Download citation
Download citation
link to html
In the layer structure of di-μ2-iodido-bis­[(2,2′-bi­quinoline-κ2N,N′)copper(I)], π–π inter­actions provide conectivity within and between the layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989023000634/dj2055sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989023000634/dj2055Isup2.hkl
Contains datablock I

CCDC reference: 2237760

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ2-iodido-bis[(2,2'-biquinoline-κ2N,N')copper(I)] top
Crystal data top
[Cu2I2(C18H12N2)2]Z = 1
Mr = 893.49F(000) = 432
Triclinic, P1Dx = 1.979 Mg m3
a = 8.2032 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4084 (3) ÅCell parameters from 9951 reflections
c = 10.8312 (3) Åθ = 2.3–32.6°
α = 70.9328 (8)°µ = 3.51 mm1
β = 76.1237 (9)°T = 100 K
γ = 74.2486 (9)°Plate, red
V = 749.84 (4) Å30.12 × 0.10 × 0.06 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
4875 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.6°, θmin = 2.3°
Tmin = 0.656, Tmax = 0.798h = 1212
22231 measured reflectionsk = 1414
5464 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2045P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5464 reflectionsΔρmax = 0.93 e Å3
200 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.00061 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.72676 (2)0.05497 (2)0.36228 (2)0.01463 (4)
Cu10.47151 (3)0.14895 (2)0.52815 (2)0.01482 (5)
N10.50362 (17)0.22489 (16)0.68043 (14)0.0137 (2)
N20.32363 (17)0.37275 (15)0.48351 (13)0.0126 (2)
C10.5986 (2)0.14322 (19)0.77875 (16)0.0149 (3)
C20.7206 (2)0.0086 (2)0.76410 (18)0.0188 (3)
H20.73350.02530.68810.023*
C30.8205 (2)0.0730 (2)0.86007 (19)0.0225 (3)
H30.90500.16160.84860.027*
C40.7991 (3)0.0268 (2)0.97589 (19)0.0235 (4)
H40.86580.08691.04300.028*
C50.6831 (2)0.1034 (2)0.99178 (18)0.0221 (3)
H50.66880.13331.07010.027*
C60.5837 (2)0.1942 (2)0.89164 (16)0.0168 (3)
C70.4734 (2)0.3365 (2)0.89624 (17)0.0204 (3)
H70.46030.37410.97020.024*
C80.3849 (2)0.4209 (2)0.79434 (17)0.0186 (3)
H80.31340.51870.79540.022*
C90.4017 (2)0.35984 (18)0.68682 (16)0.0134 (3)
C100.30656 (19)0.44564 (18)0.57445 (16)0.0130 (3)
C110.2064 (2)0.59515 (18)0.56565 (17)0.0151 (3)
H110.19890.64360.63180.018*
C120.1199 (2)0.67017 (18)0.46130 (17)0.0161 (3)
H120.05050.77030.45520.019*
C130.1348 (2)0.59756 (18)0.36296 (16)0.0135 (3)
C140.0488 (2)0.6683 (2)0.25249 (17)0.0171 (3)
H140.02250.76810.24310.021*
C150.0680 (2)0.5933 (2)0.15911 (17)0.0183 (3)
H150.01030.64130.08500.022*
C160.1738 (2)0.4440 (2)0.17292 (17)0.0181 (3)
H160.18680.39310.10740.022*
C170.2579 (2)0.37192 (19)0.27946 (17)0.0162 (3)
H170.32790.27170.28760.019*
C180.23990 (19)0.44731 (18)0.37738 (16)0.0129 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01422 (5)0.01364 (5)0.01633 (6)0.00129 (3)0.00081 (3)0.00714 (4)
Cu10.01437 (9)0.01477 (9)0.01559 (10)0.00062 (7)0.00375 (7)0.00671 (7)
N10.0120 (6)0.0154 (6)0.0140 (6)0.0033 (5)0.0023 (5)0.0041 (5)
N20.0117 (5)0.0134 (6)0.0131 (6)0.0013 (5)0.0023 (4)0.0049 (5)
C10.0130 (7)0.0179 (7)0.0145 (7)0.0057 (6)0.0020 (5)0.0035 (6)
C20.0187 (8)0.0184 (7)0.0188 (8)0.0028 (6)0.0069 (6)0.0028 (6)
C30.0211 (8)0.0196 (8)0.0249 (9)0.0041 (7)0.0097 (7)0.0003 (7)
C40.0250 (9)0.0243 (9)0.0207 (8)0.0102 (7)0.0117 (7)0.0042 (7)
C50.0252 (9)0.0282 (9)0.0150 (7)0.0111 (7)0.0076 (6)0.0013 (7)
C60.0149 (7)0.0234 (8)0.0133 (7)0.0081 (6)0.0018 (5)0.0036 (6)
C70.0183 (8)0.0309 (9)0.0160 (8)0.0060 (7)0.0015 (6)0.0121 (7)
C80.0170 (7)0.0244 (8)0.0175 (8)0.0024 (6)0.0030 (6)0.0113 (7)
C90.0113 (6)0.0162 (7)0.0138 (7)0.0027 (5)0.0015 (5)0.0059 (6)
C100.0103 (6)0.0148 (6)0.0145 (7)0.0032 (5)0.0009 (5)0.0053 (5)
C110.0147 (7)0.0140 (6)0.0186 (7)0.0033 (5)0.0016 (5)0.0077 (6)
C120.0152 (7)0.0118 (6)0.0206 (8)0.0023 (5)0.0009 (6)0.0055 (6)
C130.0116 (6)0.0118 (6)0.0159 (7)0.0019 (5)0.0022 (5)0.0026 (5)
C140.0137 (7)0.0162 (7)0.0181 (8)0.0016 (6)0.0033 (6)0.0012 (6)
C150.0175 (7)0.0188 (7)0.0166 (7)0.0013 (6)0.0058 (6)0.0023 (6)
C160.0175 (7)0.0212 (8)0.0164 (7)0.0011 (6)0.0043 (6)0.0077 (6)
C170.0152 (7)0.0162 (7)0.0180 (7)0.0006 (6)0.0036 (6)0.0072 (6)
C180.0104 (6)0.0135 (6)0.0145 (7)0.0021 (5)0.0016 (5)0.0041 (5)
Geometric parameters (Å, º) top
I1—Cu12.5734 (2)C7—C81.369 (3)
I1—Cu1i2.6487 (2)C7—H70.9500
Cu1—N22.0900 (14)C8—C91.422 (2)
Cu1—N12.0930 (13)C8—H80.9500
Cu1—I1i2.6487 (2)C9—C101.488 (2)
Cu1—Cu1i2.9520 (4)C10—C111.409 (2)
N1—C91.330 (2)C11—C121.367 (2)
N1—C11.367 (2)C11—H110.9500
N2—C101.3354 (19)C12—C131.409 (2)
N2—C181.369 (2)C12—H120.9500
C1—C21.414 (2)C13—C141.415 (2)
C1—C61.421 (2)C13—C181.423 (2)
C2—C31.374 (2)C14—C151.369 (2)
C2—H20.9500C14—H140.9500
C3—C41.415 (3)C15—C161.418 (2)
C3—H30.9500C15—H150.9500
C4—C51.365 (3)C16—C171.372 (2)
C4—H40.9500C16—H160.9500
C5—C61.418 (2)C17—C181.418 (2)
C5—H50.9500C17—H170.9500
C6—C71.406 (3)
Cu1—I1—Cu1i68.829 (8)C8—C7—H7119.9
N2—Cu1—N179.28 (5)C6—C7—H7119.9
N2—Cu1—I1122.14 (4)C7—C8—C9118.99 (16)
N1—Cu1—I1122.34 (4)C7—C8—H8120.5
N2—Cu1—I1i110.91 (4)C9—C8—H8120.5
N1—Cu1—I1i106.99 (4)N1—C9—C8122.17 (15)
I1—Cu1—I1i111.171 (8)N1—C9—C10116.58 (13)
N2—Cu1—Cu1i141.62 (4)C8—C9—C10121.24 (15)
N1—Cu1—Cu1i136.76 (4)N2—C10—C11122.82 (15)
I1—Cu1—Cu1i56.791 (7)N2—C10—C9115.92 (14)
I1i—Cu1—Cu1i54.380 (7)C11—C10—C9121.26 (14)
C9—N1—C1119.18 (14)C12—C11—C10119.63 (14)
C9—N1—Cu1113.35 (11)C12—C11—H11120.2
C1—N1—Cu1126.92 (11)C10—C11—H11120.2
C10—N2—C18118.23 (14)C11—C12—C13119.38 (15)
C10—N2—Cu1113.89 (11)C11—C12—H12120.3
C18—N2—Cu1127.82 (10)C13—C12—H12120.3
N1—C1—C2118.85 (15)C12—C13—C14122.40 (15)
N1—C1—C6121.75 (15)C12—C13—C18117.93 (15)
C2—C1—C6119.33 (16)C14—C13—C18119.67 (14)
C3—C2—C1119.82 (17)C15—C14—C13120.22 (16)
C3—C2—H2120.1C15—C14—H14119.9
C1—C2—H2120.1C13—C14—H14119.9
C2—C3—C4120.78 (18)C14—C15—C16120.11 (16)
C2—C3—H3119.6C14—C15—H15119.9
C4—C3—H3119.6C16—C15—H15119.9
C5—C4—C3120.43 (17)C17—C16—C15121.04 (15)
C5—C4—H4119.8C17—C16—H16119.5
C3—C4—H4119.8C15—C16—H16119.5
C4—C5—C6120.13 (17)C16—C17—C18119.85 (15)
C4—C5—H5119.9C16—C17—H17120.1
C6—C5—H5119.9C18—C17—H17120.1
C7—C6—C5122.99 (16)N2—C18—C17118.90 (14)
C7—C6—C1117.63 (16)N2—C18—C13122.00 (14)
C5—C6—C1119.34 (17)C17—C18—C13119.10 (15)
C8—C7—C6120.15 (15)
C9—N1—C1—C2173.05 (15)C18—N2—C10—C9179.42 (13)
Cu1—N1—C1—C216.1 (2)Cu1—N2—C10—C93.07 (17)
C9—N1—C1—C63.8 (2)N1—C9—C10—N24.8 (2)
Cu1—N1—C1—C6166.98 (11)C8—C9—C10—N2175.83 (14)
N1—C1—C2—C3178.35 (16)N1—C9—C10—C11174.64 (14)
C6—C1—C2—C31.4 (3)C8—C9—C10—C114.7 (2)
C1—C2—C3—C42.0 (3)N2—C10—C11—C120.9 (2)
C2—C3—C4—C52.6 (3)C9—C10—C11—C12179.63 (15)
C3—C4—C5—C60.4 (3)C10—C11—C12—C131.0 (2)
C4—C5—C6—C7174.13 (17)C11—C12—C13—C14179.90 (16)
C4—C5—C6—C13.8 (3)C11—C12—C13—C180.2 (2)
N1—C1—C6—C73.1 (2)C12—C13—C14—C15179.67 (15)
C2—C1—C6—C7173.76 (16)C18—C13—C14—C150.7 (2)
N1—C1—C6—C5178.82 (15)C13—C14—C15—C160.2 (3)
C2—C1—C6—C54.3 (2)C14—C15—C16—C170.3 (3)
C5—C6—C7—C8177.99 (17)C15—C16—C17—C180.3 (3)
C1—C6—C7—C80.0 (2)C10—N2—C18—C17179.51 (14)
C6—C7—C8—C92.2 (3)Cu1—N2—C18—C173.4 (2)
C1—N1—C9—C81.5 (2)C10—N2—C18—C130.9 (2)
Cu1—N1—C9—C8170.55 (12)Cu1—N2—C18—C13176.23 (11)
C1—N1—C9—C10177.85 (13)C16—C17—C18—N2179.42 (15)
Cu1—N1—C9—C1010.14 (17)C16—C17—C18—C130.2 (2)
C7—C8—C9—N11.6 (3)C12—C13—C18—N20.7 (2)
C7—C8—C9—C10179.14 (15)C14—C13—C18—N2178.92 (15)
C18—N2—C10—C110.1 (2)C12—C13—C18—C17179.65 (15)
Cu1—N2—C10—C11177.45 (12)C14—C13—C18—C170.7 (2)
Symmetry code: (i) x+1, y, z+1.
ππ-stacking interaction parameters (Å, °) top
Ring 1Ring No.Ring 2Ring No.AngleCentroid–centroid distanceShift distance between ring centroids
C1–C61C1–C6(-x + 1, -y, -z + 2)10.0003.8741.459
C13–C183N1/C1/C6–C9(-x + 1, -y + 1, -z + 1)24.7723.7111.480
N2/C18/C10–C13(-x, -y + 1, -z + 1)40.5903.6651.602
N1/C1/C6–C92N2/C18/C10–C13(-x + 1, -y + 1, -z + 1)45.3013.5641.139
C13–C18(-x + 1, -y + 1, -z + 1)34.7723.7111.283
N2/C18/C10–C134N2/C18/C10–C13(-x, -y + 1, -z + 1)40.0003.6521.555
C13–C18(-x, -y + 1, -z + 1)30.5903.6651.579
N1/C1/C6–C9(-x + 1, -y + 1, -z + 1)25.3013.5641.068
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds