Download citation
Download citation
link to html
The crystal structures of the title compounds, (C24H20P)2[Ni(C6H6O4S2)2], (I), and (C24H20P)2[Ni(C6H6O4S2)2]I, (II), in the diamagnetic reduced (2–) and paramagnetic oxidized (1–) states, are reported at 200 and 293 K, respectively. In both compounds, the Ni atom lies on an inversion centre and the NiS4 coordination is thus required to be exactly planar. In the diamagnetic complex, (I), the Ni—S distances are 2.1818 (7) and 2.1805 (6) Å, while they are 2.1481 (6) and 2.1392 (5) Å in the paramagnetic complex, (II). This results from both the different complex core oxidation states and the different conformations of the methoxycarbonyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019212/dn1015sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019212/dn1015Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019212/dn1015IIsup3.hkl
Contains datablock II

CCDC references: 201253; 201254

Comment top

In the course of our study of the flexibility of functional groups with respect to redox-active conjugated cores (Baudron et al., 2002), we became interested in studying nickel dithiolene complexes, [Ni(S2C2R2)2]x (R is?, x is?; Robertson & Cronin, 2002). These compounds are very attractive for the construction of magnetic or conducting materials (Cassoux, 1999). Our attention was raised by the [Ni{S2C2(CO2Me)2}2]- anion, which has been shown to display several conformations in the solid state as a result of rotation of the ester groups (Brown et al., 1983). In an attempt to prepare this compound, we were able to isolate the reduced (2-) complex, (PPh4)2[Ni{S2C2(CO2Me)2}2], (I). This compound, air-stable in its crystalline state, is oxidized in hot acetonitrile. When it is oxidized with iodine in acetonitrile, a new crystalline form is identified which incorporates the I- anion, namely (PPh4)2[Ni{S2C2(CO2Me)2}2]I, (II). \sch

In both compounds, the Ni atoms lie on an inversion centre, requiring an exactly planar arrangement of the NiS4 core. The Ni—S bond lengths are longer in (I) than in (II) or the reported crystal structure of (AsPh4)[Ni{S2C2(CO2Me)2}2] [2.129 (6) Å; Brown et al., 1983]. This is normally observed for nickel dithiolene complexes of different oxidation states (Lim et al., 2001). These values compare favourably with the Ni—S bond lengths in [Ni(mnt)2]n- [mnt is?; 2.174 (2) Å when n = 2 and 2.147 (3) Å when n = 1; Mahadevan et al., 1984; Kobayashi & Suzuki, 1977].

Another feature is the relative orientation of the ester groups, which are almost orthogonal in both compounds. The salient difference lies in the position of the ester group that is in the NiS4 plane. While it is in a cis position with respect to the CC of the dithiolene ring in (I), it is in a trans position in (II). This shows the solid-state expression of the free rotation of these functional groups that exists in solution. This feature is observed for other related compounds (Beswick et al., 2002) and it is of interest to note that it has an influence on the S—C bond lengths. Indeed, in both compounds, one S—C bond is shorter that the other, revealing the existence of a mesomeric form involving the ester group in the NiS4 plane along the S1—C2C3—C4O3 conjugated path. As a consequence, this S—C bond has a somewhat double-bond nature. This phenomenon has been highlighted in amide-functionalized tetrathiafulvalene (Heuzé et al., 1999; Batsanov et al., 1995). A closer look at other coordination compounds involving this kind of ligand, such as (PPh4)2[Fe2{S2C2(CO2Me)2}4]·2DMF (DMF is dimethylformamide; Kanatzidis & Coucouvanis, 1984), (Et4N)[NbO{S2C2(CO2Me)2}2(S2)(bpy)]·DMF (bpy is 2,2'-bypyridine; Kim et al., 2001), (Pr4N)2[W2(µ-S)2{S2C2(CO2Et)2}4] (Umakoshi et al., 2000) and (Et4N)[W(S2CNMe2){S2C2(CO2Me)2}2] (Lim et al., 2000), reveals the same phenomenon.

In compound (II), the paramagnetic centres are well separated and no short S···S contact is observed. As a consequence, the temperature evolution of the magnetic susceptibility obeys the Curie law, with µeff = 1.79 µB, close to the S = 1/2 value of 1.73 µB.

Experimental top

To a solution of sodium methanolate (0.6 g Na in 100 ml MeOH), 4,5-dimethyloxycarbonyl-2-oxo-1,3-dithiole (3 g) was added; the solution turned yellow. Upon addition of NiCl2 (0.84 g), the solution turned orange and it was then stirred for 90 min. Tetraphenylphosphonium bromide (5.4 g) in water (volume?) was added. The methanol was then evaporated, affording red needles of (I) (yield 4.81 g, 59%). Analyses calculated (found) for C60H52O8S4PNi: C 62.67 (62.63), H 4.56 (4.55)%. A single-crystal was prepared by ether vapour diffusion in an acetonitrile solution. To a solution of (I) (1 g) in methanol (200 ml), I2 (0.11 g) was added and the solution stirred overnight, before being evaporated to dryness. The product was washed with water and ether. The remaining solid was recrystallized from hot acetonitrile, affording dark-red prisms of (II) (yield 0.78 g, 70%). Analyses calculated (found) for C60H52O8S4PINi: C 56.44 (56.46), H 4.10 (4.07), S 10.04 (9.74)%.

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.93–0.96 Å. Is this added text OK?

Computing details top

Data collection: EXPOSE in IPDS (Stoe & Cie, 1995) for (I); CAD-4 EXPRESS (Enraf Nonius, 1994) for (II). Cell refinement: SELECT and CELL, both in IPDS for (I); CAD-4 EXPRESS for (II). Data reduction: INTEGRATE in IPDS for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the [Ni{S2C2(CO2Me)2}2]2- anion in (I). Displacement ellipsoids are drawn at the 50% probabilitylevel and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of the [Ni{S2C2(CO2Me)2}2]- in (II). Displacement ellipsoids are drawn at the 50% probabilitylevel and H atoms are shown as small spheres of arbitrary radii.
(I) Bis(tetraphenylphosphonium) bis(cis-1,2-dimethoxycarbonylethylenedithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C24H20P)2[Ni(C6H6O4S2)2]Z = 1
Mr = 1149.91F(000) = 598
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2994 (14) ÅCell parameters from 8000 reflections
b = 11.1508 (16) Åθ = 1.7–26.1°
c = 13.8197 (19) ŵ = 0.62 mm1
α = 68.023 (16)°T = 200 K
β = 68.730 (15)°Prism, red
γ = 80.092 (17)°0.63 × 0.23 × 0.15 mm
V = 1370.3 (3) Å3
Data collection top
Stoe IPDS
diffractometer
3899 reflections with I > 2σ(I)
Detector resolution: 6.66 pixels mm-1Rint = 0.052
oscillation, Δϕ = 1.4° scansθmax = 25.9°, θmin = 2.0°
Absorption correction: numerical
(FACEIT in IPDS; Stoe & Cie, 1995)
h = 1112
Tmin = 0.777, Tmax = 0.928k = 1213
14269 measured reflectionsl = 016
4966 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 0.93Δρmax = 0.33 e Å3
4966 reflectionsΔρmin = 0.16 e Å3
340 parameters
Crystal data top
(C24H20P)2[Ni(C6H6O4S2)2]γ = 80.092 (17)°
Mr = 1149.91V = 1370.3 (3) Å3
Triclinic, P1Z = 1
a = 10.2994 (14) ÅMo Kα radiation
b = 11.1508 (16) ŵ = 0.62 mm1
c = 13.8197 (19) ÅT = 200 K
α = 68.023 (16)°0.63 × 0.23 × 0.15 mm
β = 68.730 (15)°
Data collection top
Stoe IPDS
diffractometer
4966 independent reflections
Absorption correction: numerical
(FACEIT in IPDS; Stoe & Cie, 1995)
3899 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.928Rint = 0.052
14269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.93Δρmax = 0.33 e Å3
4966 reflectionsΔρmin = 0.16 e Å3
340 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00.00.00.02188 (10)
S10.09482 (6)0.17867 (4)0.12403 (4)0.02918 (13)
S20.02986 (6)0.08252 (4)0.12725 (4)0.02770 (12)
C10.2417 (3)0.24640 (19)0.34362 (16)0.0325 (5)
C20.1561 (2)0.14421 (17)0.24564 (15)0.0242 (4)
C30.1285 (2)0.03120 (17)0.24930 (15)0.0241 (4)
C40.1688 (2)0.00043 (18)0.35068 (16)0.0291 (5)
C50.4699 (3)0.3052 (3)0.45821 (19)0.0591 (8)
H5B0.5650.28040.46140.089*
H5C0.4550.29750.52030.089*
H5D0.45090.39330.46020.089*
C60.2965 (4)0.0620 (3)0.5421 (2)0.0802 (12)
H6B0.35710.12850.59870.12*
H6C0.3440.02110.53640.12*
H6D0.21430.06510.56040.12*
O10.1971 (2)0.34208 (16)0.40061 (14)0.0621 (5)
O20.37791 (17)0.22188 (15)0.35727 (12)0.0408 (4)
O30.12698 (17)0.08992 (13)0.35905 (12)0.0368 (4)
O40.2575 (2)0.08259 (18)0.43793 (13)0.0650 (6)
P1A0.34728 (5)0.37810 (4)0.17411 (4)0.02045 (11)
C1A0.4223 (2)0.25116 (17)0.04678 (15)0.0222 (4)
C2A0.5659 (2)0.23516 (19)0.00322 (17)0.0317 (5)
H2A0.62450.29140.03960.047*
C3A0.6211 (2)0.1351 (2)0.09460 (19)0.0408 (5)
H3A0.71680.12420.12380.061*
C4A0.5339 (2)0.0520 (2)0.14848 (18)0.0374 (5)
H4A0.57120.01480.21420.056*
C5A0.3917 (2)0.06712 (19)0.10557 (17)0.0334 (5)
H5A0.33380.01030.14230.05*
C6A0.3350 (2)0.16620 (18)0.00825 (16)0.0273 (4)
H6A0.23920.17620.02040.041*
C7A0.2542 (2)0.31190 (17)0.28230 (15)0.0229 (4)
C8A0.2097 (2)0.18183 (17)0.25765 (16)0.0264 (4)
H8A0.22610.12810.18460.04*
C9A0.1409 (2)0.13329 (19)0.34256 (17)0.0320 (5)
H9A0.11290.04620.32640.048*
C10A0.1137 (2)0.2128 (2)0.45063 (17)0.0356 (5)
H10A0.06820.17910.50710.053*
C11A0.1538 (2)0.3433 (2)0.47605 (17)0.0358 (5)
H11A0.13250.39740.54940.054*
C12A0.2253 (2)0.39271 (19)0.39234 (16)0.0295 (5)
H12A0.25430.47960.40910.044*
C13A0.2341 (2)0.46965 (17)0.15707 (15)0.0226 (4)
C14A0.2341 (2)0.4539 (2)0.05239 (16)0.0314 (5)
H14A0.28770.39150.00950.047*
C15A0.1530 (2)0.5328 (2)0.04103 (18)0.0385 (5)
H15A0.15160.52190.02870.058*
C16A0.0757 (2)0.6257 (2)0.13143 (19)0.0370 (5)
H16A0.02230.67810.12310.055*
C17A0.0765 (3)0.6420 (2)0.23512 (19)0.0422 (6)
H17A0.02490.70650.29630.063*
C18A0.1534 (2)0.5630 (2)0.24884 (17)0.0379 (5)
H18A0.15110.57240.31920.057*
C19A0.4831 (2)0.48604 (17)0.21542 (14)0.0221 (4)
C20A0.5033 (2)0.61234 (18)0.21257 (15)0.0268 (4)
H20A0.44370.64350.19130.04*
C21A0.6122 (2)0.69012 (18)0.24165 (16)0.0310 (5)
H21A0.6250.77440.24080.047*
C22A0.7027 (2)0.64412 (19)0.27217 (17)0.0324 (5)
H22A0.77570.69750.29170.049*
C23A0.6846 (2)0.5185 (2)0.27366 (17)0.0327 (5)
H23A0.74650.48720.29270.049*
C24A0.5748 (2)0.44006 (18)0.24682 (16)0.0277 (4)
H24A0.56140.35660.24950.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0234 (2)0.01795 (17)0.02188 (18)0.00465 (13)0.00635 (15)0.00348 (13)
S10.0391 (3)0.0200 (2)0.0245 (2)0.0090 (2)0.0049 (2)0.00522 (19)
S20.0356 (3)0.0217 (2)0.0248 (2)0.0107 (2)0.0084 (2)0.00415 (19)
C10.0463 (14)0.0255 (10)0.0236 (10)0.0115 (10)0.0085 (10)0.0046 (8)
C20.0250 (11)0.0215 (9)0.0227 (9)0.0029 (8)0.0089 (8)0.0020 (7)
C30.0243 (11)0.0236 (9)0.0233 (9)0.0030 (8)0.0107 (8)0.0030 (8)
C40.0328 (12)0.0261 (10)0.0281 (10)0.0017 (9)0.0121 (9)0.0067 (8)
C50.0586 (18)0.0769 (18)0.0318 (13)0.0430 (15)0.0080 (12)0.0122 (13)
C60.122 (3)0.088 (2)0.0299 (14)0.055 (2)0.0086 (16)0.0292 (15)
O10.0729 (14)0.0374 (9)0.0432 (10)0.0028 (9)0.0108 (10)0.0142 (8)
O20.0365 (10)0.0516 (9)0.0297 (8)0.0220 (8)0.0046 (7)0.0062 (7)
O30.0528 (10)0.0252 (7)0.0358 (8)0.0057 (7)0.0141 (7)0.0127 (6)
O40.0927 (15)0.0741 (12)0.0284 (9)0.0553 (12)0.0102 (9)0.0241 (9)
P1A0.0205 (3)0.0211 (2)0.0185 (2)0.00291 (19)0.0059 (2)0.00487 (18)
C1A0.0235 (11)0.0213 (9)0.0206 (9)0.0032 (8)0.0060 (8)0.0060 (7)
C2A0.0241 (11)0.0303 (10)0.0333 (11)0.0020 (9)0.0097 (9)0.0022 (9)
C3A0.0253 (12)0.0416 (12)0.0404 (13)0.0091 (10)0.0045 (10)0.0003 (10)
C4A0.0411 (14)0.0298 (11)0.0302 (11)0.0107 (10)0.0084 (10)0.0026 (9)
C5A0.0345 (13)0.0300 (10)0.0322 (11)0.0017 (9)0.0169 (10)0.0008 (9)
C6A0.0232 (11)0.0300 (10)0.0266 (10)0.0012 (8)0.0090 (9)0.0064 (8)
C7A0.0216 (10)0.0256 (9)0.0227 (9)0.0021 (8)0.0082 (8)0.0082 (8)
C8A0.0278 (12)0.0249 (9)0.0247 (10)0.0032 (8)0.0088 (9)0.0054 (8)
C9A0.0321 (13)0.0294 (10)0.0369 (12)0.0042 (9)0.0121 (10)0.0156 (9)
C10A0.0355 (13)0.0456 (12)0.0314 (11)0.0057 (10)0.0098 (10)0.0236 (10)
C11A0.0384 (14)0.0418 (12)0.0216 (10)0.0011 (10)0.0078 (10)0.0078 (9)
C12A0.0322 (12)0.0299 (10)0.0244 (10)0.0039 (9)0.0112 (9)0.0076 (8)
C13A0.0197 (10)0.0238 (9)0.0229 (9)0.0022 (8)0.0058 (8)0.0070 (7)
C14A0.0304 (12)0.0390 (11)0.0249 (10)0.0110 (9)0.0037 (9)0.0120 (9)
C15A0.0387 (14)0.0509 (13)0.0338 (12)0.0092 (11)0.0101 (10)0.0214 (10)
C16A0.0295 (12)0.0390 (12)0.0499 (14)0.0084 (10)0.0090 (11)0.0240 (11)
C17A0.0378 (14)0.0425 (13)0.0410 (13)0.0206 (11)0.0083 (11)0.0047 (10)
C18A0.0367 (14)0.0476 (13)0.0264 (11)0.0178 (11)0.0080 (10)0.0045 (9)
C19A0.0215 (10)0.0236 (9)0.0184 (9)0.0013 (8)0.0050 (8)0.0054 (7)
C20A0.0299 (12)0.0260 (9)0.0227 (10)0.0028 (8)0.0066 (9)0.0074 (8)
C21A0.0331 (12)0.0245 (10)0.0292 (11)0.0043 (9)0.0065 (9)0.0081 (8)
C22A0.0251 (12)0.0350 (11)0.0281 (10)0.0062 (9)0.0077 (9)0.0049 (9)
C23A0.0286 (12)0.0373 (11)0.0335 (11)0.0012 (9)0.0147 (10)0.0090 (9)
C24A0.0292 (12)0.0272 (10)0.0290 (10)0.0006 (8)0.0120 (9)0.0100 (8)
Geometric parameters (Å, º) top
Ni1—S2i2.1805 (6)C6A—H6A0.9300
Ni1—S22.1805 (6)C7A—C8A1.394 (3)
Ni1—S1i2.1818 (7)C7A—C12A1.397 (3)
Ni1—S12.1818 (7)C8A—C9A1.383 (3)
S1—C21.7322 (19)C8A—H8A0.9300
S2—C31.7562 (19)C9A—C10A1.373 (3)
C1—O11.198 (3)C9A—H9A0.9300
C1—O21.339 (3)C10A—C11A1.388 (3)
C1—C21.495 (3)C10A—H10A0.9300
C2—C31.361 (3)C11A—C12A1.379 (3)
C3—C41.469 (3)C11A—H11A0.9300
C4—O31.210 (2)C12A—H12A0.9300
C4—O41.343 (3)C13A—C18A1.388 (3)
C5—O21.443 (3)C13A—C14A1.390 (3)
C5—H5B0.9600C14A—C15A1.396 (3)
C5—H5C0.9600C14A—H14A0.9300
C5—H5D0.9600C15A—C16A1.364 (3)
C6—O41.443 (3)C15A—H15A0.9300
C6—H6B0.9600C16A—C17A1.378 (3)
C6—H6C0.9600C16A—H16A0.9300
C6—H6D0.9600C17A—C18A1.384 (3)
P1A—C19A1.794 (2)C17A—H17A0.9300
P1A—C1A1.7952 (19)C18A—H18A0.9300
P1A—C7A1.8007 (18)C19A—C20A1.401 (2)
P1A—C13A1.8014 (19)C19A—C24A1.405 (3)
C1A—C2A1.395 (3)C20A—C21A1.380 (3)
C1A—C6A1.396 (3)C20A—H20A0.9300
C2A—C3A1.388 (3)C21A—C22A1.386 (3)
C2A—H2A0.9300C21A—H21A0.9300
C3A—C4A1.379 (3)C22A—C23A1.388 (3)
C3A—H3A0.9300C22A—H22A0.9300
C4A—C5A1.380 (3)C23A—C24A1.380 (3)
C4A—H4A0.9300C23A—H23A0.9300
C5A—C6A1.382 (3)C24A—H24A0.9300
C5A—H5A0.9300
S2i—Ni1—S2180.000 (18)C5A—C6A—H6A120.2
S2i—Ni1—S1i91.24 (2)C1A—C6A—H6A120.2
S2—Ni1—S1i88.76 (2)C8A—C7A—C12A119.79 (17)
S2i—Ni1—S188.76 (2)C8A—C7A—P1A120.94 (14)
S2—Ni1—S191.24 (2)C12A—C7A—P1A119.27 (14)
S1i—Ni1—S1180.00 (4)C9A—C8A—C7A119.54 (18)
C2—S1—Ni1103.60 (6)C9A—C8A—H8A120.2
C3—S2—Ni1104.03 (6)C7A—C8A—H8A120.2
O1—C1—O2123.0 (2)C10A—C9A—C8A120.47 (18)
O1—C1—C2125.7 (2)C10A—C9A—H9A119.8
O2—C1—C2111.19 (17)C8A—C9A—H9A119.8
C3—C2—C1123.56 (17)C9A—C10A—C11A120.40 (18)
C3—C2—S1121.55 (14)C9A—C10A—H10A119.8
C1—C2—S1114.89 (13)C11A—C10A—H10A119.8
C2—C3—C4124.38 (17)C12A—C11A—C10A119.86 (19)
C2—C3—S2118.94 (14)C12A—C11A—H11A120.1
C4—C3—S2116.58 (13)C10A—C11A—H11A120.1
O3—C4—O4121.26 (18)C11A—C12A—C7A119.89 (18)
O3—C4—C3125.41 (18)C11A—C12A—H12A120.1
O4—C4—C3113.32 (16)C7A—C12A—H12A120.1
O2—C5—H5B109.5C18A—C13A—C14A119.82 (17)
O2—C5—H5C109.5C18A—C13A—P1A119.44 (14)
H5B—C5—H5C109.5C14A—C13A—P1A120.60 (14)
O2—C5—H5D109.5C13A—C14A—C15A119.36 (19)
H5B—C5—H5D109.5C13A—C14A—H14A120.3
H5C—C5—H5D109.5C15A—C14A—H14A120.3
O4—C6—H6B109.5C16A—C15A—C14A120.50 (19)
O4—C6—H6C109.5C16A—C15A—H15A119.7
H6B—C6—H6C109.5C14A—C15A—H15A119.7
O4—C6—H6D109.5C15A—C16A—C17A120.14 (19)
H6B—C6—H6D109.5C15A—C16A—H16A119.9
H6C—C6—H6D109.5C17A—C16A—H16A119.9
C1—O2—C5115.13 (19)C16A—C17A—C18A120.5 (2)
C4—O4—C6116.69 (17)C16A—C17A—H17A119.8
C19A—P1A—C1A109.68 (9)C18A—C17A—H17A119.8
C19A—P1A—C7A107.22 (9)C17A—C18A—C13A119.68 (19)
C1A—P1A—C7A110.37 (8)C17A—C18A—H18A120.2
C19A—P1A—C13A108.29 (9)C13A—C18A—H18A120.2
C1A—P1A—C13A110.36 (9)C20A—C19A—C24A119.55 (18)
C7A—P1A—C13A110.84 (9)C20A—C19A—P1A121.71 (15)
C2A—C1A—C6A119.71 (17)C24A—C19A—P1A118.68 (14)
C2A—C1A—P1A120.99 (15)C21A—C20A—C19A119.47 (18)
C6A—C1A—P1A119.29 (14)C21A—C20A—H20A120.3
C3A—C2A—C1A119.9 (2)C19A—C20A—H20A120.3
C3A—C2A—H2A120.1C20A—C21A—C22A120.76 (18)
C1A—C2A—H2A120.1C20A—C21A—H21A119.6
C4A—C3A—C2A119.9 (2)C22A—C21A—H21A119.6
C4A—C3A—H3A120.0C21A—C22A—C23A120.1 (2)
C2A—C3A—H3A120.0C21A—C22A—H22A119.9
C3A—C4A—C5A120.44 (19)C23A—C22A—H22A119.9
C3A—C4A—H4A119.8C24A—C23A—C22A119.97 (19)
C5A—C4A—H4A119.8C24A—C23A—H23A120.0
C4A—C5A—C6A120.4 (2)C22A—C23A—H23A120.0
C4A—C5A—H5A119.8C23A—C24A—C19A120.12 (17)
C6A—C5A—H5A119.8C23A—C24A—H24A119.9
C5A—C6A—C1A119.66 (19)C19A—C24A—H24A119.9
Symmetry code: (i) x, y, z.
(II) Bis(tetraphenylphosphonium) bis(cis-1,2-dimethoxycarbonylethylenedithiolato-κ2S,S')nickelate(III) iodide top
Crystal data top
(C24H20P)2[Ni(C6H6O4S2)2]IZ = 1
Mr = 1276.81F(000) = 651
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4071 (3) ÅCell parameters from 25 reflections
b = 10.2501 (6) Åθ = 2.2–30°
c = 15.4642 (7) ŵ = 1.13 mm1
α = 85.671 (4)°T = 293 K
β = 77.541 (4)°Prism, dark red
γ = 80.240 (4)°0.60 × 0.45 × 0.45 mm
V = 1433.75 (12) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
non–profiled ω/2θ scansθmax = 30.0°, θmin = 2.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 1313
Tmin = 0.529, Tmax = 0.601k = 140
8773 measured reflectionsl = 2121
8343 independent reflections3 standard reflections every 120 min
6177 reflections with I > 2σ(I) intensity decay: 14%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.055P)2 + 0.1901P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.097Δρmax = 0.64 e Å3
S = 1.04Δρmin = 0.63 e Å3
8343 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
347 parametersExtinction coefficient: 0.0107 (9)
0 restraints
Crystal data top
(C24H20P)2[Ni(C6H6O4S2)2]Iγ = 80.240 (4)°
Mr = 1276.81V = 1433.75 (12) Å3
Triclinic, P1Z = 1
a = 9.4071 (3) ÅMo Kα radiation
b = 10.2501 (6) ŵ = 1.13 mm1
c = 15.4642 (7) ÅT = 293 K
α = 85.671 (4)°0.60 × 0.45 × 0.45 mm
β = 77.541 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
6177 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.529, Tmax = 0.6013 standard reflections every 120 min
8773 measured reflections intensity decay: 14%
8343 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.64 e Å3
8343 reflectionsΔρmin = 0.63 e Å3
347 parameters
Special details top

Experimental. Number of ψ-scan sets used was 9. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50.50.50.04538 (9)
S10.48213 (7)0.33171 (6)0.59101 (4)0.05556 (14)
S20.31822 (6)0.46590 (6)0.44680 (4)0.05254 (13)
C10.2992 (3)0.1470 (2)0.62311 (13)0.0534 (5)
C20.3332 (2)0.2718 (2)0.57202 (13)0.0476 (4)
C30.2567 (2)0.3324 (2)0.51033 (13)0.0466 (4)
C40.1219 (2)0.2856 (2)0.49898 (14)0.0510 (5)
C50.3067 (4)0.0814 (3)0.6084 (2)0.0818 (8)
H5B0.34260.14720.56460.123*
H5C0.20180.07570.62740.123*
H5D0.35250.10550.65830.123*
C60.0556 (3)0.3014 (3)0.4107 (2)0.0796 (8)
H6B0.08260.34980.35950.119*
H6C0.1360.31680.46080.119*
H6D0.03360.20850.39970.119*
O10.2486 (3)0.1382 (2)0.70080 (11)0.0903 (7)
O20.34153 (19)0.04528 (16)0.57078 (10)0.0564 (4)
O30.0632 (2)0.2050 (2)0.54688 (14)0.0765 (5)
O40.07234 (19)0.3451 (2)0.42897 (11)0.0643 (4)
I10000.05356 (8)
P1A0.37232 (5)0.28774 (4)0.13461 (3)0.03201 (9)
C1A0.53617 (18)0.32403 (17)0.16268 (11)0.0351 (3)
C2A0.5487 (2)0.4519 (2)0.18164 (14)0.0464 (4)
H2A0.46870.51950.18370.056*
C3A0.6802 (3)0.4781 (2)0.19748 (17)0.0587 (5)
H3A0.68860.56320.21050.07*
C4A0.7990 (2)0.3772 (3)0.19391 (15)0.0570 (5)
H4A0.88770.39510.20380.068*
C5A0.7872 (2)0.2509 (3)0.17591 (16)0.0566 (5)
H5A0.86780.18380.17390.068*
C6A0.6562 (2)0.2228 (2)0.16073 (14)0.0477 (4)
H6A0.64820.13690.14930.057*
C7A0.30157 (18)0.16271 (17)0.21234 (11)0.0360 (3)
C8A0.3486 (2)0.1390 (2)0.29235 (13)0.0482 (4)
H8A0.41740.18630.30470.058*
C9A0.2928 (3)0.0450 (3)0.35352 (15)0.0608 (6)
H9A0.32660.02750.40610.073*
C10A0.1873 (3)0.0230 (2)0.33710 (16)0.0618 (6)
H10A0.14960.08550.37860.074*
C11A0.1381 (3)0.0020 (2)0.25901 (17)0.0578 (5)
H11A0.06610.04290.24820.069*
C12A0.1953 (2)0.0940 (2)0.19614 (15)0.0491 (4)
H12A0.16240.10970.14320.059*
C13A0.41853 (19)0.23706 (17)0.02183 (11)0.0362 (3)
C14A0.5597 (2)0.2402 (2)0.02781 (13)0.0478 (4)
H14A0.63140.26510.00220.057*
C15A0.5936 (3)0.2059 (3)0.11605 (15)0.0578 (5)
H15A0.68810.20830.14940.069*
C16A0.4889 (3)0.1687 (2)0.15422 (14)0.0534 (5)
H16A0.51240.14670.21340.064*
C17A0.3491 (3)0.1638 (2)0.10531 (14)0.0536 (5)
H17A0.27880.13650.1310.064*
C18A0.3133 (2)0.1994 (2)0.01799 (13)0.0503 (5)
H18A0.2180.19830.01450.06*
C19A0.23460 (18)0.43363 (17)0.14420 (11)0.0357 (3)
C20A0.1953 (2)0.5039 (2)0.06999 (13)0.0461 (4)
H20A0.23720.47360.01350.055*
C21A0.0935 (3)0.6190 (2)0.08087 (17)0.0590 (6)
H21A0.06640.66610.03160.071*
C22A0.0321 (2)0.6638 (2)0.16479 (19)0.0590 (6)
H22A0.03570.74160.17170.071*
C23A0.0702 (2)0.5950 (2)0.23802 (16)0.0558 (5)
H23A0.02780.62590.29430.067*
C24A0.1715 (2)0.4797 (2)0.22850 (13)0.0457 (4)
H24A0.19750.4330.27820.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0518 (2)0.04677 (19)0.04355 (19)0.01710 (15)0.01424 (15)0.00576 (14)
S10.0666 (3)0.0598 (3)0.0505 (3)0.0248 (3)0.0247 (2)0.0028 (2)
S20.0593 (3)0.0560 (3)0.0513 (3)0.0231 (2)0.0218 (2)0.0027 (2)
C10.0621 (13)0.0688 (13)0.0346 (9)0.0257 (11)0.0099 (8)0.0002 (9)
C20.0570 (11)0.0543 (11)0.0349 (9)0.0194 (9)0.0071 (8)0.0067 (8)
C30.0499 (10)0.0551 (11)0.0384 (9)0.0190 (9)0.0069 (8)0.0073 (8)
C40.0470 (10)0.0635 (12)0.0445 (10)0.0190 (9)0.0032 (8)0.0110 (9)
C50.102 (2)0.0637 (16)0.088 (2)0.0340 (15)0.0281 (17)0.0170 (14)
C60.0555 (14)0.115 (2)0.0801 (18)0.0287 (15)0.0209 (13)0.0252 (17)
O10.1359 (19)0.1017 (15)0.0358 (8)0.0512 (14)0.0009 (10)0.0005 (9)
O20.0717 (10)0.0541 (8)0.0455 (8)0.0211 (7)0.0100 (7)0.0035 (6)
O30.0606 (10)0.0960 (14)0.0800 (12)0.0397 (10)0.0165 (9)0.0185 (11)
O40.0585 (9)0.0941 (13)0.0509 (9)0.0331 (9)0.0187 (7)0.0012 (8)
I10.05420 (12)0.04939 (11)0.06204 (13)0.01813 (8)0.01473 (9)0.00305 (8)
P1A0.03066 (19)0.0343 (2)0.03214 (19)0.00639 (15)0.00830 (15)0.00019 (15)
C1A0.0324 (7)0.0400 (8)0.0348 (8)0.0078 (6)0.0098 (6)0.0009 (6)
C2A0.0444 (10)0.0436 (9)0.0545 (11)0.0091 (8)0.0152 (8)0.0047 (8)
C3A0.0598 (13)0.0601 (13)0.0673 (14)0.0260 (10)0.0245 (11)0.0031 (10)
C4A0.0427 (10)0.0825 (16)0.0541 (12)0.0227 (10)0.0189 (9)0.0002 (11)
C5A0.0361 (9)0.0730 (14)0.0617 (13)0.0012 (9)0.0184 (9)0.0011 (11)
C6A0.0400 (9)0.0476 (10)0.0571 (11)0.0027 (8)0.0164 (8)0.0043 (8)
C7A0.0348 (8)0.0347 (8)0.0372 (8)0.0048 (6)0.0054 (6)0.0008 (6)
C8A0.0558 (11)0.0542 (11)0.0370 (9)0.0159 (9)0.0108 (8)0.0025 (8)
C9A0.0739 (15)0.0659 (14)0.0392 (10)0.0129 (12)0.0067 (10)0.0100 (10)
C10A0.0697 (15)0.0525 (12)0.0538 (12)0.0161 (11)0.0083 (11)0.0106 (10)
C11A0.0555 (12)0.0506 (11)0.0679 (14)0.0229 (10)0.0043 (10)0.0019 (10)
C12A0.0477 (10)0.0504 (11)0.0533 (11)0.0169 (8)0.0144 (9)0.0043 (9)
C13A0.0380 (8)0.0383 (8)0.0336 (8)0.0087 (7)0.0074 (6)0.0027 (6)
C14A0.0405 (9)0.0616 (12)0.0427 (10)0.0146 (8)0.0036 (8)0.0098 (8)
C15A0.0508 (11)0.0747 (15)0.0440 (11)0.0135 (11)0.0049 (9)0.0132 (10)
C16A0.0666 (13)0.0542 (11)0.0372 (9)0.0064 (10)0.0050 (9)0.0108 (8)
C17A0.0599 (12)0.0630 (13)0.0435 (10)0.0150 (10)0.0164 (9)0.0095 (9)
C18A0.0429 (10)0.0710 (13)0.0409 (10)0.0180 (9)0.0084 (8)0.0077 (9)
C19A0.0311 (7)0.0371 (8)0.0388 (8)0.0048 (6)0.0082 (6)0.0001 (6)
C20A0.0458 (10)0.0481 (10)0.0433 (10)0.0045 (8)0.0121 (8)0.0072 (8)
C21A0.0566 (12)0.0512 (11)0.0695 (14)0.0009 (10)0.0248 (11)0.0125 (10)
C22A0.0437 (11)0.0453 (11)0.0850 (17)0.0042 (9)0.0149 (11)0.0048 (11)
C23A0.0477 (11)0.0542 (12)0.0611 (13)0.0012 (9)0.0030 (9)0.0137 (10)
C24A0.0444 (10)0.0496 (10)0.0418 (9)0.0022 (8)0.0091 (8)0.0041 (8)
Geometric parameters (Å, º) top
Ni1—S22.1392 (5)C6A—H6A0.9300
Ni1—S2i2.1392 (5)C7A—C12A1.390 (3)
Ni1—S1i2.1481 (6)C7A—C8A1.393 (3)
Ni1—S12.1481 (6)C8A—C9A1.385 (3)
S1—C21.710 (2)C8A—H8A0.9300
S2—C31.730 (2)C9A—C10A1.380 (4)
C1—O11.196 (3)C9A—H9A0.9300
C1—O21.322 (3)C10A—C11A1.376 (4)
C1—C21.497 (3)C10A—H10A0.9300
C2—C31.367 (3)C11A—C12A1.390 (3)
C3—C41.477 (3)C11A—H11A0.9300
C4—O31.192 (3)C12A—H12A0.9300
C4—O41.336 (3)C13A—C14A1.388 (3)
C5—O21.442 (3)C13A—C18A1.391 (3)
C5—H5B0.9600C14A—C15A1.391 (3)
C5—H5C0.9600C14A—H14A0.9300
C5—H5D0.9600C15A—C16A1.370 (3)
C6—O41.442 (3)C15A—H15A0.9300
C6—H6B0.9600C16A—C17A1.375 (3)
C6—H6C0.9600C16A—H16A0.9300
C6—H6D0.9600C17A—C18A1.381 (3)
P1A—C1A1.7916 (16)C17A—H17A0.9300
P1A—C19A1.7974 (17)C18A—H18A0.9300
P1A—C13A1.7982 (17)C19A—C24A1.392 (3)
P1A—C7A1.8004 (17)C19A—C20A1.393 (2)
C1A—C2A1.394 (3)C20A—C21A1.384 (3)
C1A—C6A1.395 (3)C20A—H20A0.9300
C2A—C3A1.384 (3)C21A—C22A1.380 (4)
C2A—H2A0.9300C21A—H21A0.9300
C3A—C4A1.383 (3)C22A—C23A1.370 (3)
C3A—H3A0.9300C22A—H22A0.9300
C4A—C5A1.371 (4)C23A—C24A1.382 (3)
C4A—H4A0.9300C23A—H23A0.9300
C5A—C6A1.382 (3)C24A—H24A0.9300
C5A—H5A0.9300
S2—Ni1—S2i180.00 (2)C5A—C6A—H6A120.2
S2—Ni1—S1i87.79 (2)C1A—C6A—H6A120.2
S2i—Ni1—S1i92.21 (2)C12A—C7A—C8A119.21 (17)
S2—Ni1—S192.21 (2)C12A—C7A—P1A121.30 (14)
S2i—Ni1—S187.79 (2)C8A—C7A—P1A119.40 (14)
S1i—Ni1—S1180.0C9A—C8A—C7A120.0 (2)
C2—S1—Ni1103.65 (8)C9A—C8A—H8A120.0
C3—S2—Ni1103.92 (7)C7A—C8A—H8A120.0
O1—C1—O2124.4 (2)C10A—C9A—C8A120.6 (2)
O1—C1—C2125.5 (2)C10A—C9A—H9A119.7
O2—C1—C2110.01 (17)C8A—C9A—H9A119.7
C3—C2—C1123.32 (18)C11A—C10A—C9A119.7 (2)
C3—C2—S1120.87 (16)C11A—C10A—H10A120.2
C1—C2—S1115.73 (16)C9A—C10A—H10A120.2
C2—C3—C4120.38 (19)C10A—C11A—C12A120.4 (2)
C2—C3—S2119.18 (16)C10A—C11A—H11A119.8
C4—C3—S2120.43 (16)C12A—C11A—H11A119.8
O3—C4—O4123.7 (2)C7A—C12A—C11A120.1 (2)
O3—C4—C3124.2 (2)C7A—C12A—H12A120.0
O4—C4—C3112.05 (18)C11A—C12A—H12A120.0
O2—C5—H5B109.5C14A—C13A—C18A119.08 (17)
O2—C5—H5C109.5C14A—C13A—P1A119.77 (14)
H5B—C5—H5C109.5C18A—C13A—P1A121.11 (14)
O2—C5—H5D109.5C13A—C14A—C15A119.67 (19)
H5B—C5—H5D109.5C13A—C14A—H14A120.2
H5C—C5—H5D109.5C15A—C14A—H14A120.2
O4—C6—H6B109.5C16A—C15A—C14A120.5 (2)
O4—C6—H6C109.5C16A—C15A—H15A119.7
H6B—C6—H6C109.5C14A—C15A—H15A119.7
O4—C6—H6D109.5C15A—C16A—C17A120.24 (19)
H6B—C6—H6D109.5C15A—C16A—H16A119.9
H6C—C6—H6D109.5C17A—C16A—H16A119.9
C1—O2—C5116.9 (2)C16A—C17A—C18A119.8 (2)
C4—O4—C6115.8 (2)C16A—C17A—H17A120.1
C1A—P1A—C19A109.71 (8)C18A—C17A—H17A120.1
C1A—P1A—C13A107.97 (8)C17A—C18A—C13A120.63 (19)
C19A—P1A—C13A109.44 (8)C17A—C18A—H18A119.7
C1A—P1A—C7A108.59 (8)C13A—C18A—H18A119.7
C19A—P1A—C7A107.99 (8)C24A—C19A—C20A119.88 (17)
C13A—P1A—C7A113.12 (8)C24A—C19A—P1A118.20 (13)
C2A—C1A—C6A119.59 (17)C20A—C19A—P1A121.86 (14)
C2A—C1A—P1A121.53 (13)C21A—C20A—C19A119.5 (2)
C6A—C1A—P1A118.79 (14)C21A—C20A—H20A120.2
C3A—C2A—C1A120.01 (19)C19A—C20A—H20A120.2
C3A—C2A—H2A120.0C22A—C21A—C20A120.0 (2)
C1A—C2A—H2A120.0C22A—C21A—H21A120.0
C4A—C3A—C2A119.7 (2)C20A—C21A—H21A120.0
C4A—C3A—H3A120.1C23A—C22A—C21A120.7 (2)
C2A—C3A—H3A120.1C23A—C22A—H22A119.7
C5A—C4A—C3A120.61 (19)C21A—C22A—H22A119.7
C5A—C4A—H4A119.7C22A—C23A—C24A120.1 (2)
C3A—C4A—H4A119.7C22A—C23A—H23A119.9
C4A—C5A—C6A120.4 (2)C24A—C23A—H23A119.9
C4A—C5A—H5A119.8C23A—C24A—C19A119.73 (19)
C6A—C5A—H5A119.8C23A—C24A—H24A120.1
C5A—C6A—C1A119.7 (2)C19A—C24A—H24A120.1
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula(C24H20P)2[Ni(C6H6O4S2)2](C24H20P)2[Ni(C6H6O4S2)2]I
Mr1149.911276.81
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)200293
a, b, c (Å)10.2994 (14), 11.1508 (16), 13.8197 (19)9.4071 (3), 10.2501 (6), 15.4642 (7)
α, β, γ (°)68.023 (16), 68.730 (15), 80.092 (17)85.671 (4), 77.541 (4), 80.240 (4)
V3)1370.3 (3)1433.75 (12)
Z11
Radiation typeMo KαMo Kα
µ (mm1)0.621.13
Crystal size (mm)0.63 × 0.23 × 0.150.60 × 0.45 × 0.45
Data collection
DiffractometerStoe IPDS
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionNumerical
(FACEIT in IPDS; Stoe & Cie, 1995)
ψ scan
(North et al., 1968)
Tmin, Tmax0.777, 0.9280.529, 0.601
No. of measured, independent and
observed [I > 2σ(I)] reflections
14269, 4966, 3899 8773, 8343, 6177
Rint0.0520.017
(sin θ/λ)max1)0.6150.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 0.93 0.032, 0.097, 1.04
No. of reflections49668343
No. of parameters340347
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.160.64, 0.63

Computer programs: EXPOSE in IPDS (Stoe & Cie, 1995), CAD-4 EXPRESS (Enraf Nonius, 1994), SELECT and CELL, both in IPDS, CAD-4 EXPRESS, INTEGRATE in IPDS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Comparison of selected geometric parameters for (I) and (II) (Å, °) top
parameter(I)(II)
Ni1-S12.1818 (7)2.1481 (6)
Ni1-S22.1805 (6)2.1392 (5)
S1-C21.7322 (19)1.710 (2)
S2-C31.7562 (19)1.730 (2)
C2-C31.361 (3)1.367 (3)
C1-O11.198 (3)1.196 (3)
C4-O31.210 (2)1.192 (3)
S1-Ni1-S291.24 (2)92.21 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds