research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the monoglycidyl ether of isoeugenol

crossmark logo

aICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: hcattey@u-bourgogne.fr, Laurent.Plasseraud@u-bourgogne.fr

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 27 July 2022; accepted 19 September 2022; online 27 September 2022)

The title compound, C13H16O3 [GE-isoEu; systematic name: 2-({2-meth­oxy-4-[(E)-1-propen-1-yl]phen­oxy}meth­yl)oxirane], which crystallizes in the triclinic P[\overline{1}] space group, was synthesized in one step from iso-eugenol, a bio-based phenyl­propanoid, with an excess of epi­chloro­hydrin. Colourless prismatic crystals suitable for X-ray diffraction were obtained from a mixture of ethyl acetate and cyclo­hexane, during purification by column chromatography on silica gel. GE-isoEu, which corresponds to the trans isomer of the monoglycidyl ether of iso-eugenol, is based on a 1,2,4-tris­ubstituted benzene ring by diglycidyl ether, meth­oxy and 1-(E)-propenyl groups, respectively. In the crystal, mol­ecules are organized through offset π-stacking inter­actions. Chemically, GE-isoEu constitutes an inter­mediate in the synthesis protocol of 2-[3-meth­oxy-4-(2-oxiranylmeth­oxy)phen­yl]-3-methyl­oxirane (GEEp-isoEu), a di­epoxy­dized monomer used in the manufacturing of thermosetting resins and intended for the elaboration of bio-composites.

1. Chemical context

The bis­phenol A diglycidyl ether mol­ecule, also called BADGE or DGEBA, is the main building block used for the formulation of commercial ep­oxy resins (Mohan, 2013[Mohan, P. (2013). Polym. Plast. Technol. Eng. 52, 107-125.]). Synthetically, this reagent is directly produced from 2,2-bis­(4-hy­droxy­phen­yl)propane (bis­phenol A), derived from petroleum resources (phenol) and recognized as being an endocrine disruptor (Fenichel et al., 2013[Fenichel, P., Chevalier, N. & Brucker-Davis, F. (2013). Ann. Endocrinol. (Paris), 74, 211-220.]). With the aim of designing more sustainable synthetic routes and alternatives to fossil resources, some of the mol­ecules derived from biomass and in particular phenyl­propano­ids isolated from the fragmentation of lignin, are considered as potential building blocks to replace bis­phenol A and its derivatives (Auvergne et al., 2014[Auvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082-1115.]). This is particularly the case of the iso-eugenol mol­ecule generally used in the composition of many perfumes and which can be also transformed into a diepoxidized monomer, 2-[3-meth­oxy-4-(2-oxiranylmeth­oxy)phen­yl]-3-methyl­oxirane (GEEp-isoEu), well-suited to ep­oxy thermosetting applications and exhibiting comparable thermomechanical properties to DGEBA (François et al., 2016[François, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732-68738.], 2017[François, C., Pourchet, S., Boni, G., Rautiainen, S., Samec, S., Fournier, L., Robert, C., Thomas, C. M., Fontaine, S., Gaillard, Y., Placet, V. & Plasseraud, L. (2017). C. R. Chim. 20, 1006-1016.]). The preparation of GEEp-isoEu involves a two-step synthesis via firstly the formation of the title compound as a synthesis inter­mediate. We report herein the X-ray crystal structure of GE-isoEu [systematic name: 2-({2-meth­oxy-4-[(E)-1-propen-1-yl]phen­oxy}meth­yl)oxirane], which crystallizes upon its purification from a mixture of cyclo­hexane and ethyl acetate.

[Scheme 1]

2. Structural commentary

The title compound exhibits an asymmetrical structure, which is depicted in Fig. 1[link]. GE-isoEu comprises a benzene ring substituted by two oxygenated functional groups, glycidyl ether [–OCH2C2H3O] and meth­oxy [–OCH3], and one 1-(E)-propenyl side chain [–HC=CHCH3] located in meta and para positions to the meth­oxy and glycidyl ether functions, respectively. The aromatic ring is planar with mean bond lengths and angles of 1.392 (3) Å and 120.13 (17)°. While the –OCH3 and –HC=CHCH3 groups are in the plane of the benzene ring, –C2H3O is out of the plane with an angle of 52.83 (14)°. The oxirane ring (C1/C2/O1) of the glycidyl ether group does not undergo any disorder, in contrast to what is frequently observed for diglycidyl ether derivatives (Cho et al., 1999[Cho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525-529.]; Flippen-Anderson & Gilardi, 1981[Flippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433-1435.]). The double-bond distance of the 1-(E)-propenyl side chain was determined as 1.315 (3) Å. This length is consistent with those described in the literature for similar compounds (Stomberg et al., 1993[Stomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317-331.]; Stomberg & Lundquist, 1995[Stomberg, R. & Lundquist, K. (1995). Z. Krystallogr. 210, 66-67.]).

[Figure 1]
Figure 1
The mol­ecular structure of GE-isoEu with displacement ellipsoids at the 30% probability level.

3. Supra­molecular features

The most significant supra­molecular inter­action observed in the crystal consists of offset π-stacking involving aromatic rings of GE-isoEu (Fig. 2[link] – red dotted lines). The inter­planar and the centroid-to-centroid distances between parallel mol­ecules are 3.456 (2) and 4.5931 (5) Å, respectively. The important difference between these two distances indicates that the benzene rings are strongly slipped. The slip angle (angle between the normal to the planes and the centroid–centroid vector) is 41.20° corresponding to a slippage distance of 3.025 (3) Å (these high values can nevertheless be considered as limit values). Typically, for such inter­actions, the inter­planar distance between the arene planes is found around 3.3 to 3.8 Å (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). In addition, mol­ecules of GE-isoEu also inter­act in pairs, forming dimers, via non-classical inter­molecular hydrogen bonds involving the methyl groups of the meth­oxy substituents, with the oxygen atoms of the ether [C10—H10A⋯O2 = 3.537 (2) Å, 167°] and meth­oxy functions [C10—H10A⋯O3 = 3.405 (2) Å, 132°] (Fig. 2[link] -– blue dotted lines). These supra­molecular inter­actions result in a propagation of stacks of mol­ecules oriented along the a-axis (Fig. 3[link]).

[Figure 2]
Figure 2
Mercury representation (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; colour code: C dark grey, O red; hydrogen atoms are omitted for clarity) showing inter­molecular inter­actions in the crystal structure of the title compound with hydrogen bonding (blue dotted line, C—H⋯O distance) and ππ stacking (red dotted line, centroid–centroid distance).
[Figure 3]
Figure 3
Stacking representation of GE-isoEu viewed down the a axis (colour code: C dark grey, O red, H white; Mercury representation; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

4. Database survey

A search in the Cambridge Structural Database (WebCSD v1.1.2, update 2022-03-05; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), highlighted that, up to now, seventeen crystal structures comprising glycidyl ether-substituted phenyl ring moieties have been reported. They include (S)-1-(2-chloro-5-methyl­phen­oxy)-2,3-ep­oxy­propane (CIKQIZ: Bredikhin et al., 2018[Bredikhin, A. A., Bredikhina, Z. A., Kurenkov, A. V., Zakharychev, D. V. & Gubaidullin, A. T. (2018). J. Mol. Struct. 1173, 157-165.]), 2,2-bis­(3,5-di­bromo-4-hy­droxy­benzene)­propane diglycidyl ether (COMNEX: Saf'yanov et al., 1984[Saf'yanov, Y. N., Golovachev, V. P. & Kuz'min, E. A. (1984). Zh. Struk. Khim. 25, 156-157.]), 2,2-bis­(4-(oxiran-2-ylmeth­oxy)-3,5-di­bromo­phen­yl)propane (COMNEY: Cheban et al., 1985[Cheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621-624.]), rac-1,2-ep­oxy-3-(2-meth­oxy­phen­yloxy)propane (DAXKAP: Bredikhin et al., 2005[Bredikhin, A. A., Strunskaya, E. I., Zakharychev, D. V., Krivolapov, D. B., Litvinov, I. A. & Bredikhina, Z. A. (2005). Tetrahedron Asymmetry, 16, 3361-3366.]), diglycidyl ether of bis­phenol A (DGEBPA: Flippen-Anderson & Gilardi, 1980[Flippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a.]; (DGEBPA01: Heinemann et al., 1993[Heinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299-301.]; DGEBPA10: Flippen-Anderson & Gilardi, 1981[Flippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433-1435.]), p-di(2,3-ep­oxy­prop­yloxy)benzene (EOXHQE: Saf'yanov et al., 1977[Saf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, E. A. (1977). Zh. Struk. Khim. 18, 402-405.]), 2,2′-[1,3-phenyl­ene-bis(oxymethyl­ene)]bis­(oxirane) (FITWOU: Bocelli & Grenier-Loustalot, 1987[Bocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221-1223.]), 1,2-ep­oxy-3-(2-cyano­phen­oxy)propane (JESHOF: Bredikhin, et al., 2006[Bredikhin, A. A., Bredikhina, Z. A., Zakharychev, D. V., Akhatova, F. S., Krivolapov, D. B. & Litvinov, I. A. (2006). Mendeleev Commun. 16, 245-247.]), 2-[(4-{3-[4-(oxiran-2-ylmeth­oxy)phen­yl]tri­cyclo­[3.3.1.13,7]decan-1-yl}phen­oxy)meth­yl]oxirane (LANRUQ: Wang et al., 2017[Wang, S.-J., Jing, X.-L., Meng, Y.-D. & Jia, Q.-X. (2017). Chin. J. Struc. Chem. 36, 396-400.]), 2-(4-{4-[4-(oxiran-2-ylmeth­oxy)phen­oxy]phen­yl}phen­oxy­meth­yl)oxi­rane (LAQTII: Song et al., 2012[Song, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, o719.]), 10-[2,5-bis­(2,3-ep­oxy-1-prop­oxy)phen­yl]-9-oxa-10-phosphaphenanthren-10-one (LIPSOS: Cho et al., 1999[Cho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525-529.]), 3,7-dimeth­oxy-2-[4-meth­oxy-3-(oxiran-2-ylmeth­oxy)phen­yl]-5-(oxiran-2-ylmeth­oxy)-4H-chro­men-4-one (ORASAD: Kristufek et al., 2016[Kristufek, S. L., Yang, G., Link, L. A., Rohde, B. J., Robertson, M. L. & Wooley, K. L. (2016). ChemSusChem, 9, 2135-2142.]), 2,2′-{methyl­enebis[(2,1-phenyl­ene)oxymethyl­ene]}bis­(oxirane) [PALQUS: Liu et al., 2021[Liu, K.-T., Chuang, J.-Y., Jeng, R.-J. & Leung, M.-K. (2021). ACS Omega, 6, 27279-27287.]), 2-(N-meth­oxy­ethanimido­yl)-5-(oxiran-2-ylmeth­oxy)benzo­nitrile (SIJZIW: Gong et al., 2013[Gong, T.-J., Xiao, B., Cheng, W.-M., Su, W., Xu, J., Liu, Z.-J., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 10630-10633.]); 2-({3-meth­oxy-4-[(oxiran-2-yl)meth­oxy]phen­yl}meth­yl)oxi­rane (WASCIF: Vigier et al., 2017[Vigier, J., François, C., Pourchet, S., Boni, G., Plasseraud, L., Placet, V., Fontaine, S. & Cattey, H. (2017). Acta Cryst. E73, 694-697.]), 4-(oxiran-2-ylmeth­oxy)benzoic acid (ZEPYUQ: Obreza & Perdih, 2012[Obreza, A. & Perdih, F. (2012). Zh. Strukt. Khim. 53, 802-808.]). To the best of our knowledge, the structure of GE-isoEu based on a benzene ring tri-substituted by glycidyl ether, meth­oxy and 1-propenyl functions is new. In terms of application, several of these compounds are targeted as synthesis inter­mediates or precursors devoted to the formulation of thermosetting resins. The polymerization process involves the ep­oxy rings of mol­ecules and occurs in the presence of hardeners (such as amines or acid anhydrides), leading to the cross-linking of infusible polymer networks.

5. Synthesis and crystallization

The title compound was prepared in one step from a commercial source of natural isoeugenol (mixture of cis/trans, 99% purity, Sigma-Aldrich) according to a previously reported protocol (François et al., 2016[François, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732-68738.]). The details of the synthesis of the title compound are summarized in Fig. 4[link]. iso-Eugenol (10.0 g, 60.9 mmol) was added to an ethano­lic sodium hydroxide solution (2.7 g, 66.6 mmol of NaOH in 30 mL of EtOH), then followed by the addition of an excess of epi­chloro­hydrin (19.1 mL, 22.5 g, 243.6 mmol). The reaction mixture was heated at 353 K over 3 h under constant stirring. 70 mL of toluene were then added at room temperature. After cannula filtration, the filtrate was washed with distilled water (3 × 20 mL) and brine (1 × 20 mL), and finally dried over anhydrous MgSO4. After complete evaporation of the solvent under vacuum, the residue was then further purified by column chromatography using a mixture of cyclo­hexa­ne/ethyl acetate (3:1, v/v) as eluent to give a white solid characterized as the monoglycidyl ether of iso-eugenol (6.2 g, yield 46%). Crystals of the trans isomer of GE-isoEu suitable for X-ray analysis were obtained during the purification by column chromatography by evaporation of the eluting solvents at room temperature. 1H NMR (300.1 MHz, CDCl3): 6.90–6.82 (m, 3H, ar­yl), 6.08 (dq, J = 6.6 and 15.7 Hz, 1H, CH-propen­yl), 6.33 (dd, J =1.6 and 15.7 Hz, 1H, CH-propen­yl), 4.21 (dd, J = 11.4 and 3.6 Hz, 1H, CH2O), 4.03 (dd, J = 11.4 and 5.5 Hz, 1H, CH2O), 3.88 (s, 3H, OCH3); 3.38 (m, 1H, CH-oxirane), 2.89 (dd, J = 5.1 and 4.2 Hz, 1H, CH2-oxirane), 2.73 (dd, J = 5.0 and 2.7 Hz, 1H, CH2-oxirane), δ 1.86 (dd, J = 1.6 and 6.6 Hz, 3H, CH3); 13C{1H} NMR (75.4 MHz, CDCl3) δ 149.6, 147.1, 132.2, 130.5, 124.2, 118.6, 114.2, 109.1, 70.3, 55.8, 50.2, 45.0, 18.4; IR (ATR): 3023, 3000, 2957, 2937, 2913, 2878, 2842, 1601, 1582, 1509, 1464, 1450, 1419, 1259, 1226, 1195, 1158, 1135, 1024, 961, 908, 857, 805, 778, 759, 734, 621, 612, 569, 464 cm−1. Analysis calculated for C13H16O3: C, 69.67; H, 6.11. Found: C, 70.28; H, 7.57.

[Figure 4]
Figure 4
Synthesis protocol and reaction conditions leading to GE-isoEu.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms on carbon and oxygen atoms were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic) or 0.99 Å (methyl­ene group) with Uiso(H) = 1.2Ueq and C—H = 0.98 Å (methyl group) with Uiso(H) = 1.5Ueq(H).

Table 1
Experimental details

Crystal data
Chemical formula C13H16O3
Mr 220.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 4.5931 (5), 8.9134 (9), 15.0764 (18)
α, β, γ (°) 74.808 (3), 85.309 (4), 77.430 (3)
V3) 581.18 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.5 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.668, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17290, 2647, 1865
Rint 0.038
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.03
No. of reflections 2647
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.19
Computer programs: APEX3 (Bruker, 2020[Bruker (2020). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[2-Methoxy-4-(prop-1-en-1-yl)phenoxymethyl]oxirane top
Crystal data top
C13H16O3Z = 2
Mr = 220.26F(000) = 236
Triclinic, P1Dx = 1.259 Mg m3
a = 4.5931 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9134 (9) ÅCell parameters from 5145 reflections
c = 15.0764 (18) Åθ = 2.5–26.6°
α = 74.808 (3)°µ = 0.09 mm1
β = 85.309 (4)°T = 150 K
γ = 77.430 (3)°PRISM, colourless
V = 581.18 (11) Å30.5 × 0.15 × 0.15 mm
Data collection top
Bruker kappa APEXII
diffractometer
2647 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1801865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3 pixels mm-1θmax = 27.5°, θmin = 2.4°
φ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.668, Tmax = 0.746l = 1919
17290 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.3763P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.5215 (3)0.37762 (14)0.60436 (8)0.0300 (3)
O20.8022 (3)0.53432 (15)0.67363 (9)0.0327 (3)
O10.7925 (3)0.88375 (17)0.59690 (12)0.0498 (4)
C50.6121 (4)0.3053 (2)0.69197 (11)0.0234 (4)
C60.5628 (4)0.1597 (2)0.74236 (12)0.0262 (4)
H60.4574670.1021950.7159290.031*
C40.7670 (4)0.3919 (2)0.73067 (12)0.0247 (4)
C70.6660 (4)0.0952 (2)0.83221 (12)0.0307 (4)
C90.8683 (4)0.3293 (2)0.81886 (13)0.0322 (4)
H90.9730150.3867130.8455690.039*
C30.9823 (4)0.6233 (2)0.70261 (14)0.0319 (4)
H3A1.1743430.5543830.7257930.038*
H3B0.8785030.6702140.7522250.038*
C80.8175 (4)0.1822 (2)0.86875 (13)0.0356 (5)
H80.8886220.1402170.9295320.043*
C100.3618 (4)0.2968 (2)0.56109 (12)0.0288 (4)
H10A0.3122280.3605180.4986080.043*
H10B0.1776760.2807130.5965810.043*
H10C0.4858260.1935440.5583860.043*
C110.6167 (5)0.0610 (2)0.88692 (13)0.0393 (5)
H110.6974320.0967790.9466340.047*
C21.0334 (4)0.7498 (2)0.62068 (15)0.0376 (5)
H21.1433790.7124770.5678460.045*
C120.4742 (5)0.1566 (2)0.86288 (15)0.0462 (6)
H120.3922420.1224830.8033350.055*
C11.0655 (5)0.9043 (2)0.62760 (18)0.0450 (5)
H1A1.0652350.9216340.6898460.054*
H1B1.1959330.9612060.5813950.054*
C130.4301 (6)0.3142 (3)0.92108 (17)0.0583 (7)
H13A0.5098440.3963390.8881730.087*
H13B0.2165960.3106090.9343850.087*
H13C0.5348850.3389750.9788460.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0366 (7)0.0279 (7)0.0274 (6)0.0150 (5)0.0068 (5)0.0015 (5)
O20.0337 (7)0.0320 (7)0.0361 (7)0.0159 (5)0.0066 (6)0.0057 (6)
O10.0354 (8)0.0392 (9)0.0766 (11)0.0119 (7)0.0132 (7)0.0106 (8)
C50.0197 (8)0.0257 (9)0.0231 (8)0.0015 (7)0.0001 (6)0.0060 (7)
C60.0266 (9)0.0240 (9)0.0268 (9)0.0029 (7)0.0019 (7)0.0068 (7)
C40.0185 (8)0.0255 (9)0.0290 (9)0.0020 (7)0.0002 (7)0.0071 (7)
C70.0323 (10)0.0251 (9)0.0276 (9)0.0058 (7)0.0037 (7)0.0052 (7)
C90.0275 (9)0.0362 (11)0.0331 (10)0.0001 (8)0.0045 (8)0.0130 (8)
C30.0215 (9)0.0350 (10)0.0444 (11)0.0065 (7)0.0044 (8)0.0175 (9)
C80.0390 (11)0.0352 (11)0.0259 (9)0.0063 (8)0.0046 (8)0.0064 (8)
C100.0315 (9)0.0293 (10)0.0288 (9)0.0132 (7)0.0015 (7)0.0070 (7)
C110.0492 (12)0.0295 (11)0.0281 (10)0.0056 (9)0.0039 (9)0.0005 (8)
C20.0257 (10)0.0380 (11)0.0545 (13)0.0114 (8)0.0037 (9)0.0188 (10)
C120.0630 (15)0.0281 (11)0.0378 (12)0.0021 (10)0.0079 (10)0.0001 (9)
C10.0323 (11)0.0379 (12)0.0731 (16)0.0144 (9)0.0054 (10)0.0211 (11)
C130.0827 (18)0.0276 (12)0.0526 (14)0.0028 (11)0.0208 (13)0.0029 (10)
Geometric parameters (Å, º) top
O3—C51.364 (2)C3—C21.479 (3)
O3—C101.427 (2)C8—H80.9500
O2—C41.368 (2)C10—H10A0.9800
O2—C31.425 (2)C10—H10B0.9800
O1—C21.430 (2)C10—H10C0.9800
O1—C11.435 (2)C11—H110.9500
C5—C61.377 (2)C11—C121.315 (3)
C5—C41.408 (2)C2—H21.0000
C6—H60.9500C2—C11.448 (3)
C6—C71.403 (2)C12—H120.9500
C4—C91.377 (2)C12—C131.495 (3)
C7—C81.382 (3)C1—H1A0.9900
C7—C111.474 (3)C1—H1B0.9900
C9—H90.9500C13—H13A0.9800
C9—C81.388 (3)C13—H13B0.9800
C3—H3A0.9900C13—H13C0.9800
C3—H3B0.9900
C5—O3—C10117.72 (13)O3—C10—H10C109.5
C4—O2—C3118.70 (14)H10A—C10—H10B109.5
C2—O1—C160.72 (12)H10A—C10—H10C109.5
O3—C5—C6125.24 (15)H10B—C10—H10C109.5
O3—C5—C4114.77 (15)C7—C11—H11116.1
C6—C5—C4119.99 (16)C12—C11—C7127.7 (2)
C5—C6—H6119.5C12—C11—H11116.1
C5—C6—C7120.90 (17)O1—C2—C3116.11 (16)
C7—C6—H6119.5O1—C2—H2115.7
O2—C4—C5114.35 (15)O1—C2—C159.82 (12)
O2—C4—C9126.27 (16)C3—C2—H2115.7
C9—C4—C5119.38 (16)C1—C2—C3122.05 (19)
C6—C7—C11121.60 (18)C1—C2—H2115.7
C8—C7—C6118.10 (17)C11—C12—H12117.2
C8—C7—C11120.29 (17)C11—C12—C13125.7 (2)
C4—C9—H9120.0C13—C12—H12117.2
C4—C9—C8119.97 (18)O1—C1—C259.46 (12)
C8—C9—H9120.0O1—C1—H1A117.8
O2—C3—H3A110.5O1—C1—H1B117.8
O2—C3—H3B110.5C2—C1—H1A117.8
O2—C3—C2106.23 (15)C2—C1—H1B117.8
H3A—C3—H3B108.7H1A—C1—H1B115.0
C2—C3—H3A110.5C12—C13—H13A109.5
C2—C3—H3B110.5C12—C13—H13B109.5
C7—C8—C9121.65 (17)C12—C13—H13C109.5
C7—C8—H8119.2H13A—C13—H13B109.5
C9—C8—H8119.2H13A—C13—H13C109.5
O3—C10—H10A109.5H13B—C13—H13C109.5
O3—C10—H10B109.5
O3—C5—C6—C7179.86 (15)C4—O2—C3—C2167.73 (14)
O3—C5—C4—O20.3 (2)C4—C5—C6—C70.3 (2)
O3—C5—C4—C9179.96 (15)C4—C9—C8—C70.0 (3)
O2—C4—C9—C8179.64 (16)C7—C11—C12—C13179.97 (19)
O2—C3—C2—O178.43 (19)C3—O2—C4—C5173.56 (14)
O2—C3—C2—C1147.72 (17)C3—O2—C4—C96.1 (2)
C5—C6—C7—C80.2 (2)C3—C2—C1—O1103.7 (2)
C5—C6—C7—C11179.63 (16)C8—C7—C11—C12178.9 (2)
C5—C4—C9—C80.0 (3)C10—O3—C5—C60.2 (2)
C6—C5—C4—O2179.83 (14)C10—O3—C5—C4179.68 (14)
C6—C5—C4—C90.2 (2)C11—C7—C8—C9179.78 (17)
C6—C7—C8—C90.1 (3)C1—O1—C2—C3113.5 (2)
C6—C7—C11—C121.2 (3)
 

Acknowledgements

The authors are also grateful for general and financial support from the Centre National de la Recherche Scientifique (CNRS-France) and the University of Bourgogne Franche-Comté. Dr Pawin Boonyaporn – Advanced Biochemical (Thailand) Co, Ltd (ABT) – is thanked for a generous donation of a sample of bio-based epi­chloro­hydrin (Epicerol®).

Funding information

Funding for this research was provided by: Bio-Based Industries Joint Undertaking (BBI JU) under the European Union's Horizon 2020 research and innovation program (grant No. 744349).

References

First citationAuvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082–1115.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221–1223.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBredikhin, A. A., Bredikhina, Z. A., Kurenkov, A. V., Zakharychev, D. V. & Gubaidullin, A. T. (2018). J. Mol. Struct. 1173, 157–165.  CSD CrossRef CAS Google Scholar
First citationBredikhin, A. A., Bredikhina, Z. A., Zakharychev, D. V., Akhatova, F. S., Krivolapov, D. B. & Litvinov, I. A. (2006). Mendeleev Commun. 16, 245–247.  CSD CrossRef Google Scholar
First citationBredikhin, A. A., Strunskaya, E. I., Zakharychev, D. V., Krivolapov, D. B., Litvinov, I. A. & Bredikhina, Z. A. (2005). Tetrahedron Asymmetry, 16, 3361–3366.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2020). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621–624.  CAS Google Scholar
First citationCho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525–529.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFenichel, P., Chevalier, N. & Brucker-Davis, F. (2013). Ann. Endocrinol. (Paris), 74, 211–220.  CrossRef CAS PubMed Google Scholar
First citationFlippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a.  Google Scholar
First citationFlippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433–1435.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrançois, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732–68738.  Google Scholar
First citationFrançois, C., Pourchet, S., Boni, G., Rautiainen, S., Samec, S., Fournier, L., Robert, C., Thomas, C. M., Fontaine, S., Gaillard, Y., Placet, V. & Plasseraud, L. (2017). C. R. Chim. 20, 1006–1016.  Google Scholar
First citationGong, T.-J., Xiao, B., Cheng, W.-M., Su, W., Xu, J., Liu, Z.-J., Liu, L. & Fu, Y. (2013). J. Am. Chem. Soc. 135, 10630–10633.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299–301.  CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKristufek, S. L., Yang, G., Link, L. A., Rohde, B. J., Robertson, M. L. & Wooley, K. L. (2016). ChemSusChem, 9, 2135–2142.  CSD CrossRef CAS PubMed Google Scholar
First citationLiu, K.-T., Chuang, J.-Y., Jeng, R.-J. & Leung, M.-K. (2021). ACS Omega, 6, 27279–27287.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan, P. (2013). Polym. Plast. Technol. Eng. 52, 107–125.  CrossRef CAS Google Scholar
First citationObreza, A. & Perdih, F. (2012). Zh. Strukt. Khim. 53, 802–808.  Google Scholar
First citationSaf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, E. A. (1977). Zh. Struk. Khim. 18, 402–405.  CAS Google Scholar
First citationSaf'yanov, Y. N., Golovachev, V. P. & Kuz'min, E. A. (1984). Zh. Struk. Khim. 25, 156–157.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, o719.  CSD CrossRef IUCr Journals Google Scholar
First citationStomberg, R. & Lundquist, K. (1995). Z. Krystallogr. 210, 66–67.  CSD CrossRef CAS Google Scholar
First citationStomberg, R., Lundquist, K. & Wallis, A. F. A. (1993). J. Crystallogr. Spectrosc. Res. 23, 317–331.  CSD CrossRef CAS Web of Science Google Scholar
First citationVigier, J., François, C., Pourchet, S., Boni, G., Plasseraud, L., Placet, V., Fontaine, S. & Cattey, H. (2017). Acta Cryst. E73, 694–697.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, S.-J., Jing, X.-L., Meng, Y.-D. & Jia, Q.-X. (2017). Chin. J. Struc. Chem. 36, 396–400.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds