Download citation
Download citation
link to html
The title complex, bis­(acetyl­acetonato-κ2O,O′)[N,N′-bis(3-hydroxy-2-oxidobenzaldimino)-2-methyl-1,2-propane­di­amine-κ4N,O,O′,N′]­uranium(IV) tetra­hydro­furan solvate, [U(C18H18N2O4)(C5H7O2)2]·C4H8O, is a rare example of a uranium(IV) complex with a compartmental Schiff base. The U atom is located in the N2O2 inner site of the hexadentate N,N′-bis(3-hydroxy-2-oxidobenzaldimino)-2-methyl-1,2-pro­pane­di­amine group and is bound also to the two O atoms of both acetyl­acetonate moieties, which results in a dodecahedral coordination environment. Centrosymmetric dimers are formed through intermolecular hydrogen bonds that link the terminal uncoordinated hydroxy groups to one another and to the O atoms of the acetyl­acetonate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008382/dn1021sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008382/dn1021Isup2.hkl
Contains datablock I

CCDC reference: 214382

Comment top

While the crystal structures of uranyl ion complexes of tetra- or pentadentate Schiff bases are quite common (Maurya & Maurya, 1995), those of their counterparts with U(IV) are exceedingly rare, being limited to those of [U(salen)Cl2(THF)2], where salen is N,N'-bis(salicylidene)ethylenediamine (Calderazzo et al., 1976) and [U(methoxysalen)Cl2(py)2], where methoxysalen is N,N'-bis(3-methoxysalicylidene)ethylenediamine (Le Borgne et al., 2002). We have recently investigated the magnetic properties of heterobi- and heterotrimetallic 3 d metal/U(IV) complexes with hexadentate Schiff bases (Le Borgne et al., 2002; Salmo et al., 2003). In the course of this study, we obtained crystals of the title complex, (I), formed between U(acac)2, where acac is acetylacetonato, and the potentially ditopic Schiff base ligand N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine, and determined its crystal structure. The asymmetric unit in (I) contains one complex and one tetrahydrofuran solvent molecule. As in the two structures previously reported, the U atom is located in the inner N2O2 coordination site, with mean U—O and U—N bond lengths of 2.22 (3) and 2.64 (4) Å, respectively, to be compared with 2.15 (4) and 2.62 (4) Å in the salen complex and 2.17 (2) and 2.62 (3) Å in the methoxysalen complex. The four donor atoms define a mean plane with an r.m.s. deviation of 0.100 Å, the U atom being 0.088 (3) Å from this plane. The U atom is further bound to the four O atoms of the acac groups, with a mean U—O bond length of 2.36 (2) Å, in agreement with the values in acac complexes of U(IV) present in the Cambridge Structural Database (Allen, 2002), which are in the range 2.218—2.395 Å [mean value 2.32 (5) Å]. The four O atoms from the acac groups define a mean plane, with an r.m.s. deviation of 0.029 Å, that contains the U atom [distance from the plane 0.004 (2) Å]. The dihedral angle between the N2O2 and O4 mean planes is 89.8 (1)°. The O2—U—O3 and O5—U—O8 angles differ by about 10° and the N1—U—N2 and O6—U—O7 angles by about 8°. These two sets of atoms thus define two nearly orthogonal trapezia with shapes that are only slighly different, the overall U-atom environment geometry being a slightly distorted dodecahedron (Kepert, 1982), in which the A and B sites correspond to N1, N2, O6 and O7, and O2, O3, O5 and O8, respectively. The ratio of the mean <U—A> to <U—B> bond lengths is 1.095, a value roughly identical to that in U(methoxysalen)Cl2(py)2 (1.08) and larger than the values in heterotrimetallic UM2 complexes (where M is a transition metal ion) in which the U atom is bound to the four O atoms of each of two nearly perpendicular Schiff bases (1.06; Le Borgne et al., 2002; Salmon et al., 2003). The angles around the U atom are identical within 1.5° to those in [U(salen)Cl2(THF)2] and [U(methoxysalen)Cl2(py)2] for the Schiff base donor atoms and differ slightly more for the other donor atoms. In particular, the O6—U—O7 angle is about 4—7° larger than its counterpart involving two thf O atoms or two pyridine N atoms, while the O5—U—O8 angle is about 1—2.5° smaller than its Cl—U—Cl counterparts. These differences are likely to be due to the replacement of four independent chlorine and thf or pyridine ligands in [U(salen)Cl2(THF)2] and [U(methoxysalen)Cl2(py)2] by two bidentate ligands in (I). Atoms O1 and O4 are both protonated, which results in intramolecular hydrogen bonds with the neighbouring phenoxide O atoms (O2 and O3) and in intermolecular hydrogen bonds linking O1 to the two proximal O atoms of acac groups (O6i and O7i) and O4 to O1i [symmetry code: (i) 1 − x, −y, 1 − z], the latter being seemingly stronger than all the others (having a shorter H···O distance and a O—H···O angle closer to 180°). The O1H1 hydroxyl group is thus involved in a trifurcated hydrogen bond, with all three components rather weak, and O4H4 in a bifurcated bond, with one component stronger than the other. Two centrosymmetrically related molecules are thus held together by two strong and four weaker hydrogen bonds, resulting in a dimer of slightly offset complexes. Such dimerization of complexes with Schiff bases derived from 3-hydroxysalicylidene has previously been described (e.g. Salmon et al., 2003), but the originality of the structure of (I) is the multiplicity of hydrogen bonds linking the different ligands. In view of the hydrogen bonds between O1 and the acac groups of the neighbouring molecule, each complex in the dimer can be seen as a second-sphere ligand for the U atom of the other. The Schiff base molecule adopts the usual umbrella conformation, with a dihedral angle of 20.8 (2)° between the two aromatic rings. A weak ππ stacking interaction is present between the ring C1—C6 and its counterpart in a neighbouring molecule [distance between centroids = 3.979 Å, interplanar spacing = 3.451 Å, centroid offset = 1.98 Å and shortest interatomic contact = 3.506 Å, slightly larger than twice the van der Waals radius of C (1.7 Å); the rings are related by an inversion centre at (0, 0, 1/2)]. A loose C—H···π interaction is also seemingly present in the packing, between the H atom of the central C21 atom of an acac molecule and the C11–C16 ring of a neighbouring molecule [H···Cgi = 2.674 Å, C21—H21···Cgi = 169°; symmetry code: (i) 1 − x, y − 0.5, 1.5 − z].

Experimental top

For the synthesis of complex (I), tetrahydrofuran (15 ml) was condensed in a flask charged with N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine (100 mg, 0.304 mmol) and [U(acac)4] (193 mg, 0.304 mmol). The reaction mixture was stirred overnight at 553 K. Crystals of (I) deposited from the orange solution (151 mg, 65%). 1H NMR (200 MHz, 23°C in tdf): δ −42.1 (2H, NCH2), −28.4 (6H, Me), −16.23 (12H, acac), −8.86 (2H, acac), 17.05, 17.42, 19.51, 19.95, 21.32, 25.63, 25.46, 28.78 (8 x 1H, aromatic H and CH=N). Analysis calculated for C28H32N2O8U (762): C 44.09, H 4.20, N 3.67%; found: C 44.32, H 4.48, N 3.81%.

Refinement top

The hydroxyl H atoms in (I) were found from a difference Fourier map and were introduced as riding atoms, with Uiso values equal to 1.2Ueq of the parent atom. All other H atoms were introduced at calculated positions and treated as riding atoms, with C—H bond lengths of 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and Uiso values equal to 1.2 (CH, CH2) or 1.5 (CH3) times the Ueq value of the parent atom.

Computing details top

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Bruker, 1999), PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the centrosymmetric hydrogen-bonded dimer formed by the complex molecule in (I). H atoms are shown as small spheres of arbitrary radii, and Hydrogen bonds are shown as dashed lines. The solvent molecules have been omitted. Displacement ellipsoids are shown at the 30% probability level. [Symmetry code: ' 1 − x, −y, 1 − z.]
(I) top
Crystal data top
[U(C18H18N2O4)(C5H7O2)2]·C4H8OF(000) = 1640
Mr = 834.69Dx = 1.758 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21373 reflections
a = 11.9744 (6) Åθ = 2.8–25.7°
b = 15.7475 (4) ŵ = 5.20 mm1
c = 16.7330 (8) ÅT = 100 K
β = 91.249 (2)°Platelet, translucent light brown
V = 3154.5 (2) Å30.40 × 0.20 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5900 independent reflections
Radiation source: fine-focus sealed tube4733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 18 pixels mm-1θmax = 25.7°, θmin = 2.8°
ϕ scansh = 1412
Absorption correction: part of the refinement model (ΔF)
program DELABS from PLATON (Spek, 2003)
k = 1817
Tmin = 0.326, Tmax = 0.776l = 2020
21373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0361P)2 + 7.4599P]
where P = (Fo2 + 2Fc2)/3
5900 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 1.29 e Å3
6 restraintsΔρmin = 1.56 e Å3
Crystal data top
[U(C18H18N2O4)(C5H7O2)2]·C4H8OV = 3154.5 (2) Å3
Mr = 834.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9744 (6) ŵ = 5.20 mm1
b = 15.7475 (4) ÅT = 100 K
c = 16.7330 (8) Å0.40 × 0.20 × 0.05 mm
β = 91.249 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5900 independent reflections
Absorption correction: part of the refinement model (ΔF)
program DELABS from PLATON (Spek, 2003)
4733 reflections with I > 2σ(I)
Tmin = 0.326, Tmax = 0.776Rint = 0.065
21373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 1.29 e Å3
5900 reflectionsΔρmin = 1.56 e Å3
403 parameters
Special details top

Experimental. A 180° range in ϕ was scanned during both data collections, with 2° ϕ steps. Crystal-to-detector distance fixed at 28 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms bound to O1 and O4 were found on the Fourier-difference map and introduced as riding atoms with an isotropic displacement parameter equal to 1.2 times that of their parent atom. All the other H atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. The highest residual electron density peak is located near U, as a result of imperfect absorption corrections. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U0.38509 (2)0.035546 (14)0.662311 (13)0.02824 (9)
O10.2920 (4)0.0400 (3)0.3820 (3)0.0378 (10)
H10.34690.02660.41300.045*
O20.2962 (4)0.0448 (3)0.5461 (2)0.0333 (10)
O30.5352 (4)0.0281 (3)0.7443 (2)0.0342 (10)
O40.7609 (4)0.0307 (3)0.7641 (3)0.0470 (12)
H40.71810.00660.72530.056*
N10.1734 (5)0.0792 (4)0.6866 (3)0.0443 (15)
N20.3296 (5)0.0464 (3)0.8116 (3)0.0420 (14)
C10.2005 (6)0.0645 (4)0.4229 (4)0.0344 (14)
C20.2030 (5)0.0672 (4)0.5071 (4)0.0348 (14)
C30.1060 (6)0.0912 (5)0.5462 (4)0.0439 (17)
C40.0087 (7)0.1126 (6)0.5011 (5)0.058 (2)
H4A0.05550.12850.52760.070*
C50.0073 (6)0.1104 (6)0.4194 (4)0.054 (2)
H50.05740.12430.39060.065*
C60.1037 (6)0.0872 (5)0.3795 (4)0.0429 (17)
H60.10370.08680.32400.051*
C70.0967 (6)0.0933 (5)0.6334 (4)0.0493 (19)
H70.02640.10640.65260.059*
C80.1436 (7)0.0929 (5)0.7755 (5)0.053 (2)
C90.2104 (7)0.0336 (6)0.8238 (5)0.055 (2)
H9A0.19430.04180.87990.066*
H9B0.19020.02410.80950.066*
C100.3880 (6)0.0590 (4)0.8747 (4)0.0383 (16)
H100.34890.06520.92170.046*
C110.5081 (6)0.0648 (4)0.8819 (4)0.0373 (16)
C120.5767 (6)0.0471 (4)0.8162 (4)0.0347 (15)
C130.6932 (6)0.0486 (4)0.8270 (4)0.0397 (16)
C140.7403 (6)0.0667 (4)0.9003 (4)0.0408 (16)
H140.81760.06600.90700.049*
C150.6737 (7)0.0861 (4)0.9648 (4)0.0450 (18)
H150.70660.10051.01380.054*
C160.5604 (7)0.0839 (4)0.9562 (4)0.0392 (17)
H160.51650.09531.00020.047*
C170.0202 (7)0.0716 (7)0.7897 (5)0.068 (2)
H17A0.00150.01900.76360.101*
H17B0.02620.11610.76820.101*
H17C0.00830.06630.84600.101*
C180.1674 (6)0.1836 (4)0.8018 (4)0.0435 (17)
H18A0.16420.18720.85900.065*
H18B0.11260.22090.77810.065*
H18C0.24050.19990.78500.065*
O50.2924 (4)0.0917 (3)0.6942 (3)0.0348 (10)
O60.4799 (4)0.0801 (2)0.6059 (2)0.0312 (10)
O70.5370 (4)0.0923 (2)0.5891 (2)0.0312 (10)
O80.3865 (4)0.1834 (3)0.6775 (2)0.0349 (10)
C190.2184 (6)0.2280 (4)0.7210 (4)0.0407 (16)
H19A0.20370.20810.77390.061*
H19B0.24460.28560.72360.061*
H19C0.15110.22560.68890.061*
C200.3064 (5)0.1727 (4)0.6841 (4)0.0325 (14)
C210.3931 (6)0.2091 (4)0.6436 (4)0.0367 (15)
H210.39600.26800.64040.044*
C220.4772 (5)0.1621 (4)0.6070 (4)0.0318 (14)
C230.5725 (6)0.2067 (4)0.5680 (4)0.0335 (14)
H23A0.59280.17620.52080.050*
H23B0.55020.26330.55370.050*
H23C0.63530.20900.60450.050*
C240.7076 (6)0.1589 (4)0.5568 (4)0.0399 (16)
H24A0.76290.14420.59680.060*
H24B0.72410.21400.53540.060*
H24C0.70830.11760.51460.060*
C250.5946 (6)0.1604 (4)0.5934 (3)0.0324 (14)
C260.5579 (6)0.2349 (4)0.6293 (4)0.0372 (15)
H260.60520.28170.62790.045*
C270.4567 (6)0.2452 (4)0.6671 (4)0.0341 (15)
C280.4201 (6)0.3302 (4)0.6949 (4)0.0417 (16)
H28A0.37170.35550.65500.062*
H28B0.48420.36580.70360.062*
H28C0.38060.32430.74390.062*
O90.0920 (6)0.1019 (5)0.0007 (4)0.082 (2)
C290.0117 (10)0.1316 (8)0.0290 (7)0.093 (3)
H29A0.06480.08520.03110.111*
H29B0.04190.17490.00660.111*
C300.0080 (8)0.1686 (7)0.1126 (6)0.077 (3)
H30A0.02660.13380.15300.093*
H30B0.02070.22600.11610.093*
C310.1354 (7)0.1670 (6)0.1215 (6)0.069 (3)
H31A0.16340.22000.14360.083*
H31B0.15990.12060.15580.083*
C320.1732 (8)0.1548 (6)0.0397 (5)0.069 (3)
H32A0.17850.20900.01240.082*
H32B0.24600.12780.03990.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.03040 (14)0.02757 (13)0.02686 (12)0.00380 (11)0.00335 (8)0.00051 (9)
O10.033 (3)0.048 (3)0.032 (2)0.005 (2)0.0005 (19)0.006 (2)
O20.029 (2)0.039 (3)0.032 (2)0.0093 (19)0.0032 (18)0.0006 (18)
O30.042 (3)0.034 (2)0.026 (2)0.006 (2)0.0034 (18)0.0022 (17)
O40.042 (3)0.066 (3)0.032 (2)0.010 (3)0.007 (2)0.011 (2)
N10.034 (3)0.059 (4)0.041 (3)0.012 (3)0.012 (3)0.012 (3)
N20.057 (4)0.037 (3)0.032 (3)0.011 (3)0.010 (3)0.002 (2)
C10.030 (4)0.037 (3)0.037 (4)0.000 (3)0.003 (3)0.001 (3)
C20.026 (4)0.040 (4)0.039 (4)0.002 (3)0.001 (3)0.001 (3)
C30.033 (4)0.057 (5)0.042 (4)0.005 (3)0.002 (3)0.005 (3)
C40.034 (4)0.086 (6)0.054 (5)0.019 (4)0.008 (4)0.012 (4)
C50.029 (4)0.083 (6)0.050 (4)0.017 (4)0.011 (3)0.004 (4)
C60.035 (4)0.056 (5)0.038 (4)0.008 (3)0.004 (3)0.000 (3)
C70.031 (4)0.066 (5)0.051 (4)0.017 (4)0.012 (3)0.006 (4)
C80.047 (5)0.057 (5)0.055 (5)0.000 (4)0.014 (4)0.003 (4)
C90.048 (5)0.077 (6)0.042 (4)0.021 (4)0.011 (3)0.002 (4)
C100.049 (4)0.037 (4)0.030 (3)0.006 (3)0.013 (3)0.002 (3)
C110.052 (5)0.025 (3)0.035 (4)0.004 (3)0.002 (3)0.003 (2)
C120.049 (4)0.025 (3)0.029 (3)0.005 (3)0.001 (3)0.002 (2)
C130.042 (4)0.036 (4)0.041 (4)0.005 (3)0.002 (3)0.002 (3)
C140.043 (4)0.043 (4)0.036 (4)0.001 (3)0.011 (3)0.002 (3)
C150.060 (5)0.044 (4)0.031 (4)0.003 (3)0.009 (3)0.001 (3)
C160.062 (5)0.031 (4)0.025 (3)0.001 (3)0.003 (3)0.002 (2)
C170.049 (6)0.091 (7)0.063 (6)0.005 (5)0.013 (4)0.003 (5)
C180.039 (4)0.046 (4)0.046 (4)0.011 (3)0.002 (3)0.016 (3)
O50.030 (3)0.034 (3)0.041 (3)0.0001 (19)0.0032 (19)0.0016 (18)
O60.034 (3)0.028 (2)0.031 (2)0.0020 (18)0.0039 (18)0.0005 (16)
O70.032 (3)0.028 (2)0.033 (2)0.0027 (19)0.0039 (18)0.0013 (17)
O80.046 (3)0.029 (2)0.030 (2)0.007 (2)0.011 (2)0.0017 (17)
C190.034 (4)0.035 (4)0.053 (4)0.007 (3)0.005 (3)0.001 (3)
C200.030 (4)0.033 (4)0.035 (3)0.004 (3)0.005 (3)0.002 (3)
C210.037 (4)0.035 (4)0.039 (4)0.001 (3)0.004 (3)0.003 (3)
C220.032 (4)0.032 (3)0.031 (3)0.006 (3)0.005 (3)0.001 (2)
C230.035 (4)0.032 (3)0.034 (3)0.004 (3)0.001 (3)0.001 (3)
C240.032 (4)0.047 (4)0.041 (4)0.008 (3)0.002 (3)0.002 (3)
C250.036 (4)0.037 (4)0.024 (3)0.001 (3)0.006 (3)0.005 (2)
C260.042 (4)0.032 (4)0.037 (4)0.006 (3)0.000 (3)0.000 (3)
C270.046 (4)0.027 (3)0.028 (3)0.001 (3)0.006 (3)0.001 (2)
C280.045 (4)0.035 (4)0.045 (4)0.007 (3)0.002 (3)0.001 (3)
O90.082 (5)0.101 (5)0.063 (4)0.010 (4)0.002 (4)0.030 (4)
C290.076 (6)0.116 (7)0.085 (6)0.009 (6)0.004 (5)0.013 (5)
C300.068 (7)0.088 (7)0.076 (7)0.004 (6)0.011 (5)0.019 (5)
C310.051 (6)0.072 (6)0.084 (7)0.006 (5)0.000 (5)0.031 (5)
C320.066 (6)0.076 (6)0.063 (6)0.019 (5)0.006 (5)0.018 (5)
Geometric parameters (Å, º) top
U—N12.666 (6)C17—H17A0.9600
U—N22.604 (5)C17—H17B0.9600
U—O22.201 (4)C17—H17C0.9600
U—O32.241 (4)C18—H18A0.9600
U—O52.358 (4)C18—H18B0.9600
U—O62.354 (4)C18—H18C0.9600
U—O72.388 (4)O5—C201.297 (8)
U—O82.342 (4)O5—O62.720 (6)
O1—C11.360 (8)O5—O84.487 (6)
O1—H10.8542O6—C221.292 (7)
O2—C21.328 (8)O6—O72.815 (6)
O2—N12.852 (7)O7—C251.277 (8)
O2—O34.342 (6)O7—O82.758 (6)
O3—C121.326 (8)O8—C271.299 (8)
O3—N22.744 (8)C19—C201.509 (9)
O4—C131.373 (8)C19—H19A0.9600
O4—H40.9027C19—H19B0.9600
N1—C71.284 (9)C19—H19C0.9600
N1—C81.553 (9)C20—C211.376 (9)
N1—N22.824 (9)C21—C221.401 (9)
N2—C101.269 (9)C21—H210.9300
N2—C91.461 (10)C22—C231.501 (9)
C1—C61.401 (9)C23—H23A0.9600
C1—C21.409 (9)C23—H23B0.9600
C2—C31.398 (9)C23—H23C0.9600
C3—C41.415 (10)C24—C251.498 (9)
C3—C71.466 (10)C24—H24A0.9600
C4—C51.368 (10)C24—H24B0.9600
C4—H4A0.9300C24—H24C0.9600
C5—C61.394 (10)C25—C261.394 (9)
C5—H50.9300C26—C271.389 (9)
C6—H60.9300C26—H260.9300
C7—H70.9300C27—C281.487 (9)
C8—C91.461 (11)C28—H28A0.9600
C8—C181.519 (10)C28—H28B0.9600
C8—C171.539 (11)C28—H28C0.9600
C9—H9A0.9700O9—C291.418 (12)
C9—H9B0.9700O9—C321.427 (10)
C10—C111.443 (10)C29—C301.529 (13)
C10—H100.9300C29—H29A0.9700
C11—C161.413 (9)C29—H29B0.9700
C11—C121.414 (9)C30—C311.530 (13)
C12—C131.402 (10)C30—H30A0.9700
C13—C141.369 (9)C30—H30B0.9700
C14—C151.389 (10)C31—C321.464 (12)
C14—H140.9300C31—H31A0.9700
C15—C161.363 (10)C31—H31B0.9700
C15—H150.9300C32—H32A0.9700
C16—H160.9300C32—H32B0.9700
O2—U—N170.99 (17)C14—C15—H15120.0
N1—U—N264.78 (19)C15—C16—C11121.3 (7)
N2—U—O368.54 (18)C15—C16—H16119.4
O2—U—O3155.58 (16)C11—C16—H16119.4
O5—U—O670.51 (15)C8—C17—H17A109.5
O6—U—O772.81 (14)C8—C17—H17B109.5
O7—U—O871.33 (14)H17A—C17—H17B109.5
O2—U—O891.82 (15)C8—C17—H17C109.5
O3—U—O888.94 (16)H17A—C17—H17C109.5
O2—U—O685.72 (15)H17B—C17—H17C109.5
O3—U—O679.50 (15)C8—C18—H18A109.5
O8—U—O6144.09 (15)C8—C18—H18B109.5
O2—U—O592.03 (16)H18A—C18—H18B109.5
O3—U—O5101.10 (15)C8—C18—H18C109.5
O8—U—O5145.39 (15)H18A—C18—H18C109.5
O2—U—O783.16 (15)H18B—C18—H18C109.5
O3—U—O773.97 (15)C20—O5—U138.0 (4)
O5—U—O7143.26 (14)C22—O6—U139.0 (4)
O2—U—N2135.59 (18)C25—O7—U134.6 (4)
O8—U—N280.37 (15)C27—O8—U137.1 (4)
O6—U—N2124.77 (16)C20—C19—H19A109.5
O5—U—N272.99 (16)C20—C19—H19B109.5
O7—U—N2132.90 (16)H19A—C19—H19B109.5
O3—U—N1132.30 (17)C20—C19—H19C109.5
O8—U—N174.46 (18)H19A—C19—H19C109.5
O6—U—N1136.78 (18)H19B—C19—H19C109.5
O5—U—N174.40 (17)O5—C20—C21125.0 (6)
O7—U—N1135.97 (16)O5—C20—C19114.9 (6)
C1—O1—H1112.4C21—C20—C19120.1 (6)
C2—O2—U146.8 (4)C20—C21—C22123.5 (6)
C12—O3—U145.5 (4)C20—C21—H21118.3
C13—O4—H4107.6C22—C21—H21118.3
C7—N1—C8117.7 (6)O6—C22—C21123.5 (6)
C7—N1—U127.4 (5)O6—C22—C23116.2 (6)
C8—N1—U114.9 (4)C21—C22—C23120.2 (6)
C10—N2—C9115.3 (6)C22—C23—H23A109.5
C10—N2—U131.4 (5)C22—C23—H23B109.5
C9—N2—U113.3 (4)H23A—C23—H23B109.5
O1—C1—C6118.6 (6)C22—C23—H23C109.5
O1—C1—C2120.8 (6)H23A—C23—H23C109.5
C6—C1—C2120.6 (6)H23B—C23—H23C109.5
O2—C2—C3122.6 (6)C25—C24—H24A109.5
O2—C2—C1118.8 (6)C25—C24—H24B109.5
C3—C2—C1118.5 (6)H24A—C24—H24B109.5
C2—C3—C4119.9 (6)C25—C24—H24C109.5
C2—C3—C7123.6 (6)H24A—C24—H24C109.5
C4—C3—C7116.5 (6)H24B—C24—H24C109.5
C5—C4—C3121.2 (7)O7—C25—C26123.9 (6)
C5—C4—H4A119.4O7—C25—C24117.1 (6)
C3—C4—H4A119.4C26—C25—C24119.0 (6)
C4—C5—C6119.5 (7)C27—C26—C25125.5 (6)
C4—C5—H5120.2C27—C26—H26117.3
C6—C5—H5120.2C25—C26—H26117.3
C5—C6—C1120.3 (6)O8—C27—C26123.2 (6)
C5—C6—H6119.9O8—C27—C28115.9 (6)
C1—C6—H6119.9C26—C27—C28120.9 (6)
N1—C7—C3128.1 (7)C27—C28—H28A109.5
N1—C7—H7115.9C27—C28—H28B109.5
C3—C7—H7115.9H28A—C28—H28B109.5
C9—C8—C18110.1 (7)C27—C28—H28C109.5
C9—C8—C17106.9 (7)H28A—C28—H28C109.5
C18—C8—C17109.6 (7)H28B—C28—H28C109.5
C9—C8—N1107.9 (6)C29—O9—C32104.4 (7)
C18—C8—N1111.3 (6)O9—C29—C30108.2 (8)
C17—C8—N1111.0 (7)O9—C29—H29A110.1
N2—C9—C8111.1 (6)C30—C29—H29A110.1
N2—C9—H9A109.4O9—C29—H29B110.1
C8—C9—H9A109.4C30—C29—H29B110.1
N2—C9—H9B109.4H29A—C29—H29B108.4
C8—C9—H9B109.4C29—C30—C31102.5 (8)
H9A—C9—H9B108.0C29—C30—H30A111.3
N2—C10—C11127.5 (6)C31—C30—H30A111.3
N2—C10—H10116.2C29—C30—H30B111.3
C11—C10—H10116.2C31—C30—H30B111.3
C16—C11—C12118.2 (7)H30A—C30—H30B109.2
C16—C11—C10120.6 (6)C32—C31—C30103.8 (8)
C12—C11—C10121.2 (6)C32—C31—H31A111.0
O3—C12—C13118.2 (6)C30—C31—H31A111.0
O3—C12—C11122.4 (7)C32—C31—H31B111.0
C13—C12—C11119.4 (6)C30—C31—H31B111.0
C14—C13—O4119.4 (7)H31A—C31—H31B109.0
C14—C13—C12120.5 (7)O9—C32—C31106.4 (8)
O4—C13—C12120.0 (6)O9—C32—H32A110.4
C13—C14—C15120.6 (7)C31—C32—H32A110.4
C13—C14—H14119.7O9—C32—H32B110.4
C15—C14—H14119.7C31—C32—H32B110.4
C16—C15—C14120.0 (6)H32A—C32—H32B108.6
C16—C15—H15120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.852.342.746 (6)110
O4—H4···O1i0.901.942.747 (6)148
O4—H4···O30.902.252.716 (7)112
O1—H1···O6i0.852.272.806 (6)121
O1—H1···O7i0.852.332.953 (6)130
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[U(C18H18N2O4)(C5H7O2)2]·C4H8O
Mr834.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9744 (6), 15.7475 (4), 16.7330 (8)
β (°) 91.249 (2)
V3)3154.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.20
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
program DELABS from PLATON (Spek, 2003)
Tmin, Tmax0.326, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
21373, 5900, 4733
Rint0.065
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.05
No. of reflections5900
No. of parameters403
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.56

Computer programs: KappaCCD Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Bruker, 1999), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
U—N12.666 (6)U—O52.358 (4)
U—N22.604 (5)U—O62.354 (4)
U—O22.201 (4)U—O72.388 (4)
U—O32.241 (4)U—O82.342 (4)
O2—U—N170.99 (17)O5—U—O670.51 (15)
N1—U—N264.78 (19)O6—U—O772.81 (14)
N2—U—O368.54 (18)O7—U—O871.33 (14)
O2—U—O3155.58 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.852.342.746 (6)109.6
O4—H4···O1i0.901.942.747 (6)148.0
O4—H4···O30.902.252.716 (7)112.0
O1—H1···O6i0.852.272.806 (6)121.1
O1—H1···O7i0.852.332.953 (6)129.8
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds