Download citation
Download citation
link to html
Condensation of N-aryl-C-(ethoxycarbonyl)nitrilimines with 4-phenyl-1,2-dihydro-3H-1,5-benzodiazepine-2-thione lead to the title compounds, C25H21ClN4O2S, (IIIa), and C26H23N5O4S, (IIIb), respectively. Crystals of both compounds were obtained by evaporation of ethanol solutions at room temperature. In the structures of both compounds, a non-bonding interaction is observed between the S atom and the imino N atom. It is established that 1,3-dipolar cycloaddition occurs on the C=S double bond of the 1,5-benzodiazepine-2-thione.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012647/dn1014sup1.cif
Contains datablocks global, IIIa, IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012647/dn1014IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012647/dn1014IIIbsup3.hkl
Contains datablock IIIb

CCDC references: 195635; 195636

Comment top

Depuis des années, chimistes et pharmacologues (Gaignault & Bidet, 1985a,b; Sternbach, 1978) accordent une grande importance à la série des benzodiazépines dont de nombreux dérivés présentent des activités tranquillisantes, hypnotiques et antiépileptiques. A la suite du diazépam, principe actif du Valium qui est utilisé en thérapeutique depuis 1963, un grand nombre de molécules actives ont été synthétisées. Récemment, on a vu apparaître sur le marché des tranquillisants de nouveaux dérivés présentant un cycle triazole accolé au cycle diazépinique qui sont aussi des hypnotiques. De même, il a été montré que l'introduction d'un nouvel hétérocycle pentagonal sur les différentes positions du cycle diazépinique accroît notablement l'activité biologique (Hester et al., 1971; Peet & Sunder, 1977).

Dans ce cadre, notre équipe de recherche (Baouid et al., 1994; Chiaroni et al., 1995; Benelbaghdadi et al., 1997; Essaber et al., 1998; Aatif et al., 2000; El Hazazi et al., 2000) s'est intéressée à la synthèse des systèmes hétérocycliques ayant des structures similaires à celles des molécules biologiquement actives construites à partir des diazépines et des benzodiazépines. Poursuivant cet axe de recherche, nous avons effectué des réactions de cycloaddition dipolaire-1,3 sur des 1,5-benzodiazépine-2-thiones, (I) (Cortès et al., 1991; Nardi et al., 1973), avec les N-aryl-C-éthoxycarbonylnitrilimines générées in situ à partir de leurs précurseurs correspondants, (II) (Sharp & Hamilton, 1946), en présence de la triéthylamine et à température ambiante pendant 48 h. Notons que les deux 1,5-benzodiazépines, (Ia) et (Ib), possèdent deux sites dipolarophiles différents carbone-azote et carbone-soufre pouvant intervenir dans des réactions de cycloaddition dipolaire-1,3. Par conséquent, il sera possible d'examiner la péri et la régiosélectivité de ces réactions. \sch

Après traitement et purification sur gel de silice du mélange réactionnel, les structures des produits obtenus, (IIIa) et (IIIb), ont été étudiées par spectroscopie de masse et RMN 1H et 13C. La spectroscopie de masse nous indique que ceux-ci résultent d'une monocondensation du dipôle sur l'une des deux doubles liaisons CN ou CS. Cependant, les analyses spectrales de RMN 1H et 13C ne permettent pas d'élucider leurs structures.

L'étude cristallographique des monocristaux nous a permis de déterminer sans ambiguité les structures des composés (IIIa) et (IIIb) (figures 1 e t 3) compatibles avec les données spectrales de RMN 1H et 13C. Ces structures résultent d'une monocondensation du dipôle sur le site dipolarophile carbone-soufre conduisant à des monocycloadduits spiraniques instables qui se réarrangent pour aboutir aux produits ouverts (IIIa) et (IIIb) (schéma) avec de bons rendements. Cela montre que ces réactions sont totalement péri et régiosélectives puisque seul le site dipolarophile CS est affecté par ce type de dipôle-1,3 quelque soit la quantité du dipôle utilisée et que le sens de l'addition est unique.

Les structures des composés (IIIa) et (IIIb) sont semblables. Dans les deux cas, le cycle thiadiazole porte trois substituants: (i) un bras éthylcarboxylate, (ii) un chlorophényle [(IIIa)] ou nitrophényle [(IIIb)], et (iii) un fragment aminophénylimino-phényléthylidène [(IIIa)] ou (méthylamino)phénylimino-nitrophényl [(IIIb)].

Le bras éthylcarboxylate et le fragment C2/C6/C7/N8 qui porte les deux doubles liaisons C2C6 et C7N8 (tableaux 1 e t 3) sont coplanaires avec le plan du cycle thiadiazole. Ce dernier fait un angle dièdre de 47,1(3)° avec le chlorophényle en (IIIa) et de 42,9(4)° avec le nitrophényle en (IIIb). Dans la structure (IIIa), l'angle dièdre entre cycle phényle C16—C21 et l'aminophényle C9—C14/N15 est 68,8(3)°; cet angle, entre C17—C22 et le (méthylamino)phényl C9—C14/N15/C16, est 78,8(3)° dans la structure (IIIb).

Dans les deux structures, la conformation du fragment S1/C2/C6/C7/N8 entraîne une interaction de non-liaison entre le soufre S1 et l'azote N8; la distance S1—N8 est égale à 2.696 (3) Å e t 2.579 (2) Å dans (IIIa) et (IIIb) respectivement, contre 2,558 (3) e t 2,601 (2) Å pour les distances intracycliques S1—N3 et S1—N4.

On notera que, dans les deux structures, l'atome d'azote N15 établit deux liasons hydrogène longues (tableaux 2 e t 4) avec l'atome d'azote N4 et l'atome d'oxygène O29(O33) de la molécule voisine obtenue par inversion du centre de symétrie. Il s'établit ainsi dans ces structures des dimères centrosymétriques liés par liaisons hydrogène (figures 2 e t 4). Cette interaction est nettement plus faible dans (IIIa) que dans (IIIb).

Tableau 1. Distances et angles de laisons (Å, °) pour (IIIa). Tableau 2. Liaisons hydrog`ene (Å, °) pour (IIIa). Tableau 3. Distances et angles de laisons (Å, °) pour (IIIb). Tableau 4. Liaisons hydrog`ene (Å, °) pour (IIIb).

Experimental top

A une solution de 1,5-benzodiazépine-2-thione, (I) (1.98 mmole), et de N-arylhydrazono-a-bromoglyoxylate d'éthyle, (II) (1.98 mmole), dans benzène anhydre (20 ml), on ajoute lentement et sous agitation une solution de triéthylamine (0.5 ml) contenue dans benzène (2 ml). Après agitation à température ambiante pendant 48 h, le mélange réactionnel est lavé plusieurs fois à l'eau distillée. Ensuite, la phase organique séchée sur sulfate de sodium est évaporée sous pression réduite pour éliminer le solvant et l'excès de triéthylamine. Le résidu obtenu est purifié par chromatographie sur gel de silice avec un gradient d'éluant hexane-acétate d'éthyle. Le produit isolé, (III), est recristallisé dans l'éthanol pour conduire aux composés étudiés [p.f. 439–441 K pour (IIIa) et 435–437 K pour (IIIb).

Refinement top

Please provide brief details of constraints used for H atoms.

Computing details top

For both compounds, data collection: KappaCCD Reference Manual (Nonius, 1998); cell refinement: KappaCCD Reference Manual; data reduction: DENZO et SCALEPACK (Otwinoski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPIII (Burnett & Johnson, 1996) de la molécule (IIIa). Les ellipsoïdes de vibration des atomes ont une probabilité de 50%.
[Figure 2] Fig. 2. Vue montrant deux molécules (IIIa) liées par liaisons hydrog`ene et formant un dimère.
[Figure 3] Fig. 3. ORTEPIII (Burnett & Johnson, 1996) de la molécule (IIIb). Les ellipsoïdes de vibration des atomes ont une probabilité de 50%.
[Figure 4] Fig. 4. Vue montrant deux molécules (IIIb) liées par liaisons hydrog`ene et formant un dimère.
(IIIa) Ethyl 5-[2-(2-aminophenylimino)-2-phenylethylidene]- 4-(4-chlorophenyl)-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate top
Crystal data top
C25H21ClN4O2SF(000) = 992
Mr = 476.97Dx = 1.332 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 26069 reflections
a = 9.9826 (1) Åθ = 3.0–25.1°
b = 9.5040 (2) ŵ = 0.28 mm1
c = 25.079 (1) ÅT = 293 K
β = 90.667 (5)°Prism, red
V = 2379.3 (1) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3903 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.1°, θmin = 3.0°
ϕ scansh = 311
26069 measured reflectionsk = 911
4247 independent reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.067P)2 + 0.7595P]
where P = (Fo2 + 2Fc2)/3
4247 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H21ClN4O2SV = 2379.3 (1) Å3
Mr = 476.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9826 (1) ŵ = 0.28 mm1
b = 9.5040 (2) ÅT = 293 K
c = 25.079 (1) Å0.35 × 0.25 × 0.20 mm
β = 90.667 (5)°
Data collection top
Nonius KappaCCD
diffractometer
3903 reflections with I > 2σ(I)
26069 measured reflectionsRint = 0.039
4247 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.23Δρmax = 0.27 e Å3
4247 reflectionsΔρmin = 0.30 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39057 (8)0.44576 (11)0.59178 (4)0.0919 (3)
S11.14515 (5)0.15588 (5)0.492347 (19)0.04240 (17)
O291.1594 (2)0.0109 (2)0.64135 (7)0.0748 (6)
O301.29502 (16)0.01495 (17)0.57121 (7)0.0552 (4)
N30.92569 (16)0.23524 (17)0.53462 (6)0.0395 (4)
N40.98853 (18)0.16191 (17)0.57447 (6)0.0418 (4)
N81.13385 (19)0.2502 (2)0.39102 (7)0.0505 (4)
N151.2142 (3)0.0176 (3)0.33324 (11)0.0855 (8)
H15A1.13030.01530.34710.103*
H15B1.22580.05600.30990.103*
C20.99095 (19)0.24284 (19)0.48607 (7)0.0370 (4)
C51.1025 (2)0.1164 (2)0.55829 (8)0.0413 (4)
C60.9427 (2)0.3049 (2)0.44103 (7)0.0417 (4)
H60.85550.34710.44200.050*
C71.0178 (2)0.3097 (2)0.39246 (7)0.0408 (4)
C91.2198 (2)0.2686 (3)0.34702 (8)0.0519 (5)
C101.2707 (3)0.3993 (3)0.33380 (10)0.0611 (6)
H101.23770.48170.35150.073*
C111.3678 (3)0.4127 (4)0.29511 (13)0.0800 (8)
H111.40630.50250.28680.096*
C121.4110 (3)0.2940 (4)0.26860 (13)0.0888 (10)
H121.47780.30110.24150.107*
C131.3591 (3)0.1647 (4)0.28033 (12)0.0782 (9)
H131.38830.08280.26140.094*
C141.2630 (3)0.1487 (3)0.31950 (9)0.0619 (7)
C160.9523 (2)0.3850 (2)0.34670 (7)0.0416 (4)
C170.9295 (3)0.3169 (3)0.29856 (9)0.0584 (6)
H170.95960.22180.29380.070*
C180.8637 (3)0.3882 (3)0.25742 (10)0.0735 (8)
H180.84640.34120.22410.088*
C190.8241 (3)0.5261 (3)0.26377 (11)0.0719 (8)
H190.77690.57420.23560.086*
C200.8500 (3)0.5936 (3)0.31084 (11)0.0679 (7)
H200.82550.69070.31480.081*
C210.9125 (2)0.5232 (2)0.35239 (9)0.0542 (5)
H210.92840.57010.38580.065*
C220.79537 (19)0.2877 (2)0.54588 (7)0.0388 (4)
C230.7605 (2)0.4244 (2)0.53387 (8)0.0442 (4)
H230.82270.48570.51640.053*
C240.6339 (2)0.4728 (2)0.54702 (9)0.0539 (5)
H240.60630.56690.53850.065*
C250.5470 (2)0.3849 (3)0.57253 (9)0.0566 (6)
C260.5822 (3)0.2496 (3)0.58504 (12)0.0681 (7)
H260.51920.19040.60300.082*
C270.7066 (2)0.1994 (3)0.57114 (11)0.0575 (6)
H270.73140.10420.57930.069*
C281.1870 (2)0.0327 (2)0.59589 (8)0.0479 (5)
C311.3844 (3)0.1040 (3)0.60327 (11)0.0650 (7)
H31A1.42250.04860.63170.078*
H31B1.33390.18020.61810.078*
C321.4901 (3)0.1541 (3)0.56716 (14)0.0840 (10)
H32A1.55210.21320.58630.101*
H32B1.53710.07530.55240.101*
H32C1.44850.20700.53890.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0518 (5)0.1405 (7)0.0840 (5)0.0379 (4)0.0215 (3)0.0085 (5)
S10.0385 (3)0.0508 (3)0.0379 (3)0.01371 (18)0.00110 (18)0.00082 (18)
O290.0809 (14)0.0970 (13)0.0464 (10)0.0325 (10)0.0028 (9)0.0179 (9)
O300.0477 (10)0.0602 (9)0.0574 (9)0.0202 (7)0.0065 (7)0.0105 (7)
N30.0370 (9)0.0478 (9)0.0336 (8)0.0116 (6)0.0012 (6)0.0053 (6)
N40.0440 (10)0.0465 (9)0.0349 (8)0.0100 (6)0.0019 (6)0.0046 (6)
N80.0495 (11)0.0693 (11)0.0327 (8)0.0191 (8)0.0027 (7)0.0021 (7)
N150.125 (2)0.0682 (14)0.0641 (14)0.0287 (14)0.0220 (15)0.0048 (11)
C20.0357 (10)0.0415 (9)0.0337 (9)0.0057 (7)0.0009 (7)0.0021 (7)
C50.0421 (11)0.0435 (9)0.0383 (9)0.0080 (8)0.0030 (7)0.0015 (7)
C60.0377 (11)0.0520 (10)0.0353 (9)0.0102 (8)0.0002 (7)0.0020 (7)
C70.0412 (11)0.0492 (10)0.0321 (9)0.0068 (8)0.0028 (7)0.0010 (7)
C90.0437 (13)0.0793 (15)0.0326 (9)0.0201 (10)0.0006 (8)0.0011 (9)
C100.0550 (15)0.0804 (16)0.0480 (12)0.0034 (11)0.0062 (10)0.0039 (11)
C110.069 (2)0.104 (2)0.0679 (17)0.0086 (15)0.0181 (14)0.0001 (15)
C120.071 (2)0.129 (3)0.0670 (18)0.0141 (18)0.0329 (15)0.0000 (18)
C130.079 (2)0.101 (2)0.0551 (15)0.0373 (17)0.0191 (14)0.0034 (14)
C140.0674 (17)0.0786 (16)0.0397 (11)0.0298 (12)0.0051 (10)0.0033 (10)
C160.0338 (11)0.0557 (11)0.0352 (9)0.0001 (8)0.0020 (7)0.0068 (8)
C170.0711 (17)0.0609 (13)0.0428 (11)0.0149 (11)0.0138 (10)0.0036 (9)
C180.0765 (19)0.100 (2)0.0436 (12)0.0312 (16)0.0210 (12)0.0106 (13)
C190.0508 (16)0.101 (2)0.0638 (16)0.0008 (13)0.0078 (11)0.0373 (15)
C200.0600 (17)0.0817 (17)0.0622 (15)0.0236 (12)0.0112 (12)0.0257 (13)
C210.0524 (14)0.0645 (13)0.0459 (11)0.0170 (10)0.0068 (9)0.0066 (9)
C220.0350 (11)0.0464 (10)0.0349 (8)0.0075 (7)0.0018 (7)0.0015 (7)
C230.0431 (12)0.0453 (10)0.0442 (10)0.0081 (8)0.0060 (8)0.0004 (8)
C240.0536 (14)0.0565 (12)0.0519 (12)0.0209 (10)0.0062 (9)0.0012 (9)
C250.0386 (13)0.0819 (15)0.0494 (12)0.0156 (10)0.0066 (9)0.0017 (11)
C260.0464 (15)0.0820 (17)0.0761 (17)0.0022 (11)0.0167 (12)0.0195 (13)
C270.0475 (14)0.0564 (12)0.0691 (15)0.0073 (9)0.0109 (10)0.0170 (11)
C280.0476 (13)0.0510 (11)0.0449 (11)0.0114 (9)0.0070 (9)0.0035 (8)
C310.0615 (17)0.0611 (14)0.0720 (16)0.0258 (11)0.0212 (12)0.0053 (11)
C320.073 (2)0.0857 (19)0.092 (2)0.0425 (15)0.0267 (17)0.0159 (16)
Geometric parameters (Å, º) top
Cl1—C251.739 (2)C13—H130.9590
S1—C21.7526 (19)C16—C211.380 (3)
S1—C51.753 (2)C16—C171.386 (3)
O29—C281.194 (3)C17—C181.393 (4)
O30—C281.329 (3)C17—H170.9604
O30—C311.463 (2)C18—C191.378 (5)
N3—N41.365 (2)C18—H180.9614
N3—C21.389 (2)C19—C201.366 (4)
N3—C221.425 (2)C19—H190.9606
N4—C51.287 (3)C20—C211.381 (3)
N8—C71.290 (3)C20—H200.9602
N8—C91.417 (3)C21—H210.9604
N15—C141.383 (4)C22—C231.377 (3)
N15—H15A0.9112C22—C271.380 (3)
N15—H15B0.9196C23—C241.388 (3)
C2—C61.358 (3)C23—H230.9608
C5—C281.488 (3)C24—C251.369 (4)
C6—C71.439 (3)C24—H240.9591
C6—H60.9590C25—C261.368 (4)
C7—C161.497 (3)C26—C271.379 (4)
C9—C101.384 (4)C26—H260.9600
C9—C141.403 (3)C27—H270.9595
C10—C111.385 (4)C31—C321.478 (4)
C10—H100.9604C31—H31A0.9609
C11—C121.381 (5)C31—H31B0.9597
C11—H110.9599C32—H32A0.9605
C12—C131.367 (5)C32—H32B0.9601
C12—H120.9599C32—H32C0.9592
C13—C141.390 (4)
C2—S1—C587.89 (9)C19—C18—C17120.7 (3)
C28—O30—C31115.71 (19)C19—C18—H18119.6
N4—N3—C2116.86 (16)C17—C18—H18119.8
N4—N3—C22116.52 (15)C20—C19—C18119.7 (2)
C2—N3—C22126.45 (15)C20—C19—H19119.9
C5—N4—N3109.96 (16)C18—C19—H19120.4
C7—N8—C9121.31 (17)C19—C20—C21120.2 (3)
C14—N15—H15A116.4C19—C20—H20119.7
C14—N15—H15B118.6C21—C20—H20120.1
H15A—N15—H15B110.4C16—C21—C20120.7 (2)
C6—C2—N3125.89 (18)C16—C21—H21119.1
C6—C2—S1125.61 (15)C20—C21—H21120.1
N3—C2—S1108.49 (13)C23—C22—C27120.82 (19)
N4—C5—C28118.45 (18)C23—C22—N3121.05 (18)
N4—C5—S1116.76 (14)C27—C22—N3118.08 (17)
C28—C5—S1124.78 (15)C22—C23—C24119.3 (2)
C2—C6—C7122.35 (18)C22—C23—H23120.6
C2—C6—H6118.3C24—C23—H23120.2
C7—C6—H6119.4C25—C24—C23119.5 (2)
N8—C7—C6119.12 (17)C25—C24—H24119.4
N8—C7—C16124.96 (18)C23—C24—H24121.0
C6—C7—C16115.92 (17)C26—C25—C24121.2 (2)
C10—C9—C14119.7 (2)C26—C25—Cl1118.5 (2)
C10—C9—N8121.7 (2)C24—C25—Cl1120.18 (19)
C14—C9—N8118.4 (2)C25—C26—C27119.8 (2)
C9—C10—C11120.8 (3)C25—C26—H26119.4
C9—C10—H10119.5C27—C26—H26120.8
C11—C10—H10119.7C26—C27—C22119.4 (2)
C12—C11—C10119.2 (3)C26—C27—H27120.2
C12—C11—H11119.6C22—C27—H27120.4
C10—C11—H11121.2O29—C28—O30125.65 (19)
C13—C12—C11120.6 (3)O29—C28—C5124.2 (2)
C13—C12—H12118.9O30—C28—C5110.10 (18)
C11—C12—H12120.4O30—C31—C32106.6 (2)
C12—C13—C14121.1 (3)O30—C31—H31A108.9
C12—C13—H13120.3C32—C31—H31A110.6
C14—C13—H13118.5O30—C31—H31B109.2
N15—C14—C13121.5 (2)C32—C31—H31B112.1
N15—C14—C9119.9 (2)H31A—C31—H31B109.4
C13—C14—C9118.5 (3)C31—C32—H32A110.0
C21—C16—C17119.35 (19)C31—C32—H32B109.9
C21—C16—C7119.96 (18)H32A—C32—H32B109.5
C17—C16—C7120.68 (19)C31—C32—H32C108.4
C16—C17—C18119.3 (2)H32A—C32—H32C109.5
C16—C17—H17120.0H32B—C32—H32C109.5
C18—C17—H17120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···N4i0.912.863.532 (3)132
N15—H15A···O29i0.912.923.801 (3)162
Symmetry code: (i) x+2, y, z+1.
(IIIb) Ethyl 5-{2-[2-(methylamino)phenylimino]-2-phenylethylidene}- 4-(4-nitrophenyl)-4,5-dihydro-1,3,4-thiadiazole-2-carboxylate top
Crystal data top
C26H23N5O4SZ = 2
Mr = 501.55F(000) = 524
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7619 (2) ÅCell parameters from 17984 reflections
b = 10.7465 (3) Åθ = 2.0–25.9°
c = 12.1924 (2) ŵ = 0.18 mm1
α = 87.137 (2)°T = 293 K
β = 83.151 (2)°Prism, red
γ = 75.469 (1)°0.35 × 0.15 × 0.10 mm
V = 1229.1 (1) Å3
Data collection top
Nonius KappaCCD
diffractometer
4003 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.9°, θmin = 2.0°
ϕ scansh = 1112
17984 measured reflectionsk = 1213
4642 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.1021P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
4642 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C26H23N5O4Sγ = 75.469 (1)°
Mr = 501.55V = 1229.1 (1) Å3
Triclinic, P1Z = 2
a = 9.7619 (2) ÅMo Kα radiation
b = 10.7465 (3) ŵ = 0.18 mm1
c = 12.1924 (2) ÅT = 293 K
α = 87.137 (2)°0.35 × 0.15 × 0.10 mm
β = 83.151 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4003 reflections with I > 2σ(I)
17984 measured reflectionsRint = 0.039
4642 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.17Δρmax = 0.36 e Å3
4642 reflectionsΔρmin = 0.55 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16164 (5)0.06197 (5)0.12082 (4)0.03578 (18)
O300.4718 (4)0.4284 (4)0.3144 (2)0.1291 (13)
O310.5504 (3)0.4262 (3)0.1427 (3)0.1181 (11)
O330.2123 (2)0.31727 (18)0.12886 (15)0.0634 (5)
O340.32142 (16)0.16124 (16)0.06770 (13)0.0465 (4)
N30.03640 (17)0.17858 (15)0.12328 (14)0.0334 (4)
N40.03416 (17)0.23641 (15)0.03665 (14)0.0351 (4)
N80.12750 (18)0.10683 (16)0.27964 (14)0.0376 (4)
N150.1320 (2)0.33740 (18)0.18938 (15)0.0474 (5)
H150.06340.28720.17130.057*
N290.4684 (3)0.4023 (3)0.2190 (2)0.0798 (8)
C20.00964 (19)0.07709 (17)0.17717 (16)0.0311 (4)
C50.1378 (2)0.18571 (18)0.02621 (16)0.0350 (4)
C60.0547 (2)0.00127 (17)0.25688 (16)0.0335 (4)
H60.14360.00850.27700.040*
C70.0081 (2)0.09875 (17)0.31167 (16)0.0314 (4)
C90.2175 (2)0.18124 (18)0.33199 (16)0.0333 (4)
C100.3123 (2)0.1363 (2)0.42328 (18)0.0438 (5)
H100.30470.06020.45750.053*
C110.4150 (2)0.1993 (2)0.4659 (2)0.0517 (6)
H110.47950.16660.53000.062*
C120.4247 (2)0.3082 (2)0.4149 (2)0.0482 (5)
H120.49880.35240.44190.058*
C130.3316 (2)0.35462 (19)0.32341 (18)0.0398 (5)
H130.34200.43060.28880.048*
C140.2259 (2)0.29352 (18)0.28045 (16)0.0339 (4)
C160.1072 (3)0.4663 (2)0.1511 (2)0.0659 (7)
H16A0.04140.47880.08710.079*
H16B0.19820.48030.13250.079*
H16C0.07610.52590.20870.079*
C170.06749 (19)0.17966 (17)0.39955 (16)0.0324 (4)
C180.0722 (2)0.31039 (19)0.41198 (19)0.0425 (5)
H180.02390.34940.36270.051*
C190.1431 (3)0.3829 (2)0.4948 (2)0.0516 (6)
H190.14340.47290.50230.062*
C200.2079 (2)0.3265 (2)0.5663 (2)0.0500 (6)
H200.25290.37710.62410.060*
C210.2045 (2)0.1979 (2)0.55457 (18)0.0434 (5)
H210.24820.15900.60490.052*
C220.1361 (2)0.12521 (19)0.47100 (17)0.0359 (4)
H220.13650.03610.46150.043*
C230.1488 (2)0.23049 (17)0.15018 (16)0.0321 (4)
C240.1614 (2)0.25275 (19)0.25859 (17)0.0394 (5)
H240.09880.22840.31670.047*
C250.2670 (3)0.3093 (2)0.2817 (2)0.0493 (5)
H250.28170.32690.35580.059*
C260.3557 (2)0.3426 (2)0.1946 (2)0.0498 (6)
C270.3433 (3)0.3225 (3)0.0868 (2)0.0538 (6)
H270.41070.34790.02990.065*
C280.2392 (2)0.2647 (2)0.06381 (18)0.0431 (5)
H280.23090.24910.01130.052*
C320.2279 (2)0.2318 (2)0.06558 (18)0.0412 (5)
C350.4081 (3)0.1871 (2)0.1601 (2)0.0503 (6)
H35A0.47610.26740.14890.060*
H35B0.34530.19270.22680.060*
C360.4759 (3)0.0777 (3)0.1633 (3)0.0648 (7)
H36A0.53330.08860.22300.078*
H36B0.53350.07390.09450.078*
H36C0.40270.00080.17230.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0361 (3)0.0390 (3)0.0388 (3)0.0189 (2)0.0128 (2)0.00708 (19)
O300.165 (3)0.192 (3)0.093 (2)0.146 (3)0.057 (2)0.0243 (19)
O310.0950 (18)0.177 (3)0.119 (2)0.106 (2)0.0000 (16)0.0086 (19)
O330.0764 (12)0.0653 (11)0.0594 (12)0.0323 (9)0.0320 (9)0.0292 (9)
O340.0421 (8)0.0608 (9)0.0429 (9)0.0194 (7)0.0205 (6)0.0104 (7)
N30.0361 (8)0.0329 (8)0.0361 (9)0.0157 (7)0.0124 (6)0.0090 (6)
N40.0380 (9)0.0356 (8)0.0348 (9)0.0128 (7)0.0114 (7)0.0077 (6)
N80.0416 (9)0.0365 (8)0.0424 (10)0.0211 (7)0.0156 (7)0.0117 (7)
N150.0600 (12)0.0468 (10)0.0406 (11)0.0255 (9)0.0008 (8)0.0024 (8)
N290.0788 (17)0.098 (2)0.089 (2)0.0646 (16)0.0301 (15)0.0140 (15)
C20.0326 (9)0.0295 (9)0.0344 (10)0.0131 (7)0.0056 (7)0.0019 (7)
C50.0367 (10)0.0360 (10)0.0346 (11)0.0120 (8)0.0087 (8)0.0037 (7)
C60.0332 (9)0.0320 (9)0.0397 (11)0.0142 (7)0.0106 (8)0.0054 (7)
C70.0344 (9)0.0287 (9)0.0337 (10)0.0120 (7)0.0075 (7)0.0030 (7)
C90.0346 (10)0.0352 (9)0.0355 (11)0.0160 (8)0.0140 (7)0.0097 (7)
C100.0470 (12)0.0428 (11)0.0457 (13)0.0160 (9)0.0105 (9)0.0017 (9)
C110.0447 (12)0.0611 (14)0.0485 (14)0.0161 (10)0.0028 (10)0.0013 (10)
C120.0387 (11)0.0519 (13)0.0581 (15)0.0218 (10)0.0043 (9)0.0125 (10)
C130.0428 (11)0.0328 (10)0.0503 (12)0.0185 (8)0.0170 (9)0.0113 (8)
C140.0386 (10)0.0325 (9)0.0346 (11)0.0144 (8)0.0127 (8)0.0097 (7)
C160.089 (2)0.0429 (13)0.0577 (17)0.0087 (13)0.0068 (14)0.0010 (11)
C170.0310 (9)0.0322 (9)0.0349 (10)0.0101 (7)0.0055 (7)0.0054 (7)
C180.0466 (12)0.0329 (10)0.0518 (13)0.0133 (8)0.0161 (9)0.0069 (8)
C190.0563 (14)0.0346 (11)0.0660 (16)0.0132 (10)0.0192 (11)0.0176 (10)
C200.0456 (12)0.0541 (13)0.0506 (14)0.0118 (10)0.0171 (10)0.0201 (10)
C210.0389 (11)0.0528 (12)0.0419 (13)0.0150 (9)0.0132 (9)0.0055 (9)
C220.0349 (10)0.0360 (10)0.0392 (11)0.0122 (8)0.0082 (8)0.0044 (7)
C230.0318 (9)0.0286 (9)0.0394 (11)0.0124 (7)0.0100 (7)0.0054 (7)
C240.0447 (11)0.0394 (10)0.0394 (12)0.0202 (9)0.0072 (8)0.0039 (8)
C250.0599 (14)0.0522 (13)0.0467 (14)0.0290 (11)0.0181 (10)0.0019 (9)
C260.0471 (13)0.0532 (13)0.0608 (15)0.0307 (11)0.0172 (10)0.0079 (10)
C270.0447 (12)0.0702 (16)0.0555 (15)0.0335 (12)0.0040 (10)0.0084 (11)
C280.0425 (11)0.0544 (12)0.0374 (12)0.0220 (9)0.0043 (8)0.0028 (9)
C320.0412 (11)0.0447 (11)0.0400 (12)0.0121 (9)0.0127 (9)0.0059 (8)
C350.0450 (12)0.0601 (14)0.0471 (14)0.0069 (10)0.0250 (10)0.0018 (10)
C360.0545 (15)0.0682 (17)0.0769 (19)0.0116 (12)0.0358 (14)0.0011 (13)
Geometric parameters (Å, º) top
S1—C21.7537 (18)C13—H130.9708
S1—C51.7582 (19)C16—H16A0.9419
O30—N291.216 (4)C16—H16B0.9908
O31—N291.214 (4)C16—H16C0.9508
O33—C321.198 (3)C17—C221.391 (3)
O34—C321.328 (3)C17—C181.395 (3)
O34—C351.463 (2)C18—C191.387 (3)
N3—N41.367 (2)C18—H180.9752
N3—C21.388 (2)C19—C201.379 (3)
N3—C231.426 (2)C19—H190.9663
N4—C51.285 (2)C20—C211.375 (3)
N8—C71.296 (2)C20—H200.9492
N8—C91.410 (2)C21—C221.384 (3)
N15—C141.374 (3)C21—H210.9542
N15—C161.437 (3)C22—H220.9595
N15—H150.9601C23—C241.380 (3)
N29—C261.471 (3)C23—C281.387 (3)
C2—C61.359 (3)C24—C251.383 (3)
C5—C321.494 (3)C24—H240.9501
C6—C71.440 (2)C25—C261.380 (3)
C6—H60.9611C25—H250.9665
C7—C171.491 (2)C26—C271.366 (4)
C9—C101.383 (3)C27—C281.379 (3)
C9—C141.413 (3)C27—H270.9751
C10—C111.384 (3)C28—H280.9557
C10—H100.9591C35—C361.492 (4)
C11—C121.381 (3)C35—H35A0.9521
C11—H110.9642C35—H35B0.9672
C12—C131.380 (3)C36—H36A0.9557
C12—H120.9784C36—H36B0.9576
C13—C141.395 (3)C36—H36C0.9604
C2—S1—C587.68 (8)C22—C17—C7119.99 (17)
C32—O34—C35116.13 (17)C18—C17—C7121.45 (17)
N4—N3—C2117.05 (14)C19—C18—C17120.0 (2)
N4—N3—C23116.34 (14)C19—C18—H18120.7
C2—N3—C23126.60 (15)C17—C18—H18119.2
C5—N4—N3109.68 (15)C20—C19—C18120.5 (2)
C7—N8—C9125.54 (16)C20—C19—H19121.2
C14—N15—C16122.14 (19)C18—C19—H19118.3
C14—N15—H15112.8C21—C20—C19120.01 (19)
C16—N15—H15121.6C21—C20—H20120.8
O31—N29—O30123.5 (3)C19—C20—H20119.2
O31—N29—C26118.4 (3)C20—C21—C22119.9 (2)
O30—N29—C26118.1 (3)C20—C21—H21119.7
C6—C2—N3126.21 (16)C22—C21—H21120.4
C6—C2—S1125.30 (14)C21—C22—C17120.98 (18)
N3—C2—S1108.43 (13)C21—C22—H22119.8
N4—C5—C32119.09 (17)C17—C22—H22119.2
N4—C5—S1116.95 (14)C24—C23—C28121.36 (18)
C32—C5—S1123.94 (14)C24—C23—N3120.63 (17)
C2—C6—C7121.09 (17)C28—C23—N3117.90 (17)
C2—C6—H6119.4C23—C24—C25119.34 (19)
C7—C6—H6119.5C23—C24—H24120.2
N8—C7—C6115.97 (16)C25—C24—H24120.5
N8—C7—C17126.00 (16)C26—C25—C24118.4 (2)
C6—C7—C17118.03 (16)C26—C25—H25118.3
C10—C9—N8120.86 (18)C24—C25—H25123.3
C10—C9—C14119.45 (17)C27—C26—C25122.89 (19)
N8—C9—C14118.98 (18)C27—C26—N29118.7 (2)
C11—C10—C9121.4 (2)C25—C26—N29118.5 (2)
C11—C10—H10120.2C26—C27—C28118.8 (2)
C9—C10—H10118.3C26—C27—H27118.0
C12—C11—C10119.3 (2)C28—C27—H27123.2
C12—C11—H11120.7C27—C28—C23119.3 (2)
C10—C11—H11120.0C27—C28—H28119.2
C11—C12—C13120.3 (2)C23—C28—H28121.5
C11—C12—H12120.6O33—C32—O34126.38 (19)
C13—C12—H12119.0O33—C32—C5123.62 (19)
C12—C13—C14121.18 (19)O34—C32—C5109.96 (16)
C12—C13—H13118.3O34—C35—C36107.01 (19)
C14—C13—H13120.5O34—C35—H35A108.7
N15—C14—C13122.45 (18)C36—C35—H35A112.6
N15—C14—C9119.22 (17)O34—C35—H35B107.6
C13—C14—C9118.32 (19)C36—C35—H35B111.4
N15—C16—H16A110.4H35A—C35—H35B109.3
N15—C16—H16B108.9C35—C36—H36A111.0
H16A—C16—H16B108.4C35—C36—H36B108.2
N15—C16—H16C109.6H36A—C36—H36B109.9
H16A—C16—H16C111.9C35—C36—H36C109.0
H16B—C16—H16C107.4H36A—C36—H36C109.4
C22—C17—C18118.56 (18)H36B—C36—H36C109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O33i0.962.623.413 (5)140
N15—H15···N4i0.962.683.305 (6)123
Symmetry code: (i) x, y, z.

Experimental details

(IIIa)(IIIb)
Crystal data
Chemical formulaC25H21ClN4O2SC26H23N5O4S
Mr476.97501.55
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)9.9826 (1), 9.5040 (2), 25.079 (1)9.7619 (2), 10.7465 (3), 12.1924 (2)
α, β, γ (°)90, 90.667 (5), 9087.137 (2), 83.151 (2), 75.469 (1)
V3)2379.3 (1)1229.1 (1)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.280.18
Crystal size (mm)0.35 × 0.25 × 0.200.35 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26069, 4247, 3903 17984, 4642, 4003
Rint0.0390.039
(sin θ/λ)max1)0.5970.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.145, 1.23 0.043, 0.163, 1.17
No. of reflections42474642
No. of parameters298325
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.300.36, 0.55

Computer programs: KappaCCD Reference Manual (Nonius, 1998), KappaCCD Reference Manual, DENZO et SCALEPACK (Otwinoski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) for (IIIa) top
S1—C21.7526 (19)N8—C71.290 (3)
S1—C51.753 (2)N8—C91.417 (3)
N3—N41.365 (2)C2—C61.358 (3)
N3—C21.389 (2)C6—C71.439 (3)
N4—C51.287 (3)
C2—S1—C587.89 (9)N3—C2—S1108.49 (13)
N4—N3—C2116.86 (16)N4—C5—S1116.76 (14)
C5—N4—N3109.96 (16)C2—C6—C7122.35 (18)
C7—N8—C9121.31 (17)N8—C7—C6119.12 (17)
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
N15—H15A···N4i0.912.863.532 (3)132
N15—H15A···O29i0.912.923.801 (3)162
Symmetry code: (i) x+2, y, z+1.
Selected geometric parameters (Å, º) for (IIIb) top
S1—C21.7537 (18)N8—C71.296 (2)
S1—C51.7582 (19)N8—C91.410 (2)
N3—N41.367 (2)C2—C61.359 (3)
N3—C21.388 (2)C6—C71.440 (2)
N4—C51.285 (2)
C2—S1—C587.68 (8)N3—C2—S1108.43 (13)
N4—N3—C2117.05 (14)N4—C5—S1116.95 (14)
C5—N4—N3109.68 (15)C2—C6—C7121.09 (17)
C7—N8—C9125.54 (16)N8—C7—C6115.97 (16)
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O33i0.962.623.413 (5)140
N15—H15···N4i0.962.683.305 (6)123
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds