research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of two organic salts based on 1,3,4-thia­diazole derivatives

crossmark logo

aInstitute of Bioorganic Chemistry, UzAS, M.Ulugbek Str., 83, 100125, Tashkent, Uzbekistan
*Correspondence e-mail: li_izotova@mail.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 11 October 2022; accepted 24 December 2022; online 12 January 2023)

During attempts to achieve inter­action between 2-amino-5-ethyl-1,3,4-thia­diazole with oxalyl chloride and 5-mercapto-3-phenyl-1,3,4-thia­diazol-2-thione with various diacid anhydrides, we obtained two co-crystals (organic salts), namely, 2-amino-5-ethyl-1,3,4-thia­diazol-3-ium hemioxalate, C4H8N3S+·0.5C2O42−, (I), and 4-(di­methyl­amino)­pyridin-1-ium 4-phenyl-5-sulfanyl­idene-4,5-di­hydro-1,3,4-thia­diazole-2-thiol­ate, C7H11N2+·C8H5N2S3, (II). Both solids were investigated by single-crystal X-ray diffraction and by Hirshfeld surface analysis. An infinite one-dimensional chain along [100] is generated through O—H⋯O inter­actions between the oxalate anion and two 2-amino-5-ethyl-1,3,4-thia­diazol-3-ium cations in compound (I), and a three-dimensional supra­molecular framework is generated through C—H⋯O and ππ inter­actions. In compound (II), an organic salt is formed by a 4-phenyl-5-sulfanyl­idene-4,5-di­hydro-1,3,4-thia­diazole-2-thiol­ate anion and a 4-(di­methyl­amino)­pyridin-1-ium cation, which are combined by an N—H⋯S hydrogen-bonding inter­action, forming a zero-dimensional structural unit. As a result of inter­molecular ππ inter­actions, the structural units are combined into a one-dimensional chain running along the a-axis direction.

1. Chemical context

In the field of medicinal chemistry, the search for new selective drugs with reduced toxicity is ongoing. Heterocyclic compounds with the 1,3,4-thia­diazole structural unit are very attractive for the production of pharmaceuticals as 1,3,4-thia­diazole derivatives exhibit a wide spectrum of biological activities. The 1,3,4-thia­diazole moiety acts as a hydrogen-binding dominant unit on the one hand and as an electron-donor unit on the other (Sharma et al., 2013[Sharma, B., Verma, A., Prajapati, S. & Sharma, U. K. (2013). Int. J. Med. Chem. https://doi.org/10.1155/2013/348948.]). The sulfur atom of the thia­diazole moiety gives lipophilic properties to these compounds, which provides better permeability through biological membranes (Song et al., 1999[Song, Y., Connor, D. T., Sercel, A. D., Sorenson, R. J., Doubleday, R., Unangst, P. C., Roth, B. D., Beylin, V. G., Gilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A. & Dyer, R. D. (1999). J. Med. Chem. 42, 1161-1169.]). The thia­diazole nucleus with its N–C–S linkage exhibits a large number of biological activities (Kurtzer et al., 1965[Kurtzer, F., Katritzky, A. R. & Boulton, A. J. (1965). Advances in Heterocyclic Chemistry, pp. 165-209. New York: Academic Press.]). It has been found that derivatives of 1,3,4-thia­diazole have diverse pharmacological activities such as fungicidal, insecticidal, bactericidal, herbicidal, anti-tumor (Shivarama Holla et al., 2002[Shivarama Holla, B., Narayana Poojary, K., Sooryanarayana Rao, B. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.]), anti-inflammatory and anti­viral (Witkoaski et al.,1972[Witkoaski, J. T., Robins, R. K., Sidwell, R. W. & Simon, L. N. (1972). J. Med. Chem. 15, 150-154.]). A number of 1,3,4-thia­diazo­les exhibit anti­bacterial properties similar to those of well-known sulfonamide drugs. 1,3,4-Thia­diazole derivatives have been patented for agricultural use, as herbicides and bactericides. According to these findings and in a continuation of our work on synthesizing various condensed-bridge bioactive mol­ecules bearing multifunctional and pharmaceutically active groups (Priya et al., 2005[Priya, B. S., Basappa, B., Nanjunda Swamy, S. & Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]; Sadashiva et al., 2004[Sadashiva, M. P., Mallesha, H., Hitesh, N. A. & Rangappa, K. S. (2004). Bioorg. Med. Chem. 12, 6389-6395.]), we have investigated the structural properties of two new 1,3,4-thia­diazole derivatives.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of compound (I)[link] is illustrated in Fig. 1[link]. The compound consists of two nearly flat 2-amino-5-ethyl-1,3,4-thia­diazol-3-ium cations and an oxalate anion. The ethyl unit of the 2-amino-5-ethyl-1,3,4-thia­diazol-3-ium cation has an extended conformation and is almost in the same plane as the thia­diazole ring, as indicated by the torsion angle S1—C2—C3—C4 = −176.16 (15)°. The oxalate anion is also in the plane of the cation [the angle between the root-mean-square planes of these mol­ecules is 5.71 (2)°]. The mol­ecular structure of compound (II)[link] is illustrated in Fig. 2[link]. In the 4-phenyl-5-sulfanyl­idene-4,5-di­hydro-1,3,4-thia­diazole-2-thiol­ate moiety, the phenyl ring is inclined by 69.08 (14)° to the plane of the thia­diazole ring. The 4-(di­methyl­amino)­pyridin-1-ium is almost planar, the largest deviation from the root-mean-square plane of the mol­ecule being 0.01 Å.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labeling and displacement ellipsoids drawn at the 40% probability level. The dashed line represents the intra­molecular hydrogen bond. Symmetry code: (A) 2 − x, 1 − y, 1 − z.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labeling and displacement ellipsoids drawn at the 40% probability level. The dashed line represents the intra­molecular hydrogen bond.

3. Supra­molecular features

In the asymmetric unit of compound (I)[link] there is a protonated 2-amino-5-ethyl-1,3,4-thia­diazole mol­ecule (cation) and half of a doubly deprotonated oxalic acid mol­ecule (anion) (it is on a special position: there is a center of inversion in the middle of the mol­ecule), i.e. the mol­ecular ratio is 2:1. The oxygen atoms of the oxalate anion are involved in inter­molecular hydrogen bonding (Table 1[link]) with neighboring cationic species, leading to the formation of one-dimensional infinite chains. Such chains are packed parallel to each other in the [100] direction in the crystal structure (Fig. 3[link]). Each chain consists of alternate eight- and fourteen-membered (including hydrogen atoms) conjugated rings, with the graph-set notations R22(8) and R44(14), respectively, according to the hydrogen-bonding patterns defined by Etter et al. (1993[Etter, M. C. (1993). Acc. Chem. Res. 32, 120-126.]). These chains are inter­connected via C—H⋯O (Table 1[link], Fig. 4[link]) and ππ inter­actions [Cg1⋯Cg1([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) = 3.7734 (10) Å, where Cg1 is the centroid of the S1/C1/N2/N3/C2 ring].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3A⋯O1 0.86 1.92 2.765 (2) 167
N1—H3B⋯O2i 0.86 1.99 2.821 (2) 162
N2—H1⋯O2 0.92 (3) 1.78 (3) 2.6989 (19) 178 (2)
C3—H1C⋯O1ii 0.97 2.65 3.479 (2) 143
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
Packing diagram of compound (I)[link] viewed down the c–axis. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
Packing diagram of compound (I)[link] viewed down the a-axis. Hydrogen bonds are shown as dashed lines.

In compound (II)[link], the asymmetric unit contains a 4-(di­methyl­amino)­pyridin-1-ium cation and a 4-phenyl-5-sulfanyl­idene-4,5-di­hydro-1,3,4-thia­diazole-2-thiol­ate anion, i.e. the mol­ecular ratio is 1:1. The cation and anion are combined by an N—H⋯S hydrogen-bonding inter­action (Table 2[link]) and form 0-D structural units. As a result of inter­molecular ππ inter­actions between the benzene rings of two equivalent anions of the 4-(di­methyl­amino)­pyridin-1-ium unit [Cg1⋯Cg1(1 − x, 1 − y, 1 − z) = 4.311 (2) Å, Cg1 is the centroid of the C3–C8 ring], the structural units combine as a building block of a one-dimensional chain running along the a-axis direction (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S3 1.02 (5) 2.16 (5) 3.173 (3) 173 (4)
[Figure 5]
Figure 5
Packing diagram of compound (II)[link] viewed down the a-axis. The hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that there are two structures of organic salts containing the compounds mentioned in this article. The first structure is that of 2-amino-5-ethyl-1,3,4-thia­diazole with 2-4 di­chloro­phen­oxy acetic acid (XAPXIV; Lynch et al., 1999[Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Parsons, S. & Healy, P. (1999). Aust. J. Chem. 52, 695-703.]). This structure is considered among proton-transfer complexes and the dominant inter­molecular association is an R22(8) graph-set dimer across the N3A/N21A site to the two carboxyl­ate oxygen atoms. The second structure is for bis­(4-amino­pyridine-N)tri­methyl­tin with 3-phenyl-1,3,4-thia­diazo­line-2-thione-5-thiol­ate (XIGPEI; [Berceanc et al., 2002[Berceanc, V., Crainic, C., Haiduc, I., Mahon, M. F., Molloy, K. C., Venter, M. M. & Wilson, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1036-1045.]). In this complex, the 4-N-amino­pyridine, being coordinatively bound to the tin atom, participates in a weak hydrogen bond [N—H⋯S = 3.366 (2) Å, 159°] with the 1,3,4-thia­diazole mol­ecule.

5. Hirshfeld surface calculation

In order to visualize the inter­molecular inter­actions in the structures of compounds (I)[link] and (II)[link], a Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]). The Hirshfeld surface mapped over dnorm (Fig. 6[link]) shows that in (I)[link], the expected bright-red spots near atoms O1 and O2, involved in the hydrogen-bonding inter­actions. Fingerprint plots (Fig. 8[link]) reveal that O⋯H/H⋯O, H⋯H and H⋯C/C⋯H inter­actions make the greatest contributions to the surface contacts, while S⋯N/N⋯S, S⋯H/H⋯S, S⋯S contacts are less significant. In (II)[link], the greatest contributions to the surface contacts are from H⋯S/S⋯H, H⋯H and C⋯H/H⋯C inter­actions, with smaller contributions from N⋯H/H⋯N and C⋯C inter­actions (Fig. 7[link], Fig. 9[link]).

[Figure 6]
Figure 6
The Hirshfeld surface mapped over dnorm for compound (I)[link] indicates that the most important contributions to the crystal packing are from O⋯H/H⋯O (39.1%) and H⋯H (29.0%) inter­actions.
[Figure 8]
Figure 8
The two-dimensional fingerprint plots for compound (I)[link]. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface depicted in Fig. 6[link].
[Figure 7]
Figure 7
The Hirshfeld surface mapped over dnorm for compound (II)[link] indicates that the most important contributions to the crystal packing are from S⋯H/H⋯S (35.3%), H⋯H (31.5%) and C⋯H/H⋯C (20.3%) inter­actions.
[Figure 9]
Figure 9
The two-dimensional fingerprint plots for compound (II)[link]. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface depicted in Fig. 7[link].

6. Synthesis and crystallization

Synthesis of 2-amino-5-ethyl-1,3,4-thia­diazole:

Propionic acid (0.108 mol) was mixed with 16 g of sulfuric acid (94%). The reaction temperature was allowed to reach 333–343 K, and then, under the same conditions, 0.1 mol of thio­semicarbazide were added. The mixture was stirred for 3 h at 333–343 K, water and charcoal were added, and the mixture was stirred for 40 minutes. At the end of the reaction, the solution was filtered. Then, 44% sodium hydroxide solution was added to get a solution with pH 9.5–10. After cooling the reaction to 303–308 K, the mixture was filtered. The precipitate was washed with water (303 K) and allowed to dry to give the title compound (12 g, 93%), m.p. 460–467 K. IR (cm−1): 3290, 2980, 2780; 1640.

Compound (I)[link] was obtained using the procedure described by Harris et al. (1984[Harris, J. M., Struck, E. C., Case, M. G., Paley, M. S., Yalpani, M., Van Alstine, J. M. & Brooks, D. E. (1984). J. Polym. Sci. Polym. Chem. Ed. 22, 341-352.]). We tried to achieve inter­action between 2-amino-5-ethyl-1,3,4-thia­diazole and oxalyl chloride. For this, 20 mmol oxalyl dichloride were mixed with 40 mmol of 2-amino-5-ethyl-1,3,4-thia­diazole in 15 ml of dry acetone, and stirred under boiling acetone for 10 h. The solvent was then removed by rotary evaporation, and the residue was purified by recristallization from water. Beige block-shaped crystals were obtained after one week of slow evaporation of the solvent. We presume that oxalyl chloride was transformed to oxalic acid upon treatment with water in the last step of the reaction.

Compound (II)[link] was obtained during a typical procedure (Sheikh et al., 2010[Sheikh, M. C., Takagi, S., Yoshimura, T. & Morita, H. (2010). Tetrahedron, 66, 7272-7278.]) for the etherification reaction between 5-mercapto-3-phenyl-1,3,4-thia­diazol-2-thione and glutaric anhydride. The isolated reaction products were amorphous. For purification, the reaction products were treated by filtration in ethyl alcohol. Colorless needle-like single crystals were afforded after 2 days by slow evaporation of the solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In (I)[link], atom H1 (at protonated atom N2 of 2-amino-5-ethyl-1,3,4-thia­diazol-3-ium) was located from difference-Fourier maps. All other H atoms were placed in idealized positions (N—H = 0.86, C—H = 0.96–0.97 Å) and refined as riding on their carrier atoms [Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C-meth­yl)]. In (II)[link], all hydrogen atoms except those of the methyl groups in 4-(di­methyl­amino)­pyridin-1-ium were located from difference Fourier-maps and freely refined. Methyl H atoms were positioned geometrically and refined as riding [C—H = 0.96 Å; Uiso(H) = 1.5Ueq(C)].

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C4H8N3S+·0.5C2O42− C7H11N2+·C8H5N2S3
Mr 174.20 348.50
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 6.4215 (1), 18.1227 (3), 7.2155 (2) 9.6422 (2), 17.1758 (3), 10.6080 (2)
β (°) 113.095 (3) 99.546 (2)
V3) 772.41 (3) 1732.49 (6)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.39 3.92
Crystal size (mm) 0.32 × 0.18 × 0.10 0.20 × 0.17 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.])
Tmin, Tmax 0.131, 1.000 0.123, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3645, 1480, 1366 16519, 3341, 2681
Rint 0.019 0.047
(sin θ/λ)max−1) 0.613 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.12 0.047, 0.142, 1.09
No. of reflections 1480 3341
No. of parameters 104 234
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.33 0.43, −0.48
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Amino-5-ethyl-1,3,4-thiadiazol-3-ium hemioxalate (I) top
Crystal data top
C4H8N3S+·0.5C2O42F(000) = 364
Mr = 174.20Dx = 1.498 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.4215 (1) ÅCell parameters from 2613 reflections
b = 18.1227 (3) Åθ = 4.9–70.9°
c = 7.2155 (2) ŵ = 3.39 mm1
β = 113.095 (3)°T = 293 K
V = 772.41 (3) Å3Needle, beige
Z = 40.32 × 0.18 × 0.10 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
Rint = 0.019
/ω scansθmax = 71.1°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 77
Tmin = 0.131, Tmax = 1.000k = 2211
3645 measured reflectionsl = 88
1480 independent reflections3 standard reflections every 100 reflections
1366 reflections with I > 2σ(I) intensity decay: 2.6%
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.2028P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1480 reflectionsΔρmax = 0.35 e Å3
104 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38930 (7)0.23126 (2)0.56878 (7)0.03711 (17)
O20.9971 (2)0.40285 (7)0.5037 (2)0.0441 (3)
O10.7585 (2)0.48309 (7)0.5457 (3)0.0525 (4)
N20.7208 (2)0.29656 (8)0.5395 (2)0.0355 (3)
N30.7715 (3)0.22308 (8)0.5338 (2)0.0376 (4)
N10.4525 (3)0.37853 (8)0.5616 (3)0.0443 (4)
H3A0.5320060.4159480.5556620.053*
H3B0.3247690.3850970.5718130.053*
C50.9282 (3)0.46721 (9)0.5139 (3)0.0325 (4)
C10.5255 (3)0.31189 (9)0.5552 (3)0.0327 (4)
C20.6144 (3)0.18227 (10)0.5465 (3)0.0349 (4)
C30.6113 (4)0.09996 (10)0.5415 (3)0.0456 (5)
H1B0.4826100.0836940.4237260.055*
H1C0.5907980.0817570.6596930.055*
C40.8242 (4)0.06663 (12)0.5359 (4)0.0592 (6)
H2B0.8120720.0138080.5328570.089*
H2C0.8438360.0834160.4176030.089*
H2D0.9520850.0814780.6537030.089*
H10.816 (4)0.3332 (16)0.530 (4)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (3)0.0330 (3)0.0516 (3)0.00368 (16)0.0226 (2)0.00117 (17)
O20.0398 (7)0.0253 (6)0.0797 (9)0.0001 (5)0.0368 (7)0.0005 (6)
O10.0431 (8)0.0321 (7)0.1006 (11)0.0011 (6)0.0480 (8)0.0010 (7)
N20.0316 (7)0.0275 (7)0.0542 (9)0.0018 (6)0.0243 (7)0.0047 (6)
N30.0364 (8)0.0304 (7)0.0516 (9)0.0046 (6)0.0231 (7)0.0037 (6)
N10.0372 (8)0.0303 (8)0.0750 (11)0.0040 (6)0.0324 (8)0.0048 (7)
C50.0298 (8)0.0271 (8)0.0447 (9)0.0014 (7)0.0191 (7)0.0001 (7)
C10.0274 (8)0.0329 (9)0.0405 (9)0.0007 (6)0.0163 (7)0.0037 (7)
C20.0376 (9)0.0312 (9)0.0390 (9)0.0009 (7)0.0185 (7)0.0029 (7)
C30.0579 (12)0.0298 (9)0.0549 (11)0.0000 (8)0.0282 (9)0.0009 (8)
C40.0751 (15)0.0377 (11)0.0743 (14)0.0152 (11)0.0394 (12)0.0029 (10)
Geometric parameters (Å, º) top
S1—C11.7255 (17)N1—H3B0.8600
S1—C21.7565 (18)C5—C5i1.564 (3)
O2—C51.260 (2)C2—C31.492 (3)
O1—C51.232 (2)C3—C41.510 (3)
N2—C11.332 (2)C3—H1B0.9700
N2—N31.375 (2)C3—H1C0.9700
N2—H10.92 (3)C4—H2B0.9600
N3—C21.283 (2)C4—H2C0.9600
N1—C11.303 (2)C4—H2D0.9600
N1—H3A0.8600
C1—S1—C288.23 (8)N3—C2—S1114.42 (13)
C1—N2—N3116.50 (14)C3—C2—S1120.25 (14)
C1—N2—H1122.0 (17)C2—C3—C4113.38 (17)
N3—N2—H1121.5 (17)C2—C3—H1B108.9
C2—N3—N2110.74 (15)C4—C3—H1B108.9
C1—N1—H3A120.0C2—C3—H1C108.9
C1—N1—H3B120.0C4—C3—H1C108.9
H3A—N1—H3B120.0H1B—C3—H1C107.7
O1—C5—O2125.68 (16)C3—C4—H2B109.5
O1—C5—C5i117.07 (18)C3—C4—H2C109.5
O2—C5—C5i117.25 (18)H2B—C4—H2C109.5
N1—C1—N2124.08 (16)C3—C4—H2D109.5
N1—C1—S1125.82 (13)H2B—C4—H2D109.5
N2—C1—S1110.09 (13)H2C—C4—H2D109.5
N3—C2—C3125.32 (17)
C1—N2—N3—C20.4 (2)N2—N3—C2—S10.44 (19)
N3—N2—C1—N1179.71 (16)C1—S1—C2—N30.89 (14)
N3—N2—C1—S11.1 (2)C1—S1—C2—C3178.47 (15)
C2—S1—C1—N1179.76 (17)N3—C2—C3—C44.6 (3)
C2—S1—C1—N21.07 (13)S1—C2—C3—C4176.16 (15)
N2—N3—C2—C3178.87 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3A···O10.861.922.765 (2)167
N1—H3B···O2ii0.861.992.821 (2)162
N2—H1···O20.92 (3)1.78 (3)2.6989 (19)178 (2)
C3—H1C···O1iii0.972.653.479 (2)143
Symmetry codes: (ii) x1, y, z; (iii) x+3/2, y1/2, z+3/2.
4-(Dimethylamino)pyridin-1-ium 4-phenyl-5-sulfanylidene-4,5-dihydro-1,3,4-thiadiazole-2-thiolate (II) top
Crystal data top
C7H11N2+·C8H5N2S3F(000) = 728
Mr = 348.50Dx = 1.336 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.6422 (2) ÅCell parameters from 6977 reflections
b = 17.1758 (3) Åθ = 2.5–70.7°
c = 10.6080 (2) ŵ = 3.92 mm1
β = 99.546 (2)°T = 293 K
V = 1732.49 (6) Å3Needle, colourless
Z = 40.20 × 0.17 × 0.12 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2681 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.047
/ω scansθmax = 71.4°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1111
Tmin = 0.123, Tmax = 1.000k = 1821
16519 measured reflectionsl = 1312
3341 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.070P)2 + 0.4264P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3341 reflectionsΔρmax = 0.43 e Å3
234 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98676 (7)0.65986 (4)0.81645 (7)0.0706 (2)
S21.24460 (7)0.58869 (4)0.73915 (8)0.0745 (2)
S30.68531 (7)0.63843 (5)0.85224 (7)0.0758 (2)
N20.9940 (2)0.52129 (11)0.75216 (19)0.0578 (5)
N10.8566 (2)0.52989 (13)0.7759 (2)0.0655 (5)
N40.3738 (3)0.62373 (15)0.1821 (2)0.0773 (6)
N30.5545 (3)0.61788 (18)0.5594 (3)0.0861 (7)
C31.0350 (3)0.44426 (13)0.7193 (2)0.0592 (6)
C110.4299 (3)0.62077 (14)0.3046 (2)0.0597 (6)
C21.0800 (3)0.58276 (14)0.7660 (2)0.0581 (6)
C10.8367 (3)0.60132 (16)0.8129 (2)0.0601 (6)
C120.3763 (3)0.66388 (16)0.3991 (3)0.0679 (7)
C41.1299 (3)0.40347 (16)0.8063 (3)0.0704 (7)
C80.9777 (3)0.41273 (15)0.6033 (3)0.0706 (7)
C100.5502 (4)0.57518 (18)0.3494 (3)0.0783 (8)
C130.4416 (4)0.66102 (18)0.5222 (3)0.0781 (8)
C51.1668 (4)0.32861 (18)0.7750 (4)0.0859 (9)
C71.0156 (4)0.33772 (18)0.5741 (4)0.0852 (9)
C61.1092 (4)0.29664 (18)0.6601 (4)0.0890 (10)
C90.6068 (4)0.5752 (2)0.4736 (4)0.0905 (10)
C140.2475 (4)0.6678 (3)0.1364 (4)0.1091 (13)
H14A0.2240030.6625730.0452940.164*
H14B0.1715510.6483290.1755800.164*
H14C0.2632440.7216890.1581690.164*
C150.4305 (5)0.5763 (2)0.0877 (4)0.1113 (12)*
H15A0.3773990.5857140.0043140.167*
H15B0.5272010.5898070.0882550.167*
H15C0.4240840.5221780.1088470.167*
H80.910 (3)0.4407 (17)0.543 (3)0.076 (8)*
H120.302 (3)0.6942 (18)0.379 (3)0.073 (8)*
H41.168 (3)0.4241 (18)0.883 (3)0.083 (10)*
H51.235 (4)0.300 (2)0.840 (3)0.104 (11)*
H61.130 (4)0.247 (2)0.638 (4)0.107 (11)*
H70.976 (4)0.316 (2)0.490 (4)0.094 (10)*
H130.411 (4)0.689 (2)0.582 (3)0.094 (11)*
H110.594 (4)0.544 (2)0.297 (4)0.103 (11)*
H90.689 (4)0.549 (2)0.509 (4)0.112 (12)*
H30.596 (5)0.619 (3)0.654 (5)0.141 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0638 (4)0.0629 (4)0.0867 (5)0.0005 (3)0.0171 (3)0.0164 (3)
S20.0614 (4)0.0636 (4)0.1027 (6)0.0064 (3)0.0262 (4)0.0117 (3)
S30.0628 (4)0.0961 (5)0.0710 (4)0.0094 (3)0.0188 (3)0.0041 (3)
N20.0532 (10)0.0552 (10)0.0656 (12)0.0011 (8)0.0111 (9)0.0017 (9)
N10.0545 (11)0.0690 (13)0.0740 (13)0.0029 (9)0.0140 (10)0.0001 (10)
N40.0913 (17)0.0815 (16)0.0605 (13)0.0169 (13)0.0170 (12)0.0015 (11)
N30.0877 (18)0.0956 (19)0.0729 (17)0.0155 (15)0.0071 (14)0.0087 (14)
C30.0622 (13)0.0476 (12)0.0691 (15)0.0027 (10)0.0144 (11)0.0033 (10)
C110.0661 (14)0.0540 (12)0.0633 (14)0.0110 (10)0.0235 (11)0.0004 (10)
C20.0612 (13)0.0561 (13)0.0570 (13)0.0007 (10)0.0093 (10)0.0025 (10)
C10.0578 (13)0.0724 (15)0.0501 (12)0.0025 (11)0.0086 (10)0.0009 (11)
C120.0692 (16)0.0629 (15)0.0768 (18)0.0049 (12)0.0272 (14)0.0039 (12)
C40.0733 (17)0.0611 (15)0.0756 (18)0.0016 (12)0.0087 (14)0.0102 (13)
C80.0805 (18)0.0574 (14)0.0718 (17)0.0006 (12)0.0066 (14)0.0005 (12)
C100.0807 (19)0.0698 (17)0.091 (2)0.0110 (14)0.0347 (17)0.0001 (15)
C130.100 (2)0.0739 (18)0.0672 (18)0.0099 (16)0.0321 (17)0.0075 (14)
C50.086 (2)0.0613 (17)0.110 (3)0.0093 (14)0.0164 (19)0.0230 (17)
C70.112 (3)0.0602 (16)0.086 (2)0.0047 (16)0.0224 (19)0.0119 (15)
C60.100 (2)0.0514 (15)0.121 (3)0.0044 (15)0.035 (2)0.0034 (17)
C90.076 (2)0.098 (2)0.098 (3)0.0119 (17)0.0139 (18)0.0213 (19)
C140.096 (3)0.135 (3)0.088 (2)0.019 (2)0.009 (2)0.029 (2)
Geometric parameters (Å, º) top
S1—C21.735 (2)C4—C51.389 (4)
S1—C11.757 (3)C4—H40.91 (3)
S2—C21.661 (3)C8—C71.388 (4)
S3—C11.707 (3)C8—H80.96 (3)
N2—C21.336 (3)C10—C91.340 (5)
N2—N11.397 (3)C10—H110.93 (4)
N2—C31.440 (3)C13—H130.89 (3)
N1—C11.312 (3)C5—C61.368 (5)
N4—C111.323 (4)C5—H51.00 (4)
N4—C141.447 (5)C7—C61.368 (5)
N4—C151.465 (5)C7—H70.98 (4)
N3—C131.322 (5)C6—H60.92 (4)
N3—C91.331 (5)C9—H90.94 (4)
N3—H31.02 (5)C14—H14A0.9600
C3—C81.374 (4)C14—H14B0.9600
C3—C41.378 (4)C14—H14C0.9600
C11—C121.411 (4)C15—H15A0.9600
C11—C101.415 (4)C15—H15B0.9600
C12—C131.353 (5)C15—H15C0.9600
C12—H120.88 (3)
C2—S1—C191.37 (12)C7—C8—H8119.5 (17)
C2—N2—N1119.1 (2)C9—C10—C11120.5 (3)
C2—N2—C3124.2 (2)C9—C10—H11116 (2)
N1—N2—C3116.58 (19)C11—C10—H11124 (2)
C1—N1—N2110.1 (2)N3—C13—C12122.4 (3)
C11—N4—C14122.2 (3)N3—C13—H13117 (2)
C11—N4—C15120.8 (3)C12—C13—H13121 (2)
C14—N4—C15116.8 (3)C6—C5—C4120.2 (3)
C13—N3—C9119.5 (3)C6—C5—H5123 (2)
C13—N3—H3117 (3)C4—C5—H5117 (2)
C9—N3—H3124 (3)C6—C7—C8120.0 (3)
C8—C3—C4121.6 (2)C6—C7—H7121 (2)
C8—C3—N2119.6 (2)C8—C7—H7119 (2)
C4—C3—N2118.9 (2)C7—C6—C5120.8 (3)
N4—C11—C12122.6 (3)C7—C6—H6117 (2)
N4—C11—C10122.0 (3)C5—C6—H6122 (2)
C12—C11—C10115.4 (3)N3—C9—C10122.2 (3)
N2—C2—S2128.55 (19)N3—C9—H9113 (2)
N2—C2—S1107.04 (18)C10—C9—H9125 (2)
S2—C2—S1124.40 (15)N4—C14—H14A109.5
N1—C1—S3126.6 (2)N4—C14—H14B109.5
N1—C1—S1112.37 (18)H14A—C14—H14B109.5
S3—C1—S1121.04 (16)N4—C14—H14C109.5
C13—C12—C11120.0 (3)H14A—C14—H14C109.5
C13—C12—H12119 (2)H14B—C14—H14C109.5
C11—C12—H12121 (2)N4—C15—H15A109.5
C3—C4—C5118.6 (3)N4—C15—H15B109.5
C3—C4—H4122 (2)H15A—C15—H15B109.5
C5—C4—H4120 (2)N4—C15—H15C109.5
C3—C8—C7118.9 (3)H15A—C15—H15C109.5
C3—C8—H8121.6 (17)H15B—C15—H15C109.5
C2—N2—N1—C11.6 (3)C2—S1—C1—N10.3 (2)
C3—N2—N1—C1175.7 (2)C2—S1—C1—S3179.33 (16)
C2—N2—C3—C8113.1 (3)N4—C11—C12—C13177.2 (3)
N1—N2—C3—C869.7 (3)C10—C11—C12—C131.4 (4)
C2—N2—C3—C467.7 (3)C8—C3—C4—C50.4 (4)
N1—N2—C3—C4109.4 (3)N2—C3—C4—C5178.7 (3)
C14—N4—C11—C124.0 (4)C4—C3—C8—C70.6 (4)
C15—N4—C11—C12178.3 (3)N2—C3—C8—C7178.5 (3)
C14—N4—C11—C10177.5 (3)N4—C11—C10—C9178.1 (3)
C15—N4—C11—C103.2 (4)C12—C11—C10—C90.5 (4)
N1—N2—C2—S2177.69 (18)C9—N3—C13—C120.2 (5)
C3—N2—C2—S25.2 (4)C11—C12—C13—N31.1 (5)
N1—N2—C2—S11.3 (3)C3—C4—C5—C60.2 (5)
C3—N2—C2—S1175.83 (19)C3—C8—C7—C60.3 (5)
C1—S1—C2—N20.50 (18)C8—C7—C6—C50.2 (5)
C1—S1—C2—S2178.52 (17)C4—C5—C6—C70.5 (5)
N2—N1—C1—S3179.97 (17)C13—N3—C9—C101.2 (5)
N2—N1—C1—S11.0 (3)C11—C10—C9—N30.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S31.02 (5)2.16 (5)3.173 (3)173 (4)
 

Funding information

Funding for this research was provided by: Ministry of Innovation of the Republic of Uzbekistan.

References

First citationBerceanc, V., Crainic, C., Haiduc, I., Mahon, M. F., Molloy, K. C., Venter, M. M. & Wilson, P. J. (2002). J. Chem. Soc. Dalton Trans. pp. 1036–1045.  Web of Science CSD CrossRef Google Scholar
First citationEtter, M. C. (1993). Acc. Chem. Res. 32, 120–126.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, J. M., Struck, E. C., Case, M. G., Paley, M. S., Yalpani, M., Van Alstine, J. M. & Brooks, D. E. (1984). J. Polym. Sci. Polym. Chem. Ed. 22, 341–352.  CrossRef CAS Web of Science Google Scholar
First citationKurtzer, F., Katritzky, A. R. & Boulton, A. J. (1965). Advances in Heterocyclic Chemistry, pp. 165–209. New York: Academic Press.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPriya, B. S., Basappa, B., Nanjunda Swamy, S. & Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Corporation, Wroclaw, Poland.  Google Scholar
First citationSadashiva, M. P., Mallesha, H., Hitesh, N. A. & Rangappa, K. S. (2004). Bioorg. Med. Chem. 12, 6389–6395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, B., Verma, A., Prajapati, S. & Sharma, U. K. (2013). Int. J. Med. Chem. https://doi.org/10.1155/2013/348948.  Google Scholar
First citationSheikh, M. C., Takagi, S., Yoshimura, T. & Morita, H. (2010). Tetrahedron, 66, 7272–7278.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShivarama Holla, B., Narayana Poojary, K., Sooryanarayana Rao, B. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed CAS Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSmith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Parsons, S. & Healy, P. (1999). Aust. J. Chem. 52, 695–703.  CSD CrossRef Google Scholar
First citationSong, Y., Connor, D. T., Sercel, A. D., Sorenson, R. J., Doubleday, R., Unangst, P. C., Roth, B. D., Beylin, V. G., Gilbertsen, R. B., Chan, K., Schrier, D. J., Guglietta, A., Bornemeier, D. A. & Dyer, R. D. (1999). J. Med. Chem. 42, 1161–1169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitkoaski, J. T., Robins, R. K., Sidwell, R. W. & Simon, L. N. (1972). J. Med. Chem. 15, 150–154.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds