 (6)N5—C28—C36113.1 (5)
N2—C8—C16117.9 (5)N5—C28—C29112.7 (5)
C20—C19—N4119.4 (6)C36—C28—C29112.9 (5)
C20—C19—C27124.8 (6)
O1—C5—N1—C6176.9 (6)N3—C17—C18—N413.6 (9)
C1—O1—C5—N1176.4 (6)C17—C18—N4—C19174.9 (6)
C5—N1—C6—C787.5 (8)C18—N4—C19—C2738.6 (8)
N1—C6—C7—N2164.5 (6)N4—C19—C20—C21172.3 (6)
C6—C7—N2—C8171.5 (6)C19—C20—C21—C2238.3 (11)
C7—N2—C8—C1659.1 (8)C19—C20—C21—C26144.2 (7)
N2—C8—C9—C106.3 (11)N4—C19—C27—N5120.8 (6)
C8—C9—C10—C15160.4 (7)C19—C27—N5—C28176.3 (5)
C8—C9—C10—C1122.3 (11)C27—N5—C28—C36109.7 (7)
N2—C8—C16—N323.7 (9)N5—C28—C36—N628.9 (8)
C8—C16—N3—C17177.1 (6)C28—C36—N6—C37176.1 (6)
C16—N3—C17—C1882.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O4i0.882.052.734 (8)134
N2—H2D···O6i0.881.942.784 (7)161
N3—H3D···O3i0.882.363.057 (7)137
C6—H6B···O4i0.992.493.018 (10)113
C13—H13A···O7ii0.952.423.222 (9)142
C3—H3B···O20.982.332.924 (10)118
C4—H4A···O20.982.553.085 (12)114
C31—H31A···O70.952.513.101 (8)120
C38—H38A···O70.952.212.820 (8)121
C11—H11A···N20.952.523.080 (9)118
N4—H4D···O30.882.092.925 (7)158
N6—H6C···O50.882.122.974 (7)163
N4—H4D···N30.882.362.766 (8)108
N6—H6C···N50.882.352.764 (7)109
O10—H10A···O20.842.002.843 (10)178
C4—H4B···Cg10.983.003.883150
C35—H35A···Cg10.952.613.557172
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds