Download citation
Download citation
link to html
The crystal structure of bis­(benzyl­ammonium) hexa­chloro­tin(IV), (C7H7NH3)2[SnCl6], exhibits ionic layers separated by hydro­carbon layers. The hydro­carbon layer contains two crystallographically inequivalent benzyl groups and aromatic π–π stacking interactions are observed in this layer. In the inorganic layer, the ammonium groups interact with isolated tilted [SnCl6]2− octahedra through normal, bifurcated and trifurcated N—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103028270/dn1036sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103028270/dn1036Isup2.hkl
Contains datablock I

CCDC reference: 233106

Comment top

Due to their two-dimensional structure and interesting magnetic and electronic properties, organic-inorganic hybrid compounds of the formula (R—NH3)2SnX4 (where X is F, Cl, Br or I) have attracted a great deal of attention (Koutselas et al., 1996; Mitzi et al., 1998; Kagan et al., 1999; Raptopoulou et al., 2002). On the other hand, the structural characteristics of compounds with the formula (R—NH3)2SnX6 have not been investigated extensively. The crystal structures of only four primary n-alkylammonium hexachlorotin(IV) compounds, with chain lengths ranging from one to four, have been reported in the literature to date (Kitahama et al., 1979; Knop et al., 1983; Elleuch et al., 1996). No crystal structure of an arylammonium hexachlorotin(IV) compound has been reported previously. In this investigation, the crystal structure of bis(benzylammonium) hexachlorotin(IV), (I), was determined and the results are presented here. \sch

The molecular geometry and atom-numbering scheme used are shown in Fig. 1. The structure of (I) consists of alternating ionic and hydrocarbon layers. The hydrocarbon layer is comprised of benzyl moeties, and the ionic layer contains ammonium groups and SnCl62− octahedra.

In the hydrocarbon layer, the aromatic rings are interdigitated and tilted relative to the ionic layer. There are two crystallographically inequivalent benzylammonium cations in the asymmetric unit. For the two cations, the atoms constituting each of the aromatic rings are coplanar, with r.m.s. deviations of 0.003 and 0.007 Å. The angle between the planes through the aromatic rings is 24.2 (2)°. The two aromatic ring planes are tilted by angles of 68.27 (14) and 87.98 (15)° relative to the ionic layer. Intermolecular ππ interactions are evident, with a short centroid-to-centroid distance of 3.773 (4) Å.

In the ionic layer, extending parallel to the ab plane, isolated distorted SnCl62− octahedra interact with ammonium groups via hydrogen bonds. Unlike the (R—NH3)2SnX4 structures, the SnCl62− octahedra in (I) do not share corners.

The two ammonium groups in the asymmetric unit of (I) display different hydrogen-bonding interactions with Cl atoms. Atom N1 is hydrogen-bonded to five Cl atoms through four bifurcated and one normal hydrogen bond. Atom N2 is also hydrogen-bonded to five Cl atoms, but through two normal hydrogen bonds and one trifurcated hydrogen bond. Hydrogen-bonding donor-acceptor distances range from 3.282 (5) to 3.631 (5) Å. Sn—Cl bond lengths differ significantly (Table 1), and range from 2.1064 (14) to 2.4590 (12) Å. The Sn—Cl bond lengths for the Cl atoms engaged in strong hydrogen bonding, i.e. atoms Cl5 [N2—H2C···Cl5 3.282 (5) Å], Cl2 [N2—H2A···Cl2 3.357 (4) Å] and Cl6 [N1—H1A···Cl6 3.464 Å], are elongated. Additional hydrogen-bonding parameters are listed in Table 2. The SnCl62− octahedra are tilted relative to the ab plane, by an angle of 40.06 (4)°. In consecutive ionic layers, the octahedra have opposite tilt directions. The tilted octahedra and layered packing are illustrated in Fig. 2.

Experimental top

Benzylammonium chloride was prepared by the dropwise addition of concentrated hydrochloric acid (37%, Aldrich) to a solution of benzylamine (99%, Saarchem) in chloroform (99%, Saarchem). The precipitate was filtered and allowed to dry. The title compound was crystallized by slow evaporation of a methanol solution of SnCl2·H2O (96%, Saarchem) and benzylammonium chloride (stoichiometric ratio of 1:2) at room temperature. A plate-like colourless crystal of (I) was selected for the X-ray diffraction study.

Refinement top

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.97 and N—H distances of 0.89 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(parent atom). Please check added text.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme and with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), viewed down the a axis, showing the layered packing and interdigitation, with some of the N—H···Cl interactions.
bis(benzylammonium) hexachlorotin(IV) top
Crystal data top
(C7H10N)2[SnCl6]F(000) = 1080
Mr = 547.71Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 60 reflections
a = 7.612 (2) Åθ = 2–32°
b = 12.409 (8) ŵ = 2.01 mm1
c = 22.032 (7) ÅT = 180 K
β = 94.97 (3)°Plate, colourless
V = 2073.3 (16) Å30.60 × 0.30 × 0.15 mm
Z = 4
Data collection top
Oxford XCALIBUR2
diffractometer
6478 independent reflections
Radiation source: fine-focus sealed tube5440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω/ϕ scansθmax = 32.0°, θmin = 4.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1111
Tmin = 0.350, Tmax = 0.741k = 1118
19081 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0289P)2 + 10.027P]
where P = (Fo2 + 2Fc2)/3
6478 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
(C7H10N)2[SnCl6]V = 2073.3 (16) Å3
Mr = 547.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.612 (2) ŵ = 2.01 mm1
b = 12.409 (8) ÅT = 180 K
c = 22.032 (7) Å0.60 × 0.30 × 0.15 mm
β = 94.97 (3)°
Data collection top
Oxford XCALIBUR2
diffractometer
6478 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5440 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.741Rint = 0.037
19081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0289P)2 + 10.027P]
where P = (Fo2 + 2Fc2)/3
6478 reflectionsΔρmax = 1.63 e Å3
208 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl50.48070 (14)0.33856 (8)0.55138 (5)0.0291 (2)
Cl60.49073 (14)0.16277 (9)0.43489 (5)0.0349 (2)
C120.4744 (8)0.5242 (7)0.2197 (3)0.063 (2)
H150.40530.54760.18530.075*
Sn10.25441 (3)0.24764 (2)0.484682 (12)0.02183 (8)
Cl10.02572 (13)0.15450 (8)0.42163 (5)0.02754 (19)
Cl40.25178 (14)0.09985 (8)0.55657 (5)0.0321 (2)
Cl20.02431 (13)0.33948 (8)0.53704 (5)0.0288 (2)
Cl30.25841 (14)0.39715 (9)0.41525 (5)0.0313 (2)
N10.8088 (5)0.1044 (3)0.55234 (16)0.0322 (8)
H1A0.74010.07520.52200.048*
H1B0.91160.06990.55640.048*
H1C0.82700.17360.54420.048*
N20.7033 (5)0.4247 (3)0.43412 (18)0.0336 (8)
H2A0.77600.40160.46520.050*
H2B0.60690.38370.43080.050*
H2C0.67310.49270.44060.050*
C20.8321 (5)0.1437 (3)0.66316 (18)0.0254 (7)
C30.9460 (6)0.0800 (4)0.6999 (2)0.0332 (9)
H50.95810.00740.69060.040*
C10.7207 (6)0.0953 (4)0.6104 (2)0.0303 (8)
H7A0.69920.01990.61880.036*
H7B0.60770.13180.60570.036*
C60.9124 (8)0.2941 (5)0.7279 (3)0.0488 (13)
H20.90100.36670.73740.059*
C70.8154 (7)0.2523 (4)0.6771 (2)0.0384 (10)
H30.73990.29630.65270.046*
C41.0419 (6)0.1228 (5)0.7502 (2)0.0398 (11)
H61.11810.07900.77450.048*
C80.7933 (7)0.4178 (5)0.3767 (2)0.0413 (11)
H8A0.82750.34370.37020.050*
H8B0.89970.46120.38090.050*
C90.6774 (6)0.4561 (4)0.3226 (2)0.0280 (8)
C100.6816 (8)0.5626 (4)0.3057 (3)0.0441 (12)
H100.75150.61150.32880.053*
C51.0252 (7)0.2303 (5)0.7644 (2)0.0450 (13)
H11.08950.25940.79830.054*
C130.4712 (7)0.4177 (6)0.2367 (3)0.0542 (16)
H130.40140.36850.21370.065*
C140.5724 (7)0.3847 (5)0.2882 (2)0.0415 (11)
H110.56990.31270.29990.050*
C110.5807 (11)0.5963 (5)0.2538 (3)0.065 (2)
H120.58440.66810.24180.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.0273 (5)0.0281 (4)0.0302 (5)0.0059 (4)0.0067 (4)0.0032 (4)
Cl60.0266 (5)0.0359 (5)0.0425 (6)0.0043 (4)0.0044 (4)0.0109 (4)
C120.042 (3)0.114 (6)0.033 (3)0.029 (4)0.005 (2)0.013 (3)
Sn10.02060 (12)0.01940 (12)0.02497 (13)0.00183 (9)0.00103 (9)0.00042 (9)
Cl10.0265 (4)0.0260 (4)0.0290 (5)0.0056 (3)0.0044 (3)0.0028 (3)
Cl40.0296 (5)0.0273 (5)0.0378 (5)0.0054 (4)0.0067 (4)0.0109 (4)
Cl20.0275 (5)0.0296 (5)0.0297 (5)0.0027 (4)0.0045 (4)0.0034 (4)
Cl30.0264 (5)0.0321 (5)0.0346 (5)0.0056 (4)0.0026 (4)0.0120 (4)
N10.0332 (19)0.037 (2)0.0252 (17)0.0062 (16)0.0023 (14)0.0005 (15)
N20.0307 (19)0.036 (2)0.0329 (19)0.0014 (16)0.0027 (15)0.0069 (16)
C20.0249 (18)0.0275 (19)0.0239 (18)0.0037 (15)0.0025 (14)0.0026 (14)
C30.035 (2)0.036 (2)0.029 (2)0.0052 (18)0.0029 (17)0.0017 (17)
C10.031 (2)0.031 (2)0.029 (2)0.0058 (17)0.0026 (16)0.0020 (16)
C60.064 (4)0.036 (3)0.046 (3)0.012 (3)0.000 (3)0.014 (2)
C70.046 (3)0.029 (2)0.038 (2)0.003 (2)0.006 (2)0.0057 (19)
C40.029 (2)0.060 (3)0.030 (2)0.004 (2)0.0005 (17)0.002 (2)
C80.034 (2)0.051 (3)0.039 (3)0.018 (2)0.0052 (19)0.001 (2)
C90.0262 (19)0.030 (2)0.029 (2)0.0032 (15)0.0064 (15)0.0011 (16)
C100.059 (3)0.028 (2)0.046 (3)0.001 (2)0.011 (2)0.001 (2)
C50.039 (3)0.066 (4)0.029 (2)0.015 (2)0.0002 (19)0.013 (2)
C130.032 (3)0.097 (5)0.034 (3)0.014 (3)0.002 (2)0.005 (3)
C140.042 (3)0.043 (3)0.040 (3)0.011 (2)0.007 (2)0.001 (2)
C110.091 (5)0.046 (3)0.061 (4)0.032 (4)0.024 (4)0.025 (3)
Geometric parameters (Å, º) top
Sn1—Cl52.4415 (12)C3—H50.9300
Sn1—Cl62.4271 (13)C1—H7A0.9700
C12—C131.374 (11)C1—H7B0.9700
C12—C111.384 (11)C6—C51.376 (9)
C12—H150.9300C6—C71.386 (7)
Sn1—Cl32.4064 (14)C6—H20.9300
Sn1—Cl12.4242 (12)C7—H30.9300
Sn1—Cl42.4244 (14)C4—C51.379 (8)
Sn1—Cl22.4590 (12)C4—H60.9300
N1—C11.500 (6)C8—C91.498 (6)
N1—H1A0.8900C8—H8A0.9700
N1—H1B0.8900C8—H8B0.9700
N1—H1C0.8900C9—C101.374 (7)
N2—C81.492 (6)C9—C141.377 (7)
N2—H2A0.8900C10—C111.386 (9)
N2—H2B0.8900C10—H100.9300
N2—H2C0.8900C5—H10.9300
C2—C31.382 (6)C13—C141.377 (8)
C2—C71.390 (6)C13—H130.9300
C2—C11.503 (6)C14—H110.9300
C3—C41.379 (7)C11—H120.9300
C13—C12—C11119.8 (5)C2—C1—H7A109.3
C13—C12—H15120.1N1—C1—H7B109.3
C11—C12—H15120.1C2—C1—H7B109.3
Cl3—Sn1—Cl192.94 (5)H7A—C1—H7B108.0
Cl3—Sn1—Cl4178.69 (4)C5—C6—C7121.2 (5)
Cl1—Sn1—Cl488.14 (5)C5—C6—H2119.4
Cl3—Sn1—Cl689.80 (5)C7—C6—H2119.4
Cl1—Sn1—Cl693.30 (4)C6—C7—C2119.3 (5)
Cl4—Sn1—Cl690.88 (5)C6—C7—H3120.4
Cl3—Sn1—Cl588.81 (5)C2—C7—H3120.4
Cl1—Sn1—Cl5177.96 (4)C3—C4—C5120.2 (5)
Cl4—Sn1—Cl590.09 (5)C3—C4—H6119.9
Cl6—Sn1—Cl587.75 (5)C5—C4—H6119.9
Cl3—Sn1—Cl289.41 (5)N2—C8—C9112.0 (4)
Cl1—Sn1—Cl289.11 (4)N2—C8—H8A109.2
Cl4—Sn1—Cl289.86 (5)C9—C8—H8A109.2
Cl6—Sn1—Cl2177.50 (4)N2—C8—H8B109.2
Cl5—Sn1—Cl289.86 (4)C9—C8—H8B109.2
C1—N1—H1A109.5H8A—C8—H8B107.9
C1—N1—H1B109.5C10—C9—C14119.7 (5)
H1A—N1—H1B109.5C10—C9—C8119.7 (5)
C1—N1—H1C109.5C14—C9—C8120.6 (5)
H1A—N1—H1C109.5C9—C10—C11119.4 (6)
H1B—N1—H1C109.5C9—C10—H10120.3
C8—N2—H2A109.5C11—C10—H10120.3
C8—N2—H2B109.5C6—C5—C4119.3 (5)
H2A—N2—H2B109.5C6—C5—H1120.4
C8—N2—H2C109.5C4—C5—H1120.4
H2A—N2—H2C109.5C12—C13—C14119.3 (6)
H2B—N2—H2C109.5C12—C13—H13120.4
C3—C2—C7119.3 (4)C14—C13—H13120.4
C3—C2—C1120.5 (4)C13—C14—C9121.3 (5)
C7—C2—C1120.2 (4)C13—C14—H11119.4
C4—C3—C2120.8 (5)C9—C14—H11119.4
C4—C3—H5119.6C12—C11—C10120.5 (6)
C2—C3—H5119.6C12—C11—H12119.7
N1—C1—C2111.4 (4)C10—C11—H12119.7
N1—C1—H7A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.783.494 (4)138
N1—H1A···Cl60.892.803.464 (4)133
N1—H1B···Cl4ii0.892.623.366 (4)143
N1—H1B···Cl1i0.892.863.481 (5)128
N1—H1C···Cl2ii0.892.563.377 (4)153
N2—H2A···Cl2ii0.892.483.357 (4)169
N2—H2B···Cl30.892.653.393 (4)142
N2—H2B···Cl60.892.883.631 (5)142
N2—H2B···Cl50.892.963.383 (4)111
N2—H2C···Cl5iii0.892.413.282 (5)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C7H10N)2[SnCl6]
Mr547.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)7.612 (2), 12.409 (8), 22.032 (7)
β (°) 94.97 (3)
V3)2073.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.60 × 0.30 × 0.15
Data collection
DiffractometerOxford XCALIBUR2
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.350, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
19081, 6478, 5440
Rint0.037
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.120, 1.16
No. of reflections6478
No. of parameters208
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0289P)2 + 10.027P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.63, 0.99

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Sn1—Cl52.4415 (12)Sn1—Cl12.4242 (12)
Sn1—Cl62.4271 (13)Sn1—Cl42.4244 (14)
Sn1—Cl32.4064 (14)Sn1—Cl22.4590 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.783.494 (4)138
N1—H1A···Cl60.892.803.464 (4)133
N1—H1B···Cl4ii0.892.623.366 (4)143
N1—H1B···Cl1i0.892.863.481 (5)128
N1—H1C···Cl2ii0.892.563.377 (4)153
N2—H2A···Cl2ii0.892.483.357 (4)169
N2—H2B···Cl30.892.653.393 (4)142
N2—H2B···Cl60.892.883.631 (5)142
N2—H2B···Cl50.892.963.383 (4)111
N2—H2C···Cl5iii0.892.413.282 (5)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds