Download citation
Download citation
link to html
Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation–putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA). In this study, crystal structures of P. aeruginosa SpuA are reported, confirming it to be a member of the class I glutamine amidotransferase (GAT) family. Activity and substrate-binding assays confirm that SpuA exhibits a preference for γ-Glu-GABA as a substrate. Structures of an inactive H221N mutant were determined with bound glutamate thioester intermediate or glutamate product, thus delineating the active site and substrate-binding pocket and elucidating the catalytic mechanism. The crystal structure of another bacterial member of the class I GAT family from Mycolicibacterium smegmatis (MsGATase) in complex with glutamine was determined for comparison and reveals a binding site for glutamine. Activity assays confirm that MsGATase has activity for glutamine as a substrate but not for γ-Glu-GABA. The work reported here provides a starting point for further investigation of polyamine metabolism in P. aeruginosa.

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds