Download citation
Download citation
link to html
The title compound, tri­aqua­tris­(glutarato)­dilanthanum(III) dihydrate, {[La2(C5H6O4)3(H2O)3]·2H2O}n, is the first re­ported glutarate coordination polymer of lanthanum(III) without a protonated ligand. The noteworthy features in the structure are, firstly, the unusual binuclear lanthanum cage formed by three bridging bonds through O atoms involved in different coordination modes and, secondly, the very rare `malonate' mode exhibited by a di­carboxyl­ate ligand with an alkyl chain of five C atoms. To our knowledge, this η7 chelation for the glutarate ligand has not been reported and was thought to be forbidden for steric reasons. The gauchegauche conformation of the corresponding ligand favours cage formation, but trans geometries created along the ligating O atoms prevent cluster packing. The two independent La atoms are nine- and tenfold coordinated, leading to distorted one-face-sharing LaO7(H2O)2 and LaO9(H2O) polyhedra, respectively. In the three-dimensional framework, these asymmetric subunits are linked in a zigzag manner via one-edge-sharing LaO9(H2O) polyhedra and are connected by the carbon backbone chains of the ligands. The structure is very compact and, unlike many other reported di­carboxyl­ate lanthanides, connectivity between the two metal atoms and the three ligands yields a crystal packing with cavities accommodating two guest water mol­ecules but without an open framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104000848/dn1038sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104000848/dn1038Isup2.hkl
Contains datablock I

CCDC reference: 235317

Comment top

Relatively recently, interest in rare-earth complexes obtained with aliphatic dicarboxylic acids, HOOC(CH2)nCOOH, has increased owing to the variety of their structural types and the potential uses of these compounds as luminescent sensors, precursors for superconductor oxides or microporous materials. A particular emphasis has been placed on the design, crystal architecture and properties of the resulting coordination polymers, as illustrated by the generation of organic–inorganic hybrids exhibiting open frameworks and mainly obtained with heavier lanthanides [Pr3+ (Serpaggi & Férey, 1999; Hernandez-Molina et al., 2000), Eu3+, Nd3+, Ho3+ (Wang et al., 2000; Hernandez-Molina et al., 2002), Ce3+ (Sun et al., 2002) and La3+ (Dimos et al., 2002)]. A typical framework is thought to depend on the chain length of the ligand, the parity of the number of C atoms in the ligand and the size of the metal atom. In this context, we recently investigated the use of the largest lanthanide cation (La3+) for connecting malonate (n=1) or glutarate (n=3) anions (Benmerad et al., 2000a, 2000b). The latter contains both glutarate and hydrogen glutarate ligands. In the course of this study, we found that by varying the pH and molar ratio of the starting materials it is possible to obtain the first glutarate lanthanum without a protonated ligand or disordered water molecule, viz. La2(C5H6O4)3(H2O)3·2H2O, (I), the structure of which is reported here.

Fig. 1 shows a view of the coordination around the two crystallographically independent La atoms and reveals some unprecedent structural features that were totally unexpected. Interestingly, a novel binuclear cage assembly connects the two La atoms via three bridging bonds through O atoms belonging to two ligands. The only glutarate cage compound known, involving two ligands and Ag atoms, contains tetranuclear cluster units (Michaelides et al., 1995). In (I), the three independent dicarboxylate ligands, denoted L1, L2 and L3, adopt several different modes of bonding. The least common is shown by L1, one of the two ligands involved in the cage structure. L1 exhibits an eight-membered ring analogue to the so-called `malonate' mode. This coordination, which gives a η7 chelation in the case of the glutarate ligand (n=3), is very comman? in the oxalate (n=0) and was reported to be singular for the malonate (n=1), appearing particularly when the ligand is linked to 3 d ions. In the higher series (n>1), it was thought to be forbidden for steric reasons (Rodriguez-Martin et al., 2002). The gauche–gauche conformation of L1, illustrated by the C7—C8—C9—C10 [65.4 (4)°] and C6—C7—C8—C9 [54.6 (4)°] torsion angles, which do not deviate significantly from the ideal gauche value (60°), is very similar to that found in the tetranuclear silver glutarate cluster and favours cage formation. However, trans-type geometries created along the ligating O atoms (O2, O4 and O11, O8i) prevents cluster packing. Despite its conformation and its relatively long alkyl chain, L1 adopts simultaneously the `malonate' mode and the bis-bridging-chelating bonding, behaving overall as tris chelating, like the two isostructural malonate compounds obtained with the La (Marrot & Trombe, 1993) or praseodymium atom (Hernandez et al., 2000). The surprising range of bonding offered by L1 shows that the glutarate is closely related to malonate or to the simplest dicarboxylate ligand, the oxalate, and that it is not affected by the electronic structure of the linked metal ion. Thus, from the point of view of connectivity, within the same ligand, three tridentate O-atom bridges form three different kinds of ring, viz.two four-membered rings, corresponding to bidentate bonding, one four-membered La—O—La—O ring, linking two metal atoms through a µ-oxo bridge, and one eight-membered ring.

L2 adopts a bis-bridging-chelating mode and, unlike L1, which involves only one O atom in the cage structure, completes the cage with two O-atom bridges. L3 acts as a bidentate ligand by one function, in which atoms O9iii and O10iii coordinate to the same La atom, and as a conventional carboxylate bridge by its second function, in which atoms O6 and O7 coordinate to two different La atoms.

The three ligands exhibit different conformations, as indicating by their torsion angles (Table 1). L1 adopts an envelope conformation, while L2 and L3 are twisted, the conventional bridges of the latter being in a syn-anti conformation. In the cage assembly presenting rhombic angles (see Table 1), La2 is ten-coordinated, the coordinating O atoms comprising four from L1, three from L2, two from L3 and one from a water molecule. La1 is nine-coordinated, three O atoms belonging to L2, two each belonging to L1 and L3, and two belonging to water molecules. The corresponding coordination polyhedra are distorted as a consequence of the bite angles, which are very small [ranging from 47.42 (7) to 49.99 (7)°] and cannot be described easily in terms of regular geometry. On extending the criteria proposed for eight-coordinate complexes (Haigh, 1995) to higher coordinations, we found that the best polyhedral description is a tetracapped trigonal prism around La2 (atoms O10, O11i, O2 and O9 occupy the equatorial capping positions) and a monocapped dodecahedron around La1 (O5 being the axial capping position). The dihedral angle of 28.8 (1)° between the two triangular faces (O11 OW3 O8) and (O1 O2 O3), and the dihedral angle of 82.2 (1)° between the trapezoidal O7/O3/OW2/OW1 and O6/O1/O2/O4/ planes, show that these two geometries are very distorted. The metal–metal distances, ranging from 4.195 (3) Å (La1—La2; connection by face-sharing) to 4.525 (3) Å (La2—La2i; connection by edge sharing) to 4.728 (3) Å (La1—La1iv; connection across the conventional carboxylate bridge), are sufficiently large to imply no metal–metal bonding and therefore no cluster packing.

The distances and angles in the three ligands and the La—O bond lengths in the two polyhedra are similar to those found in the six lanthanum dicarboxylates whose structures are already known (Marrot & Trombe, 1993, 1994; Kiritsis et al., 1998; Benmerad et al., 2000a,b; Dimos et al., 2002), with a relatively high dispersion of the La—O bond lengths [2.537 (3)–2.724 (2) Å for atom La1 and 2.502 (2)–2.749 (2) Å for atom La2], with one longer bond corresponding to one µ-oxo bridge [La2—O11i = 2.829 (2) Å]. This long distance, and? the relatively long C—O distances noticed in the ligands, are, as expected, associated with the tridentate O atoms [C1—O1 = 1.272 (4) Å, C5—O3= 1.277 (4) Å, C6—O2 = 1.275 (4) Å and C10—O11 = 1.268 (4) Å]. It seems, moreover, that such distances are typical of the chelating carboxylate groups in rare-earth complexes (Hansson, 1973a,b,c; Benmerad et al., 2000a,b; Thomas & Trombe, 2001). The other distances and angles in the free ligands have nearly trivial values. The coexistence of a binuclear cage assembly with the particular coordination scheme exhibited by L1 yields corrugated sheets extending along the [001] direction and based on repeated units consisting of three lanthanum polyhedra, viz. the La1 polyhedron, sharing one face (O1/O3/O2) with the La2 tetracapped trigonal prism, which shares in turn, one edge (O11/O11i) with another La2 ligand. As shown in the general features of the structure (Fig. 2), these dense sheets are connected via the carbon backbone chains of L2, which link the one-face-sharing polyhedra approximately in the [110] direction, and of L3, running along [100], which link the one-edge-sharing polyhedra, and therefore, assure the three dimensionality of the structure. The framework is also strengthened by extensive hydrogen bonding (Table 2). A comparison of this structure with other known lanthanide glutarates (Glowiak et al., 1986, 1987; Serpaggi et al., 1998, 1999a,b; Thomas & Trombe, 2001) reveals the singular behavior of this lanthanum glutarate. Even though its chemical formula is simialar to those of the isostructural La malonate (Marrot & Trombe, 1993) and Pr malonate (Hernandez et al. 2000), the crystal structure of (I) is completely different and exhibits interesting structural features that were unexpected if we refer to recent calculations made on dicarboxylates of Eu, Nd and Ho (Wang et al., 2000). Unlike most of the recently published α-ω dicarboxylate lanthanides, the particular connectivity of the twoLa atoms? yields a three-dimensional packing without an open framework. From this point of view, this compound is similar to the terbium complex containing both oxalate and glutarate (Thomas & Trombe, 2001). However, the resulting polymeric structure accommodates two guest water molecules. The unusual structural features of this compound highlight the need for caution in defining an unified set of criteria governing the specific crystal packing of the lanthanide coordination polymers.

Experimental top

The title compound was prepared according to the procedure described for [La(C5H6O4)(C5H7O4)(H2O)]·H2O by Benmerad et al. (2000b), using La2O3 and glutaric acid in a molar ratio of 1:4. Single crystals suitable for X-ray diffraction were grown at 313 K after being stored for few days in the mother liquor at the same temperature.

Refinement top

All H atoms bonded to C atoms were initially located from difference Fourier maps and were then placed in calculated positions (0.97 Å from their parent atoms) and modelled as riding. Water H atoms were refined freely? The two H atoms bonded to water atom OW4 were not found in the Fourier maps but are accounted for in the formula.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: enCIFer (CCDC, 2003).

Figures top
[Figure 1] Fig. 1. The coordination around the two La atoms, the cage feature, the η7 chelation and the La—O—La ring in (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −y, −z; (ii) 1/2 − x, 1/2 + y, 1/2 − z; (iii) x − 1/2, 1/2 − y, 1/2 + z; (iv) 3/2 − x, 1/2 + y, 3/2 − z.]
[Figure 2] Fig. 2. The packing of (I), viewed along the c axis. All H atoms have been omitted for clarity.
tris(glutarato)dilanthanum(III) dihydrate top
Crystal data top
[La2(C5H6O4)3(H2O)3]·2H2OF(000) = 1464
Mr = 756.18Dx = 2.152 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 8008 reflections
a = 11.438 (2) Åθ = 3.1–32.5°
b = 13.869 (2) ŵ = 3.69 mm1
c = 15.635 (5) ÅT = 293 K
β = 109.75 (5)°Needle, colourless
V = 2334.3 (12) Å30.4 × 0.2 × 0.2 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8008 independent reflections
Radiation source: fine-focus sealed tube5513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 32.5°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
DENZO–SMN (Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.29, Tmax = 0.48k = 2020
54342 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.1548P]
where P = (Fo2 + 2Fc2)/3
8032 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[La2(C5H6O4)3(H2O)3]·2H2OV = 2334.3 (12) Å3
Mr = 756.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.438 (2) ŵ = 3.69 mm1
b = 13.869 (2) ÅT = 293 K
c = 15.635 (5) Å0.4 × 0.2 × 0.2 mm
β = 109.75 (5)°
Data collection top
Nonius KappaCCD
diffractometer
8008 independent reflections
Absorption correction: empirical (using intensity measurements)
DENZO–SMN (Otwinowski & Minor, 1997)
5513 reflections with I > 2σ(I)
Tmin = 0.29, Tmax = 0.48Rint = 0.039
54342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.08 e Å3
8032 reflectionsΔρmin = 1.08 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.502367 (19)0.096640 (14)0.376054 (13)0.02366 (6)
La20.414130 (18)0.073356 (14)0.093689 (13)0.02253 (6)
O10.3336 (2)0.14670 (17)0.22744 (16)0.0289 (5)
O20.1954 (3)0.0847 (2)0.10603 (18)0.0409 (7)
O30.0475 (2)0.46346 (18)0.25785 (16)0.0337 (6)
O40.1671 (2)0.46164 (19)0.17371 (16)0.0349 (6)
O50.5801 (2)0.13429 (19)0.23289 (16)0.0328 (6)
O60.7200 (3)0.0927 (2)0.36284 (17)0.0446 (8)
O70.5877 (2)0.03185 (18)0.08395 (15)0.0318 (6)
O80.7371 (2)0.1204 (2)0.06663 (16)0.0366 (6)
O90.5435 (2)0.19282 (18)0.03397 (17)0.0337 (6)
O100.3973 (2)0.25917 (18)0.07586 (17)0.0315 (6)
O110.9207 (3)0.44409 (19)0.03271 (19)0.0397 (7)
O120.8436 (3)0.3286 (2)0.06491 (18)0.0424 (7)
OW10.5378 (3)0.27863 (19)0.37020 (18)0.0420 (7)
H110.61000.30100.38600.051*
H120.49600.30800.39500.051*
OW20.6629 (3)0.1498 (2)0.52531 (17)0.0434 (7)
H210.73500.17300.53300.052*
H220.66600.11800.57100.052*
OW30.3045 (3)0.08366 (19)0.0332 (2)0.0403 (7)
H310.34500.12200.01600.048*
H320.23300.09700.02700.048*
OW40.4171 (4)0.3866 (3)0.2172 (3)0.0978 (14)
OW50.0603 (4)0.1144 (4)0.0060 (3)0.1116 (18)
H510.01300.11300.03700.134*
H520.05900.07200.04400.134*
C10.2219 (3)0.1236 (2)0.1831 (2)0.0266 (7)
C20.1200 (3)0.1435 (3)0.2214 (3)0.0321 (8)
H2A0.15070.13160.28630.039*
H2B0.05130.09980.19400.039*
C30.0737 (4)0.2476 (3)0.2036 (3)0.0359 (9)
H3A0.05570.26250.13990.043*
H3B0.00310.25370.21670.043*
C40.1675 (5)0.3205 (3)0.2610 (3)0.0485 (12)
H4A0.17510.31350.32440.058*
H4B0.24820.30840.25560.058*
C50.1268 (4)0.4205 (3)0.2301 (2)0.0313 (8)
C60.6912 (4)0.1111 (3)0.2795 (2)0.0317 (8)
C70.7881 (4)0.1018 (3)0.2349 (3)0.0399 (10)
H7A0.85230.14970.25990.048*
H7B0.75040.11420.17030.048*
C80.8458 (4)0.0027 (3)0.2488 (3)0.0443 (11)
H8A0.89330.00530.31280.053*
H8B0.90360.00120.21550.053*
C90.7531 (4)0.0806 (3)0.2186 (2)0.0385 (10)
H9A0.79660.14140.23590.046*
H9B0.69220.07570.24900.046*
C100.6881 (3)0.0787 (2)0.1174 (2)0.0273 (8)
C110.4820 (3)0.2658 (2)0.0412 (2)0.0251 (7)
C120.5044 (3)0.3618 (3)0.0060 (3)0.0315 (8)
H12A0.52060.40820.05500.038*
H12B0.42850.38150.04130.038*
C130.6098 (3)0.3673 (3)0.0322 (2)0.0322 (8)
H13A0.60190.42680.06630.039*
H13B0.60180.31420.07410.039*
C140.7390 (3)0.3637 (3)0.0400 (2)0.0341 (9)
H14A0.74460.41250.08560.041*
H14B0.75080.30130.06970.041*
C150.8403 (3)0.3799 (3)0.0011 (2)0.0284 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02261 (11)0.02568 (11)0.02352 (11)0.00270 (8)0.00888 (8)0.00231 (8)
La20.02139 (11)0.02597 (11)0.02138 (10)0.00267 (8)0.00873 (8)0.00075 (7)
O10.0267 (14)0.0291 (14)0.0332 (13)0.0009 (10)0.0133 (11)0.0012 (10)
O20.0294 (15)0.0602 (19)0.0340 (15)0.0027 (13)0.0121 (12)0.0155 (13)
O30.0443 (17)0.0253 (14)0.0361 (14)0.0042 (11)0.0196 (13)0.0009 (11)
O40.0326 (15)0.0429 (16)0.0291 (13)0.0085 (12)0.0104 (11)0.0042 (12)
O50.0278 (15)0.0375 (15)0.0321 (13)0.0033 (11)0.0090 (11)0.0025 (11)
O60.0311 (16)0.077 (2)0.0244 (14)0.0010 (14)0.0083 (12)0.0008 (13)
O70.0276 (14)0.0377 (15)0.0297 (13)0.0076 (11)0.0090 (11)0.0007 (11)
O80.0358 (16)0.0468 (16)0.0281 (13)0.0169 (13)0.0119 (12)0.0021 (12)
O90.0331 (15)0.0278 (13)0.0490 (16)0.0045 (11)0.0254 (13)0.0013 (12)
O100.0329 (15)0.0309 (14)0.0391 (14)0.0054 (11)0.0230 (12)0.0048 (11)
O110.0331 (16)0.0341 (15)0.0514 (17)0.0070 (12)0.0137 (13)0.0013 (13)
O120.0418 (17)0.0546 (19)0.0394 (16)0.0081 (14)0.0250 (14)0.0089 (13)
OW10.0340 (16)0.0366 (16)0.0554 (17)0.0073 (12)0.0149 (14)0.0049 (13)
OW20.0416 (17)0.0601 (19)0.0270 (13)0.0230 (14)0.0099 (12)0.0024 (13)
OW30.0363 (17)0.0421 (17)0.0489 (17)0.0037 (12)0.0229 (14)0.0103 (12)
OW40.093 (3)0.104 (4)0.089 (3)0.006 (3)0.020 (3)0.001 (2)
OW50.054 (3)0.158 (4)0.097 (3)0.045 (3)0.009 (2)0.057 (3)
C10.030 (2)0.0235 (17)0.0287 (18)0.0016 (14)0.0129 (15)0.0023 (14)
C20.033 (2)0.030 (2)0.043 (2)0.0005 (16)0.0259 (18)0.0000 (16)
C30.033 (2)0.035 (2)0.045 (2)0.0080 (17)0.0200 (18)0.0071 (18)
C40.070 (3)0.031 (2)0.033 (2)0.018 (2)0.002 (2)0.0041 (17)
C50.034 (2)0.033 (2)0.0211 (18)0.0043 (16)0.0010 (15)0.0054 (15)
C60.027 (2)0.038 (2)0.031 (2)0.0069 (16)0.0117 (16)0.0046 (16)
C70.029 (2)0.059 (3)0.036 (2)0.0126 (19)0.0166 (18)0.0020 (19)
C80.024 (2)0.071 (3)0.035 (2)0.001 (2)0.0065 (17)0.010 (2)
C90.040 (2)0.053 (3)0.0217 (18)0.0104 (19)0.0098 (17)0.0066 (17)
C100.0276 (19)0.033 (2)0.0234 (17)0.0031 (15)0.0110 (15)0.0018 (14)
C110.0235 (18)0.0318 (19)0.0199 (16)0.0006 (14)0.0074 (14)0.0000 (14)
C120.029 (2)0.029 (2)0.040 (2)0.0044 (15)0.0172 (17)0.0026 (16)
C130.031 (2)0.033 (2)0.034 (2)0.0004 (16)0.0127 (16)0.0055 (16)
C140.035 (2)0.044 (2)0.0292 (19)0.0075 (18)0.0181 (17)0.0019 (17)
C150.0255 (19)0.0285 (19)0.0292 (19)0.0023 (15)0.0069 (15)0.0055 (15)
Geometric parameters (Å, º) top
La1—O12i2.522 (3)O12—La1vii2.522 (3)
La1—O11ii2.537 (3)OW1—H110.8375
La1—OW22.543 (3)OW1—H120.8186
La1—OW12.563 (3)OW2—H210.8551
La1—O12.564 (3)OW2—H220.8303
La1—O62.567 (3)OW3—H310.8084
La1—O4iii2.617 (3)OW3—H320.8116
La1—O3iii2.704 (2)OW5—H510.8793
La1—O52.724 (3)OW5—H520.8399
La1—O11i2.956 (3)C1—C21.505 (5)
La1—C63.031 (4)C2—C31.531 (5)
La1—C5iii3.040 (4)C2—H2A0.9700
La2—O52.503 (3)C2—H2B0.9700
La2—O72.509 (2)C3—C41.526 (6)
La2—OW32.532 (3)C3—H3A0.9700
La2—O22.578 (3)C3—H3B0.9700
La2—O102.592 (2)C4—C51.490 (5)
La2—O92.596 (2)C4—H4A0.9700
La2—O8iv2.602 (3)C4—H4B0.9700
La2—O3iii2.686 (2)C5—La1v3.040 (4)
La2—O12.749 (2)C6—C71.502 (5)
La2—O7iv2.830 (2)C7—C81.508 (6)
La2—C112.972 (3)C7—H7A0.9700
La2—C13.058 (4)C7—H7B0.9700
O1—C11.272 (4)C8—C91.532 (6)
O2—C11.260 (4)C8—H8A0.9700
O3—C51.277 (4)C8—H8B0.9700
O3—La2v2.686 (2)C9—C101.505 (5)
O3—La1v2.704 (2)C9—H9A0.9700
O4—C51.261 (4)C9—H9B0.9700
O4—La1v2.617 (3)C10—La2iv3.107 (4)
O5—C61.274 (4)C11—C121.495 (5)
O6—C61.257 (4)C12—C131.518 (5)
O7—C101.269 (4)C12—H12A0.9700
O7—La2iv2.830 (2)C12—H12B0.9700
O8—C101.256 (4)C13—C141.527 (5)
O8—La2iv2.602 (3)C13—H13A0.9700
O9—C111.260 (4)C13—H13B0.9700
O10—C111.263 (4)C14—C151.496 (5)
O11—C151.256 (4)C14—H14A0.9700
O11—La1vi2.537 (3)C14—H14B0.9700
O11—La1vii2.956 (3)C15—La1vii3.133 (4)
O12—C151.264 (4)
O12i—La1—O11ii107.05 (9)O8iv—La2—C192.09 (9)
O12i—La1—OW286.02 (10)O3iii—La2—C170.57 (9)
O11ii—La1—OW273.75 (10)O1—La2—C124.58 (8)
O12i—La1—OW175.52 (9)O7iv—La2—C1136.64 (9)
O11ii—La1—OW1144.32 (9)C11—La2—C1102.52 (9)
OW2—La1—OW170.92 (9)C1—O1—La1137.4 (2)
O12i—La1—O178.79 (9)C1—O1—La291.4 (2)
O11ii—La1—O1138.34 (8)La1—O1—La2104.24 (9)
OW2—La1—O1147.36 (9)C1—O2—La299.9 (2)
OW1—La1—O177.33 (8)C5—O3—La2v129.1 (2)
O12i—La1—O6151.18 (9)C5—O3—La1v92.5 (2)
O11ii—La1—O682.29 (9)La2v—O3—La1v102.22 (9)
OW2—La1—O670.18 (9)C5—O4—La1v97.0 (2)
OW1—La1—O681.31 (9)C6—O5—La2136.8 (2)
O1—La1—O6112.73 (9)C6—O5—La191.2 (2)
O12i—La1—O4iii81.39 (9)La2—O5—La1106.71 (9)
O11ii—La1—O4iii69.64 (9)C6—O6—La199.0 (2)
OW2—La1—O4iii135.48 (8)C10—O7—La2153.9 (2)
OW1—La1—O4iii143.52 (9)C10—O7—La2iv90.3 (2)
O1—La1—O4iii70.68 (8)La2—O7—La2iv115.74 (9)
O6—La1—O4iii127.00 (9)C10—O8—La2iv101.5 (2)
O12i—La1—O3iii125.10 (9)C11—O9—La294.5 (2)
O11ii—La1—O3iii78.93 (9)C11—O10—La294.5 (2)
OW2—La1—O3iii143.77 (9)C15—O11—La1vi151.9 (3)
OW1—La1—O3iii129.76 (8)C15—O11—La1vii86.1 (2)
O1—La1—O3iii65.56 (8)La1vi—O11—La1vii118.59 (9)
O6—La1—O3iii83.08 (9)C15—O12—La1vii106.9 (2)
O4iii—La1—O3iii48.71 (8)La1—OW1—H11120.4
O12i—La1—O5134.22 (9)La1—OW1—H12110.4
O11ii—La1—O5118.31 (8)H11—OW1—H12110.6
OW2—La1—O5111.32 (8)La1—OW2—H21127.0
OW1—La1—O571.48 (8)La1—OW2—H22116.3
O1—La1—O563.79 (8)H21—OW2—H22108.6
O6—La1—O548.94 (9)La2—OW3—H31115.0
O4iii—La1—O5107.92 (8)La2—OW3—H32126.3
O3iii—La1—O562.40 (7)H31—OW3—H32118.6
O12i—La1—O11i46.13 (8)H51—OW5—H52106.6
O11ii—La1—O11i61.41 (9)O2—C1—O1120.1 (3)
OW2—La1—O11i68.12 (8)O2—C1—C2119.4 (3)
OW1—La1—O11i108.41 (8)O1—C1—C2120.5 (3)
O1—La1—O11i116.79 (8)O2—C1—La256.13 (19)
O6—La1—O11i130.48 (9)O1—C1—La263.98 (18)
O4iii—La1—O11i72.53 (8)C2—C1—La2175.4 (3)
O3iii—La1—O11i117.91 (8)C1—C2—C3111.6 (3)
O5—La1—O11i179.41 (8)C1—C2—H2A109.3
O12i—La1—C6151.36 (10)C3—C2—H2A109.3
O11ii—La1—C699.48 (10)C1—C2—H2B109.3
OW2—La1—C691.31 (10)C3—C2—H2B109.3
OW1—La1—C676.66 (9)H2A—C2—H2B108.0
O1—La1—C688.61 (9)C4—C3—C2112.8 (3)
O6—La1—C624.18 (9)C4—C3—H3A109.0
O4iii—La1—C6118.70 (9)C2—C3—H3A109.0
O3iii—La1—C670.05 (9)C4—C3—H3B109.0
O5—La1—C624.86 (9)C2—C3—H3B109.0
O11i—La1—C6154.58 (9)H3A—C3—H3B107.8
O12i—La1—C5iii104.67 (11)C5—C4—C3110.2 (3)
O11ii—La1—C5iii69.47 (10)C5—C4—H4A109.6
OW2—La1—C5iii143.22 (9)C3—C4—H4A109.6
OW1—La1—C5iii145.60 (9)C5—C4—H4B109.6
O1—La1—C5iii69.19 (9)C3—C4—H4B109.6
O6—La1—C5iii104.14 (10)H4A—C4—H4B108.1
O4iii—La1—C5iii24.31 (9)O4—C5—O3119.8 (3)
O3iii—La1—C5iii24.82 (9)O4—C5—C4119.9 (4)
O5—La1—C5iii86.49 (9)O3—C5—C4120.2 (4)
O11i—La1—C5iii93.87 (9)O4—C5—La1v58.70 (18)
C6—La1—C5iii94.46 (10)O3—C5—La1v62.70 (18)
O5—La2—O782.29 (8)C4—C5—La1v164.9 (3)
O5—La2—OW3138.59 (9)O6—C6—O5120.4 (3)
O7—La2—OW377.25 (9)O6—C6—C7119.2 (4)
O5—La2—O2112.61 (9)O5—C6—C7120.3 (3)
O7—La2—O2147.95 (9)O6—C6—La156.8 (2)
OW3—La2—O273.13 (9)O5—C6—La163.97 (19)
O5—La2—O1076.39 (8)C7—C6—La1171.1 (3)
O7—La2—O10127.09 (8)C6—C7—C8111.5 (3)
OW3—La2—O10143.66 (9)C6—C7—H7A109.3
O2—La2—O1084.75 (8)C8—C7—H7A109.3
O5—La2—O974.94 (8)C6—C7—H7B109.3
O7—La2—O977.92 (8)C8—C7—H7B109.3
OW3—La2—O9133.24 (8)H7A—C7—H7B108.0
O2—La2—O9132.32 (8)C7—C8—C9114.8 (3)
O10—La2—O950.02 (7)C7—C8—H8A108.6
O5—La2—O8iv144.59 (9)C9—C8—H8A108.6
O7—La2—O8iv111.67 (8)C7—C8—H8B108.6
OW3—La2—O8iv76.79 (10)C9—C8—H8B108.6
O2—La2—O8iv73.19 (9)H8A—C8—H8B107.5
O10—La2—O8iv69.27 (8)C10—C9—C8110.8 (3)
O9—La2—O8iv76.55 (9)C10—C9—H9A109.5
O5—La2—O3iii65.52 (8)C8—C9—H9A109.5
O7—La2—O3iii79.67 (8)C10—C9—H9B109.5
OW3—La2—O3iii75.56 (9)C8—C9—H9B109.5
O2—La2—O3iii81.34 (9)H9A—C9—H9B108.1
O10—La2—O3iii129.91 (7)O8—C10—O7120.7 (3)
O9—La2—O3iii136.58 (9)O8—C10—C9119.3 (3)
O8iv—La2—O3iii146.74 (9)O7—C10—C9119.9 (3)
O5—La2—O164.17 (8)O8—C10—La2iv55.14 (17)
O7—La2—O1137.44 (8)O7—C10—La2iv65.60 (18)
OW3—La2—O1110.59 (8)C9—C10—La2iv173.1 (3)
O2—La2—O148.51 (8)O9—C11—O10120.8 (3)
O10—La2—O171.46 (7)O9—C11—C12120.8 (3)
O9—La2—O1114.55 (8)O10—C11—C12118.3 (3)
O8iv—La2—O1110.83 (8)O9—C11—La260.55 (18)
O3iii—La2—O163.36 (7)O10—C11—La260.40 (18)
O5—La2—O7iv132.38 (8)C12—C11—La2174.0 (2)
O7—La2—O7iv64.26 (9)C11—C12—C13116.6 (3)
OW3—La2—O7iv67.64 (8)C11—C12—H12A108.1
O2—La2—O7iv113.61 (9)C13—C12—H12A108.1
O10—La2—O7iv96.96 (7)C11—C12—H12B108.1
O9—La2—O7iv65.97 (8)C13—C12—H12B108.1
O8iv—La2—O7iv47.42 (7)H12A—C12—H12B107.3
O3iii—La2—O7iv132.65 (7)C12—C13—C14114.0 (3)
O1—La2—O7iv158.23 (7)C12—C13—H13A108.7
O5—La2—C1175.21 (9)C14—C13—H13A108.7
O7—La2—C11102.70 (9)C12—C13—H13B108.7
OW3—La2—C11144.29 (9)C14—C13—H13B108.7
O2—La2—C11108.44 (9)H13A—C13—H13B107.6
O10—La2—C1125.07 (8)C15—C14—C13112.5 (3)
O9—La2—C1125.00 (8)C15—C14—H14A109.1
O8iv—La2—C1170.08 (9)C13—C14—H14A109.1
O3iii—La2—C11140.05 (8)C15—C14—H14B109.1
O1—La2—C1193.65 (8)C13—C14—H14B109.1
O7iv—La2—C1180.07 (8)H14A—C14—H14B107.8
O5—La2—C188.69 (9)O11—C15—O12120.0 (3)
O7—La2—C1150.00 (8)O11—C15—C14120.7 (3)
OW3—La2—C191.43 (9)O12—C15—C14119.2 (3)
O2—La2—C123.94 (9)O11—C15—La1vii70.3 (2)
O10—La2—C177.51 (8)O12—C15—La1vii50.36 (18)
O9—La2—C1127.17 (8)C14—C15—La1vii166.4 (2)
O12i—La1—O1—C166.1 (3)La1—O1—C1—C266.0 (5)
O11ii—La1—O1—C137.0 (4)La2—O1—C1—C2179.0 (3)
OW2—La1—O1—C1130.0 (3)La1—O1—C1—La2113.0 (3)
OW1—La1—O1—C1143.6 (3)O5—La2—C1—O2178.1 (2)
O6—La1—O1—C1141.6 (3)O7—La2—C1—O2106.0 (3)
O4iii—La1—O1—C118.6 (3)OW3—La2—C1—O239.5 (2)
O3iii—La1—O1—C171.1 (3)O10—La2—C1—O2105.5 (2)
O5—La1—O1—C1141.0 (3)O9—La2—C1—O2112.0 (2)
O11i—La1—O1—C139.2 (3)O8iv—La2—C1—O237.3 (2)
C6—La1—O1—C1139.8 (3)O3iii—La2—C1—O2113.7 (2)
C5iii—La1—O1—C144.5 (3)O1—La2—C1—O2178.2 (4)
O12i—La1—O1—La2174.43 (10)O7iv—La2—C1—O218.6 (3)
O11ii—La1—O1—La271.31 (14)C11—La2—C1—O2107.4 (2)
OW2—La1—O1—La2121.70 (13)O5—La2—C1—O13.7 (2)
OW1—La1—O1—La2108.08 (9)O7—La2—C1—O175.8 (3)
O6—La1—O1—La233.28 (11)OW3—La2—C1—O1142.3 (2)
O4iii—La1—O1—La289.72 (9)O2—La2—C1—O1178.2 (4)
O3iii—La1—O1—La237.22 (7)O10—La2—C1—O172.62 (19)
O5—La1—O1—La232.69 (8)O9—La2—C1—O166.2 (2)
O11i—La1—O1—La2147.49 (7)O8iv—La2—C1—O1140.9 (2)
C6—La1—O1—La231.44 (10)O3iii—La2—C1—O168.17 (19)
C5iii—La1—O1—La263.86 (10)O7iv—La2—C1—O1159.54 (17)
O5—La2—O1—C1175.9 (2)C11—La2—C1—O170.8 (2)
O7—La2—O1—C1134.2 (2)O5—La2—C1—C2165 (3)
OW3—La2—O1—C140.8 (2)O7—La2—C1—C293 (3)
O2—La2—O1—C10.99 (19)OW3—La2—C1—C227 (3)
O10—La2—O1—C1100.7 (2)O2—La2—C1—C213 (3)
O9—La2—O1—C1126.7 (2)O10—La2—C1—C2118 (3)
O8iv—La2—O1—C142.5 (2)O9—La2—C1—C2125 (3)
O3iii—La2—O1—C1101.6 (2)O8iv—La2—C1—C250 (3)
O7iv—La2—O1—C140.3 (3)O3iii—La2—C1—C2101 (3)
C11—La2—O1—C1112.5 (2)O1—La2—C1—C2169 (3)
O5—La2—O1—La135.87 (9)O7iv—La2—C1—C231 (3)
O7—La2—O1—La15.76 (15)C11—La2—C1—C2120 (3)
OW3—La2—O1—La199.23 (10)O2—C1—C2—C396.6 (4)
O2—La2—O1—La1140.98 (14)O1—C1—C2—C382.6 (4)
O10—La2—O1—La1119.36 (10)La2—C1—C2—C3109 (3)
O9—La2—O1—La193.29 (10)C1—C2—C3—C471.4 (4)
O8iv—La2—O1—La1177.56 (8)C2—C3—C4—C5170.7 (3)
O3iii—La2—O1—La138.33 (8)La1v—O4—C5—O314.9 (4)
O7iv—La2—O1—La1179.68 (16)La1v—O4—C5—C4162.5 (3)
C11—La2—O1—La1107.51 (9)La2v—O3—C5—O493.7 (4)
C1—La2—O1—La1140.0 (2)La1v—O3—C5—O414.3 (3)
O5—La2—O2—C12.1 (2)La2v—O3—C5—C489.0 (4)
O7—La2—O2—C1115.1 (2)La1v—O3—C5—C4163.0 (3)
OW3—La2—O2—C1138.3 (2)La2v—O3—C5—La1v107.9 (2)
O10—La2—O2—C170.8 (2)C3—C4—C5—O494.8 (5)
O9—La2—O2—C187.9 (2)C3—C4—C5—O382.6 (4)
O8iv—La2—O2—C1140.7 (2)C3—C4—C5—La1v14.5 (14)
O3iii—La2—O2—C160.9 (2)La1—O6—C6—O57.1 (4)
O1—La2—O2—C11.0 (2)La1—O6—C6—C7170.7 (3)
O7iv—La2—O2—C1166.2 (2)La2—O5—C6—O6122.8 (3)
C11—La2—O2—C179.2 (2)La1—O5—C6—O66.6 (4)
O7—La2—O5—C68.6 (3)La2—O5—C6—C754.9 (5)
OW3—La2—O5—C652.1 (4)La1—O5—C6—C7171.1 (3)
O2—La2—O5—C6141.9 (3)La2—O5—C6—La1116.2 (3)
O10—La2—O5—C6139.8 (4)O12i—La1—C6—O6112.6 (3)
O9—La2—O5—C688.0 (3)O11ii—La1—C6—O645.2 (2)
O8iv—La2—O5—C6125.5 (3)OW2—La1—C6—O628.5 (2)
O3iii—La2—O5—C673.6 (3)OW1—La1—C6—O698.6 (2)
O1—La2—O5—C6144.5 (4)O1—La1—C6—O6175.9 (2)
O7iv—La2—O5—C652.8 (4)O4iii—La1—C6—O6117.1 (2)
C11—La2—O5—C6113.9 (3)O3iii—La1—C6—O6119.7 (2)
C1—La2—O5—C6142.8 (3)O5—La1—C6—O6173.2 (4)
O7—La2—O5—La1119.10 (10)O11i—La1—C6—O66.4 (4)
OW3—La2—O5—La158.46 (15)C5iii—La1—C6—O6115.1 (2)
O2—La2—O5—La131.37 (12)O12i—La1—C6—O560.6 (3)
O10—La2—O5—La1109.68 (10)O11ii—La1—C6—O5141.6 (2)
O9—La2—O5—La1161.40 (11)OW2—La1—C6—O5144.7 (2)
O8iv—La2—O5—La1123.97 (12)OW1—La1—C6—O574.6 (2)
O3iii—La2—O5—La136.98 (8)O1—La1—C6—O52.7 (2)
O1—La2—O5—La133.93 (8)O6—La1—C6—O5173.2 (4)
O7iv—La2—O5—La1163.31 (7)O4iii—La1—C6—O569.7 (2)
C11—La2—O5—La1135.52 (11)O3iii—La1—C6—O567.1 (2)
C1—La2—O5—La132.21 (10)O11i—La1—C6—O5179.56 (17)
O12i—La1—O5—C6144.4 (2)C5iii—La1—C6—O571.7 (2)
O11ii—La1—O5—C644.1 (2)O12i—La1—C6—C7178.4 (16)
OW2—La1—O5—C638.3 (2)O11ii—La1—C6—C720.6 (17)
OW1—La1—O5—C698.3 (2)OW2—La1—C6—C794.4 (17)
O1—La1—O5—C6177.0 (2)OW1—La1—C6—C7164.4 (17)
O6—La1—O5—C63.7 (2)O1—La1—C6—C7118.3 (17)
O4iii—La1—O5—C6120.2 (2)O6—La1—C6—C765.8 (16)
O3iii—La1—O5—C6102.3 (2)O4iii—La1—C6—C751.3 (17)
O11i—La1—O5—C619 (7)O3iii—La1—C6—C753.9 (17)
C5iii—La1—O5—C6108.5 (2)O5—La1—C6—C7121.0 (17)
O12i—La1—O5—La275.50 (14)O11i—La1—C6—C759.5 (17)
O11ii—La1—O5—La296.00 (11)C5iii—La1—C6—C749.3 (17)
OW2—La1—O5—La2178.48 (9)O6—C6—C7—C855.3 (5)
OW1—La1—O5—La2121.57 (11)O5—C6—C7—C8122.5 (4)
O1—La1—O5—La236.90 (9)La1—C6—C7—C85.7 (19)
O6—La1—O5—La2143.82 (15)C6—C7—C8—C954.6 (4)
O4iii—La1—O5—La219.96 (11)C7—C8—C9—C1065.4 (4)
O3iii—La1—O5—La237.85 (9)La2iv—O8—C10—O72.0 (4)
O11i—La1—O5—La2159 (7)La2iv—O8—C10—C9175.1 (3)
C6—La1—O5—La2140.1 (3)La2—O7—C10—O8176.9 (3)
C5iii—La1—O5—La231.60 (11)La2iv—O7—C10—O81.8 (4)
O12i—La1—O6—C6113.4 (3)La2—O7—C10—C90.2 (8)
O11ii—La1—O6—C6135.0 (2)La2iv—O7—C10—C9175.3 (3)
OW2—La1—O6—C6149.5 (3)La2—O7—C10—La2iv175.1 (6)
OW1—La1—O6—C676.8 (2)C8—C9—C10—O887.1 (4)
O1—La1—O6—C64.5 (3)C8—C9—C10—O790.0 (4)
O4iii—La1—O6—C677.8 (3)C8—C9—C10—La2iv52 (2)
O3iii—La1—O6—C655.3 (2)La2—O9—C11—O104.6 (3)
O5—La1—O6—C63.8 (2)La2—O9—C11—C12173.2 (3)
O11i—La1—O6—C6176.4 (2)La2—O10—C11—O94.6 (3)
C5iii—La1—O6—C668.6 (2)La2—O10—C11—C12173.3 (3)
O5—La2—O7—C1029.4 (5)O5—La2—C11—O986.0 (2)
OW3—La2—O7—C10114.4 (6)O7—La2—C11—O97.6 (2)
O2—La2—O7—C1091.6 (6)OW3—La2—C11—O978.1 (3)
O10—La2—O7—C1095.8 (5)O2—La2—C11—O9164.65 (19)
O9—La2—O7—C10105.6 (6)O10—La2—C11—O9175.4 (3)
O8iv—La2—O7—C10175.6 (5)O8iv—La2—C11—O9101.1 (2)
O3iii—La2—O7—C1037.0 (5)O3iii—La2—C11—O996.7 (2)
O1—La2—O7—C107.7 (6)O1—La2—C11—O9148.1 (2)
O7iv—La2—O7—C10174.5 (6)O7iv—La2—C11—O952.9 (2)
C11—La2—O7—C10102.3 (5)C1—La2—C11—O9171.3 (2)
C1—La2—O7—C1044.3 (6)O5—La2—C11—O1089.4 (2)
O5—La2—O7—La2iv145.12 (11)O7—La2—C11—O10167.80 (19)
OW3—La2—O7—La2iv71.11 (11)OW3—La2—C11—O10106.5 (2)
O2—La2—O7—La2iv93.88 (16)O2—La2—C11—O1019.9 (2)
O10—La2—O7—La2iv78.70 (13)O9—La2—C11—O10175.4 (3)
O9—La2—O7—La2iv68.96 (10)O8iv—La2—C11—O1083.5 (2)
O8iv—La2—O7—La2iv1.11 (13)O3iii—La2—C11—O1078.8 (2)
O3iii—La2—O7—La2iv148.48 (11)O1—La2—C11—O1027.4 (2)
O1—La2—O7—La2iv177.77 (8)O7iv—La2—C11—O10131.6 (2)
O7iv—La2—O7—La2iv0.0C1—La2—C11—O104.2 (2)
C11—La2—O7—La2iv72.25 (11)O5—La2—C11—C12169 (2)
C1—La2—O7—La2iv141.18 (15)O7—La2—C11—C12113 (2)
O5—La2—O9—C1187.2 (2)OW3—La2—C11—C1227 (2)
O7—La2—O9—C11172.4 (2)O2—La2—C11—C1260 (2)
OW3—La2—O9—C11128.4 (2)O10—La2—C11—C1280 (2)
O2—La2—O9—C1119.9 (2)O9—La2—C11—C12105 (2)
O10—La2—O9—C112.51 (18)O8iv—La2—C11—C124 (2)
O8iv—La2—O9—C1171.6 (2)O3iii—La2—C11—C12158 (2)
O3iii—La2—O9—C11111.9 (2)O1—La2—C11—C12107 (2)
O1—La2—O9—C1135.5 (2)O7iv—La2—C11—C1252 (2)
O7iv—La2—O9—C11120.6 (2)C1—La2—C11—C1284 (2)
C1—La2—O9—C1110.7 (2)O9—C11—C12—C134.1 (5)
O5—La2—O10—C1184.1 (2)O10—C11—C12—C13178.0 (3)
O7—La2—O10—C1115.0 (2)La2—C11—C12—C13106 (2)
OW3—La2—O10—C11109.1 (2)C11—C12—C13—C1472.9 (4)
O2—La2—O10—C11161.1 (2)C12—C13—C14—C15173.9 (3)
O9—La2—O10—C112.51 (18)La1vi—O11—C15—O12161.1 (4)
O8iv—La2—O10—C1187.1 (2)La1vii—O11—C15—O128.1 (3)
O3iii—La2—O10—C11124.81 (19)La1vi—O11—C15—C1418.3 (7)
O1—La2—O10—C11151.1 (2)La1vii—O11—C15—C14171.2 (3)
O7iv—La2—O10—C1147.9 (2)La1vi—O11—C15—La1vii152.9 (5)
C1—La2—O10—C11175.8 (2)La1vii—O12—C15—O1110.0 (4)
La2—O2—C1—O11.9 (4)La1vii—O12—C15—C14169.4 (3)
La2—O2—C1—C2178.9 (3)C13—C14—C15—O11126.2 (4)
La1—O1—C1—O2114.8 (3)C13—C14—C15—O1253.2 (5)
La2—O1—C1—O21.8 (3)C13—C14—C15—La1vii16.0 (13)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H11···O8vi0.83 (7)1.98 (2)2.80 (1)166 (3)
OW1—H12···OW5v0.81 (9)2.15 (5)2.94 (1)162 (3)
OW2—H21···O10viii0.85 (5)1.98 (5)2.82 (1)166 (3)
OW2—H22···O4viii0.83 (1)1.94 (5)2.77 (1)176 (3)
OW3—H31···O9iv0.81 (1)1.96 (9)2.76 (1)168 (3)
OW3—H32···OW50.81 (2)1.90 (6)2.71 (1)173 (3)
OW5—H51···O2ix0.87 (9)2.03 (7)2.88 (1)161 (3)
Symmetry codes: (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z3/2; (ix) x, y, z.

Experimental details

Crystal data
Chemical formula[La2(C5H6O4)3(H2O)3]·2H2O
Mr756.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.438 (2), 13.869 (2), 15.635 (5)
β (°) 109.75 (5)
V3)2334.3 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.69
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
DENZO–SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.29, 0.48
No. of measured, independent and
observed [I > 2σ(I)] reflections
54342, 8008, 5513
Rint0.039
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.084, 1.05
No. of reflections8032
No. of parameters307
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 1.08

Computer programs: COLLECT (Nonius, 1999), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), enCIFer (CCDC, 2003).

Selected geometric parameters (Å, º) top
La1—O12i2.522 (3)La2—O72.509 (2)
La1—O11ii2.537 (3)La2—OW32.532 (3)
La1—OW22.543 (3)La2—O22.578 (3)
La1—OW12.563 (3)La2—O102.592 (2)
La1—O12.564 (3)La2—O92.596 (2)
La1—O62.567 (3)La2—O8iv2.602 (3)
La1—O4iii2.617 (3)La2—O3iii2.686 (2)
La1—O3iii2.704 (2)La2—O12.749 (2)
La1—O52.724 (3)La2—O7iv2.830 (2)
La2—O52.503 (3)
OW2—La1—OW170.92 (9)La2v—O3—La1v102.22 (9)
O1—La1—O3iii65.56 (8)C6—O5—La2136.8 (2)
O4iii—La1—O3iii48.71 (8)La2—O5—La1106.71 (9)
O1—La1—O563.79 (8)C10—O7—La2153.9 (2)
O6—La1—O548.94 (9)O2—C1—O1120.1 (3)
O3iii—La1—O562.40 (7)C4—C3—C2112.8 (3)
O5—La2—O782.29 (8)O4—C5—O3119.8 (3)
O10—La2—O950.02 (7)O6—C6—O5120.4 (3)
O5—La2—O164.17 (8)C6—C7—C8111.5 (3)
O2—La2—O148.51 (8)C7—C8—C9114.8 (3)
O3iii—La2—O163.36 (7)C10—C9—C8110.8 (3)
O7—La2—O7iv64.26 (9)O8—C10—O7120.7 (3)
O8iv—La2—O7iv47.42 (7)O9—C11—O10120.8 (3)
La1—O1—La2104.24 (9)C12—C13—C14114.0 (3)
O2—C1—C2—C396.6 (4)La2—O7—C10—O8176.9 (3)
O1—C1—C2—C382.6 (4)C8—C9—C10—O887.1 (4)
C2—C3—C4—C5170.7 (3)C8—C9—C10—O790.0 (4)
C3—C4—C5—O382.6 (4)O9—C11—C12—C134.1 (5)
La2—O5—C6—O6122.8 (3)O10—C11—C12—C13178.0 (3)
O6—C6—C7—C855.3 (5)La1vi—O11—C15—O12161.1 (4)
O5—C6—C7—C8122.5 (4)La1vii—O12—C15—C14169.4 (3)
C6—C7—C8—C954.6 (4)C13—C14—C15—O1253.2 (5)
C7—C8—C9—C1065.4 (4)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H11···O8vi0.83 (7)1.98 (2)2.80 (1)166 (3)
OW1—H12···OW5v0.81 (9)2.15 (5)2.94 (1)162 (3)
OW2—H21···O10viii0.85 (5)1.98 (5)2.82 (1)166 (3)
OW2—H22···O4viii0.83 (1)1.94 (5)2.77 (1)176 (3)
OW3—H31···O9iv0.81 (1)1.96 (9)2.76 (1)168 (3)
OW3—H32···OW50.81 (2)1.90 (6)2.71 (1)173 (3)
OW5—H51···O2ix0.87 (9)2.03 (7)2.88 (1)161 (3)
Symmetry codes: (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z3/2; (ix) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds