Download citation
Download citation
link to html
The structure refinement and XANES study of two gold–silver–tellurides [Au1+xAgxTe2, krennerite (x = 0.11–0.13) and sylvanite (x = 0.29–0.31)] are presented and the structures are compared with the prototype structure of calaverite (x = 0.08–0.10). Whereas the latter is well known for being incommensurately modulated at ambient conditions, neither krennerite nor sylvanite present any modulation. This is attributed to the presence of relatively strong Te—Te bonds (bond distances < 2.9 Å) in the two minerals, which are absent in calaverite (bond distances > 3.2 Å). In both tellurides, trivalent gold occurs in slightly distorted square planar coordination, whereas monovalent gold, partly substituted by monovalent silver, presents a 2+2+2 coordination, corresponding to distorted rhombic bipyramids. The differentiation between bonding and non-bonding contacts is obtained by computation of the Effective Coordination Number (ECoN). The CHARge DIstribution (CHARDI) analysis is satisfactory for both tellurides but suggests that the Te—Te bond in the [Te3]2− anion is not entirely homopolar. Both tellurides can therefore be described as Madelung-type compounds, despite the presence of Te–Te in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622000804/dk5111sup1.cif
Contains datablocks global, sylvanite, krennerite

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622000804/dk5111krenneritesup2.hkl
Contains datablock krennerite

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622000804/dk5111sylvanitesup3.hkl
Contains datablock sylvanite

CCDC references: 2143949; 2149413

Computing details top

(global) top
Crystal data top
Ag0.1245Au0.8755Te2F(000) = 1432
Mr = 441.5Dx = 8.936 Mg m3
Orthorhombic, Pma2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 -2aCell parameters from 4231 reflections
a = 16.5937 (3) Åθ = 3.4–40.6°
b = 8.8310 (1) ŵ = 57.31 mm1
c = 4.4786 (1) ÅT = 293 K
V = 656.29 (2) Å3Prism, yellow
Z = 80.06 × 0.04 × 0.04 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
4231 independent reflections
Radiation source: X-ray tube3779 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10 pixels mm-1θmax = 40.6°, θmin = 3.4°
ω scansh = 3030
Absorption correction: integration
Busing, W.R. and Levy, H.A. 1957. High-Speed Computation of the Absorption Correction for Single Crystal Diffraction Measurements. Acta Cryst. 10, 180-182.
k = 1516
Tmin = 0.110, Tmax = 0.253l = 88
48587 measured reflections
Refinement top
Refinement on F214 constraints
R[F2 > 2σ(F2)] = 0.018Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.039(Δ/σ)max = 0.007
S = 0.97Δρmax = 1.38 e Å3
4231 reflectionsΔρmin = 4.03 e Å3
63 parametersAbsolute structure: 1906 of Friedel pairs used in the refinement
0 restraintsAbsolute structure parameter: 0.005 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au1000.00370 (5)0.01733 (6)0.826 (2)
Ag1000.00370 (5)0.01733 (6)0.174 (2)
Au20.750.68062 (3)1.01425 (6)0.01917 (7)0.676 (2)
Ag20.750.68062 (3)1.01425 (6)0.01917 (7)0.324 (2)
Au30.873367 (9)0.335341 (16)0.51797 (4)0.01359 (3)
Te10.750.98428 (4)0.05676 (8)0.01388 (8)
Te20.750.38115 (3)0.13380 (8)0.01273 (7)
Te30.007587 (13)0.30143 (2)0.92478 (7)0.01296 (5)
Te40.873352 (14)0.63863 (3)0.54224 (7)0.01417 (6)
Te50.878789 (13)0.03379 (3)0.47508 (6)0.01394 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02020 (11)0.01162 (9)0.02017 (12)0.00117 (6)00
Ag10.02020 (11)0.01162 (9)0.02017 (12)0.00117 (6)00
Au20.02106 (12)0.01115 (10)0.02529 (13)000.00022 (8)
Ag20.02106 (12)0.01115 (10)0.02529 (13)000.00022 (8)
Au30.01360 (5)0.01049 (5)0.01668 (5)0.00052 (3)0.00257 (4)0.00081 (4)
Te10.01378 (12)0.01146 (12)0.01639 (16)000.00231 (10)
Te20.01223 (12)0.01132 (12)0.01463 (13)000.00009 (10)
Te30.01301 (8)0.01121 (9)0.01467 (9)0.00017 (6)0.00025 (8)0.00075 (8)
Te40.01436 (9)0.01074 (9)0.01741 (11)0.00044 (7)0.00103 (7)0.00063 (8)
Te50.01398 (9)0.01056 (8)0.01727 (12)0.00013 (6)0.00157 (7)0.00011 (7)
Geometric parameters (Å, º) top
Au1—Ag10Au2—Te2v2.6983 (4)
Au1—Te3i2.6882 (2)Ag2—Te1v2.6884 (4)
Au1—Te3ii2.6882 (2)Ag2—Te2v2.6983 (4)
Au1—Te5iii2.9311 (3)Au3—Te22.7046 (3)
Au1—Te5iv2.9311 (3)Au3—Te3vi2.7039 (3)
Ag1—Te3i2.6882 (2)Au3—Te42.6805 (3)
Ag1—Te3ii2.6882 (2)Au3—Te52.6714 (3)
Ag1—Te5iii2.9311 (3)Te1—Te5vii2.8755 (4)
Ag1—Te5iv2.9311 (3)Te1—Te5viii2.8755 (4)
Au2—Ag20Te3—Te4ix2.8595 (4)
Au2—Te1v2.6884 (4)
Ag1—Au1—Te3i0Te3vi—Au3—Te494.785 (9)
Ag1—Au1—Te3ii0Te3vi—Au3—Te585.034 (8)
Ag1—Au1—Te5iii0Te4—Au3—Te5177.364 (11)
Ag1—Au1—Te5iv0Au2i—Te1—Ag2i0
Te3i—Au1—Te3ii164.890 (13)Au2i—Te1—Te5vii101.409 (11)
Te3i—Au1—Te5iii87.808 (8)Au2i—Te1—Te5viii101.409 (11)
Te3i—Au1—Te5iv103.158 (8)Ag2i—Te1—Te5vii101.409 (11)
Te3ii—Au1—Te5iii103.158 (8)Ag2i—Te1—Te5viii101.409 (11)
Te3ii—Au1—Te5iv87.808 (8)Te5vii—Te1—Te5viii96.011 (13)
Te5iii—Au1—Te5iv87.849 (9)Au2i—Te2—Ag2i0
Au1—Ag1—Te3i0Au2i—Te2—Au3105.834 (9)
Au1—Ag1—Te3ii0Au2i—Te2—Au3x105.834 (9)
Au1—Ag1—Te5iii0Ag2i—Te2—Au3105.834 (9)
Au1—Ag1—Te5iv0Ag2i—Te2—Au3x105.834 (9)
Te3i—Ag1—Te3ii164.890 (13)Au3—Te2—Au3x98.385 (12)
Te3i—Ag1—Te5iii87.808 (8)Au1v—Te3—Ag1v0
Te3i—Ag1—Te5iv103.158 (8)Au1v—Te3—Au3iii103.443 (9)
Te3ii—Ag1—Te5iii103.158 (8)Au1v—Te3—Te4ix103.039 (9)
Te3ii—Ag1—Te5iv87.808 (8)Ag1v—Te3—Au3iii103.443 (9)
Te5iii—Ag1—Te5iv87.849 (9)Ag1v—Te3—Te4ix103.039 (9)
Ag2—Au2—Te1v0Au3iii—Te3—Te4ix98.330 (12)
Ag2—Au2—Te2v0Au3—Te4—Te3ix102.075 (10)
Te1v—Au2—Te2v164.494 (15)Au1vi—Te5—Ag1vi0
Au2—Ag2—Te1v0Au1vi—Te5—Au3100.159 (9)
Au2—Ag2—Te2v0Au1vi—Te5—Te1xi91.446 (10)
Te1v—Ag2—Te2v164.494 (15)Ag1vi—Te5—Au3100.159 (9)
Te2—Au3—Te3vi176.554 (11)Ag1vi—Te5—Te1xi91.446 (10)
Te2—Au3—Te482.892 (9)Au3—Te5—Te1xi99.985 (11)
Te2—Au3—Te597.404 (10)
Symmetry codes: (i) x, y, z1; (ii) x, y, z1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y, z; (vii) x, y+1, z; (viii) x+3/2, y+1, z; (ix) x+1, y+1, z; (x) x+3/2, y, z; (xi) x, y1, z.
(sylvanite) top
Crystal data top
Ag0.32Au0.68Te2F(000) = 1383
Mr = 423.7Dx = 8.457 Mg m3
Monoclinic, B2/eMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2105 reflections
a = 10.136 (6) Åθ = 4.0–40.6°
b = 4.4835 (1) ŵ = 48.88 mm1
c = 14.6444 (15) ÅT = 293 K
β = 90.21 (3)°Prism, yellow
V = 665.5 (4) Å30.06 × 0.05 × 0.04 mm
Z = 8
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
2105 independent reflections
Radiation source: X-ray tube1844 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10 pixels mm-1θmax = 40.6°, θmin = 4.0°
ω scansh = 1818
Absorption correction: integration
Busing, W.R. and Levy, H.A. 1957. High-Speed Computation of the Absorption Correction for Single Crystal Diffraction Measurements. Acta Cryst. 10, 180-182.
k = 88
Tmin = 0.161, Tmax = 0.262l = 2626
22154 measured reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.0196 constraints
wR(F2) = 0.043Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.10(Δ/σ)max = 0.024
2105 reflectionsΔρmax = 1.55 e Å3
31 parametersΔρmin = 3.34 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10000.01388 (3)
Au200.51632 (6)0.250.02237 (7)0.3609 (19)
Ag200.51632 (6)0.250.02237 (7)0.6391 (19)
Te10.149428 (18)0.02793 (4)0.149336 (13)0.01469 (4)
Te20.140673 (16)0.40559 (4)0.095699 (12)0.01390 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01228 (6)0.01609 (6)0.01326 (6)0.00270 (4)0.00000 (4)0.00025 (4)
Au20.02203 (12)0.02976 (14)0.01535 (11)00.00381 (8)0
Ag20.02203 (12)0.02976 (14)0.01535 (11)00.00381 (8)0
Te10.01250 (7)0.01718 (7)0.01440 (8)0.00046 (5)0.00073 (6)0.00043 (5)
Te20.01205 (6)0.01505 (7)0.01460 (7)0.00012 (5)0.00031 (5)0.00115 (5)
Geometric parameters (Å, º) top
Au1—Te12.6677 (14)Au2—Te22.7220 (13)
Au1—Te1i2.6677 (14)Au2—Te2iv2.7220 (13)
Au1—Te22.6999 (10)Ag2—Te1ii2.9370 (11)
Au1—Te2i2.6999 (10)Ag2—Te1iii2.9370 (11)
Au2—Ag20Ag2—Te22.7220 (13)
Au2—Te1ii2.9370 (11)Ag2—Te2iv2.7220 (13)
Au2—Te1iii2.9370 (11)Te1—Te2v2.8281 (19)
Te1—Au1—Te1i180Au2—Ag2—Te2iv0
Te1—Au1—Te295.37 (3)Te1ii—Ag2—Te1iii91.83 (2)
Te1—Au1—Te2i84.63 (3)Te1ii—Ag2—Te288.91 (2)
Te1i—Au1—Te284.63 (3)Te1ii—Ag2—Te2iv105.83 (3)
Te1i—Au1—Te2i95.37 (3)Te1iii—Ag2—Te2105.83 (3)
Te2—Au1—Te2i180Te1iii—Ag2—Te2iv88.91 (2)
Ag2—Au2—Te1ii0Te2—Ag2—Te2iv158.983 (13)
Ag2—Au2—Te1iii0Au1—Te1—Au2ii98.68 (3)
Ag2—Au2—Te20Au1—Te1—Ag2ii98.68 (3)
Ag2—Au2—Te2iv0Au1—Te1—Te2v103.25 (3)
Te1ii—Au2—Te1iii91.83 (2)Au2ii—Te1—Ag2ii0
Te1ii—Au2—Te288.91 (2)Au2ii—Te1—Te2v96.25 (3)
Te1ii—Au2—Te2iv105.83 (3)Ag2ii—Te1—Te2v96.25 (3)
Te1iii—Au2—Te2105.83 (3)Au1—Te2—Au2106.05 (3)
Te1iii—Au2—Te2iv88.91 (2)Au1—Te2—Ag2106.05 (3)
Te2—Au2—Te2iv158.983 (13)Au1—Te2—Te1v97.83 (3)
Au2—Ag2—Te1ii0Au2—Te2—Ag20
Au2—Ag2—Te1iii0Au2—Te2—Te1v105.93 (3)
Au2—Ag2—Te20Ag2—Te2—Te1v105.93 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x, y+1, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds