Download citation
Download citation
link to html
The stepwise addition of Cu2+ ions to the nonplanar cyclic Schiff base 5,9,14,18-tetra­methyl-1,4,10,13-tetra­aza­cyclo­octa­deca-5,8,14,17-tetra­ene-7,16-dione (H4daaden, C18H28N4O2), yields a one-end-open dinuclear copper chelate. The pyri­dine adduct of the dinuclear copper chelate, namely, [μ-6,11-dimethyl-7,10-di­aza­hexa­deca-5,11-diene-2,4,13,15-tetra­olato(4−)](pyri­dine)dicopper(II), [Cu2(C16H20N2O4)(C5H5N)], was characterized by single-crystal X-ray crystallography. The two CuII atoms of the copper chelate display different coordination modes, i.e. inner-N2O2 and outer-O2O2. The Cu atom which is bonded in the outer-O2O2 mode is axially bonded to a pyri­dine mol­ecule, which suggests that the electron-donating ability of the O2O2 site to the Cu atom is poor. As a result, the O2O2-bonded Cu atom has a coordination number of five, showing square-bipyramidal geometry around the Cu atom. The N2O2-coordinated site provides sufficient electron density to the other Cu atom to be stabilized with a coordination number of four, showing square-planar geometry around the Cu atom. The electron-donating ability of the ligand coordination sites plays a key role in determining the coordination number of the Cu atoms of the dicopper chelate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623002280/dg3038sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623002280/dg3038Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623002280/dg3038sup3.pdf
Brief discussion of the reasons for the synthesis

CCDC reference: 2231909

Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: APEX4 (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXTL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and POV-RAY (Cason, 2004); software used to prepare material for publication: APEX4 (Bruker, 2021).

[µ-6,11-Dimethyl-7,10-diazahexadeca-5,11-diene-2,4,13,15-tetraolato(4-)-1κ4O2,O4,O13,O15:2κ4N7,N10,O4,O13](pyridine-1κN)dicopper(II) top
Crystal data top
[Cu2(C16H20N2O4)(C5H5N)]Z = 2
Mr = 510.52F(000) = 524
Triclinic, P1Dx = 1.671 Mg m3
a = 8.0549 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8811 (6) ÅCell parameters from 1540 reflections
c = 13.7189 (8) Åθ = 1.6–28.5°
α = 106.451 (1)°µ = 2.13 mm1
β = 103.271 (1)°T = 296 K
γ = 91.482 (1)°Prism frag, colorless
V = 1014.40 (11) Å30.30 × 0.08 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
4293 reflections with I > 2σ(I)
profile data from θ/2θ scansRint = 0.015
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.5°, θmin = 1.6°
Tmin = 0.567, Tmax = 0.848h = 1010
12405 measured reflectionsk = 1313
4680 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.5267P]
where P = (Fo2 + 2Fc2)/3
4680 reflections(Δ/σ)max = 0.002
275 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A brown-coloured plate-like single crystal of Cu2(daaen)(py), having approximate dimensions 0.080 × 0.080 × 0.300 mm was selected for the X-ray crystallographic analysis and mounted on a cryo-loop using an oil cryo-protectant. The X-ray intensity data were measured at T = 296 K, using a three-circle goniometer platform geometry with a fixed χ angle = 54.74°. A Bruker SMART 1000 diffractometer, equipped with a CCD detector. Monochromatic Mo X-ray radiation (λ = 0.71073 Å) was selected for the measurement. All frames were integrated with the aid of the Bruker SAINT software using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 12405 reflections to a maximum θ angle of 28.50° (0.74 Å resolution), of which 4680 were independent (average redundancy = 2.651, completeness = 91.1%, Rint = 1.53%, Rsig = 1.74%) and 4293 (91.73%) were greater than 2σ (F2). The final unit-cell constants of a = 8.0549 (5) Å, b = 9.8811 (6) Å, c = 13.7189 (8)Å, α = 106.4510 (10)°, β = 103.2710 (10)°, γ = 91.4820 (10)° and V = 1014.40 (11) Å3, are based upon the refinement of the 1540 XYZ-centroids of reflections above 20σ(I). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5670 and 0.8480. The structure was solved in a triclinic unit cell; ppace group: P1, with Z = 2 for the formula unit, C21H25Cu2N3O4. Using the Bruker SHELXT software package, refinement of the structure was carried out by least-squares procedures on weighted F2 values using the SHELXTL2018 (Sheldrick, 2015b) included in the APEX4 (Bruker, 2021) program.

The final anisotropic full-matrix least-squares refinement on F2 with 276 variables converged at R1 = 2.05%, for the observed data and wR2 = 5.53% for all data. The goodness-of-fit was 1.044. The largest peak in the final difference electron density synthesis was 0.340 e- Å-3 and the largest hole was -0.306 e- Å-3 with an r.m.s. deviation of 0.054 e- Å-3. Based on the final model, the calculated density was 1.671 g cm-3 and F(000) = 524 e-. Graphics were performed using software Mercury V.4.2.0: (https://www.ccdc.cam.ac.uk/) and POV-Ray v 3.7: (The Persistence of Vision Raytracer, high quality, Free Software tool).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67560 (2)0.69842 (2)0.78376 (2)0.01441 (5)
Cu20.74398 (2)0.47982 (2)0.59601 (2)0.01529 (5)
N10.84460 (16)0.30766 (13)0.57589 (10)0.0174 (2)
N20.74679 (16)0.47544 (14)0.45833 (10)0.0187 (3)
N30.94332 (16)0.81239 (13)0.84007 (10)0.0180 (2)
O10.65027 (13)0.67677 (11)0.91465 (8)0.0181 (2)
O20.74876 (14)0.50802 (11)0.74018 (8)0.0174 (2)
O30.66075 (14)0.66147 (11)0.63315 (8)0.0183 (2)
O40.55647 (13)0.86413 (11)0.78924 (8)0.0188 (2)
C10.6968 (2)0.59164 (17)1.06208 (12)0.0215 (3)
H1A0.7985630.6470351.1090450.032*
H1B0.6885250.5003781.0733110.032*
H1C0.5981370.6393461.0750050.032*
C20.70478 (18)0.57295 (16)0.94990 (11)0.0171 (3)
C30.7684 (2)0.45196 (16)0.89819 (12)0.0191 (3)
H30.8024980.3881540.9356670.023*
C40.78706 (18)0.41521 (15)0.79329 (11)0.0165 (3)
C50.8455 (2)0.28646 (16)0.74729 (12)0.0200 (3)
H130.8673410.2253310.7883050.024*
C60.87582 (19)0.23728 (16)0.64569 (12)0.0192 (3)
C70.8840 (2)0.25573 (17)0.47290 (12)0.0213 (3)
H7A0.8308320.1596320.4382670.026*
H7B1.0069610.2536810.4826750.026*
C80.8191 (2)0.35063 (16)0.40248 (12)0.0207 (3)
H8A0.9135310.3814780.3783690.025*
H8B0.7322660.2956440.3413620.025*
C90.68559 (19)0.57112 (17)0.41322 (12)0.0194 (3)
C100.6165 (2)0.69437 (17)0.46544 (12)0.0217 (3)
H100.5698390.7511430.4244390.026*
C110.61003 (19)0.74071 (16)0.57067 (12)0.0180 (3)
C120.5485 (2)0.87312 (16)0.61445 (12)0.0207 (3)
H120.5217590.9309780.5712130.025*
C130.52491 (18)0.92382 (16)0.71465 (12)0.0189 (3)
C140.4520 (2)1.06472 (18)0.74577 (14)0.0275 (4)
H14A0.3460671.0510500.7641060.041*
H14B0.4316601.1039130.6880400.041*
H14C0.5320321.1286510.8049330.041*
C150.9508 (2)0.09704 (18)0.61936 (14)0.0276 (4)
H15A0.8725280.0306490.5607540.041*
H15B0.9700340.0613210.6788140.041*
H15C1.0576250.1099000.6017690.041*
C160.6906 (2)0.55399 (18)0.30118 (12)0.0234 (3)
H16A0.8073820.5653400.2973290.035*
H16B0.6280170.6244670.2769430.035*
H16C0.6394220.4612600.2579300.035*
C170.9586 (2)0.95341 (16)0.86038 (12)0.0210 (3)
H170.8616550.9971530.8393730.025*
C181.1110 (2)1.03733 (17)0.91091 (13)0.0241 (3)
H181.1157331.1351930.9241790.029*
C191.2563 (2)0.97349 (18)0.94140 (14)0.0276 (4)
H191.3603321.0275550.9763540.033*
C201.2440 (2)0.82729 (19)0.91890 (14)0.0293 (4)
H201.3402210.7809850.9368010.035*
C211.0856 (2)0.75152 (17)0.86922 (13)0.0222 (3)
H211.0774740.6535230.8553830.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01791 (9)0.01383 (9)0.01186 (9)0.00351 (6)0.00342 (7)0.00444 (7)
Cu20.01905 (10)0.01593 (9)0.01119 (9)0.00390 (7)0.00379 (7)0.00424 (7)
N10.0187 (6)0.0174 (6)0.0152 (6)0.0025 (5)0.0048 (5)0.0028 (5)
N20.0194 (6)0.0221 (6)0.0145 (6)0.0023 (5)0.0045 (5)0.0053 (5)
N30.0187 (6)0.0194 (6)0.0160 (6)0.0019 (5)0.0045 (5)0.0054 (5)
O10.0238 (5)0.0165 (5)0.0147 (5)0.0038 (4)0.0054 (4)0.0050 (4)
O20.0247 (5)0.0153 (5)0.0132 (5)0.0048 (4)0.0048 (4)0.0054 (4)
O30.0247 (5)0.0178 (5)0.0137 (5)0.0059 (4)0.0042 (4)0.0066 (4)
O40.0205 (5)0.0195 (5)0.0176 (5)0.0058 (4)0.0048 (4)0.0071 (4)
C10.0294 (8)0.0216 (7)0.0145 (7)0.0021 (6)0.0066 (6)0.0060 (6)
C20.0178 (7)0.0186 (7)0.0143 (7)0.0010 (5)0.0026 (5)0.0053 (6)
C30.0247 (7)0.0186 (7)0.0168 (7)0.0051 (6)0.0054 (6)0.0092 (6)
C40.0172 (7)0.0166 (7)0.0156 (7)0.0017 (5)0.0023 (5)0.0062 (6)
C50.0260 (8)0.0183 (7)0.0191 (7)0.0065 (6)0.0076 (6)0.0090 (6)
C60.0187 (7)0.0172 (7)0.0209 (8)0.0030 (5)0.0047 (6)0.0045 (6)
C70.0222 (7)0.0247 (8)0.0166 (7)0.0067 (6)0.0065 (6)0.0036 (6)
C80.0245 (8)0.0210 (7)0.0164 (7)0.0004 (6)0.0082 (6)0.0029 (6)
C90.0168 (7)0.0267 (8)0.0152 (7)0.0007 (6)0.0029 (5)0.0080 (6)
C100.0232 (8)0.0272 (8)0.0190 (8)0.0057 (6)0.0054 (6)0.0130 (6)
C110.0172 (7)0.0212 (7)0.0182 (7)0.0023 (5)0.0031 (6)0.0108 (6)
C120.0228 (7)0.0219 (7)0.0229 (8)0.0060 (6)0.0070 (6)0.0140 (6)
C130.0155 (7)0.0188 (7)0.0238 (8)0.0029 (5)0.0047 (6)0.0087 (6)
C140.0336 (9)0.0244 (8)0.0316 (9)0.0127 (7)0.0136 (7)0.0138 (7)
C150.0387 (10)0.0242 (8)0.0253 (8)0.0149 (7)0.0146 (7)0.0092 (7)
C160.0260 (8)0.0297 (8)0.0167 (7)0.0023 (6)0.0063 (6)0.0093 (6)
C170.0213 (7)0.0206 (7)0.0226 (8)0.0025 (6)0.0040 (6)0.0100 (6)
C180.0268 (8)0.0201 (7)0.0250 (8)0.0014 (6)0.0049 (6)0.0077 (6)
C190.0192 (8)0.0296 (9)0.0307 (9)0.0037 (6)0.0029 (7)0.0070 (7)
C200.0185 (8)0.0324 (9)0.0357 (10)0.0064 (6)0.0037 (7)0.0102 (8)
C210.0225 (8)0.0186 (7)0.0247 (8)0.0049 (6)0.0060 (6)0.0047 (6)
Geometric parameters (Å, º) top
Cu1—O41.9110 (10)C7—C81.547 (2)
Cu1—O11.9223 (10)C7—H7A0.9700
Cu1—O21.9561 (10)C7—H7B0.9700
Cu1—O31.9682 (10)C8—H8A0.9700
Cu1—N32.2654 (13)C8—H8B0.9700
Cu1—Cu23.0275 (3)C9—C101.425 (2)
Cu2—N11.8801 (12)C9—C161.508 (2)
Cu2—N21.8823 (13)C10—C111.399 (2)
Cu2—O31.9057 (10)C10—H100.9300
Cu2—O21.9088 (10)C11—C121.429 (2)
N1—C61.319 (2)C12—C131.383 (2)
N1—C71.4711 (19)C12—H120.9300
N2—C91.317 (2)C13—C141.512 (2)
N2—C81.4679 (19)C14—H14A0.9600
N3—C171.3379 (19)C14—H14B0.9600
N3—C211.3404 (19)C14—H14C0.9600
O1—C21.2985 (18)C15—H15A0.9600
O2—C41.3255 (17)C15—H15B0.9600
O3—C111.3232 (17)C15—H15C0.9600
O4—C131.2999 (18)C16—H16A0.9600
C1—C21.514 (2)C16—H16B0.9600
C1—H1A0.9600C16—H16C0.9600
C1—H1B0.9600C17—C181.381 (2)
C1—H1C0.9600C17—H170.9300
C2—C31.383 (2)C18—C191.380 (2)
C3—C41.425 (2)C18—H180.9300
C3—H30.9300C19—C201.385 (2)
C4—C51.397 (2)C19—H190.9300
C5—C61.420 (2)C20—C211.384 (2)
C5—H130.9300C20—H200.9300
C6—C151.508 (2)C21—H210.9300
O4—Cu1—O196.96 (4)C5—C6—C15116.55 (14)
O4—Cu1—O2163.66 (5)N1—C7—C8111.64 (12)
O1—Cu1—O292.26 (4)N1—C7—H7A109.3
O4—Cu1—O391.98 (4)C8—C7—H7A109.3
O1—Cu1—O3161.95 (5)N1—C7—H7B109.3
O2—Cu1—O375.68 (4)C8—C7—H7B109.3
O4—Cu1—N396.36 (5)H7A—C7—H7B108.0
O1—Cu1—N398.64 (5)N2—C8—C7111.93 (12)
O2—Cu1—N395.55 (5)N2—C8—H8A109.2
O3—Cu1—N395.90 (5)C7—C8—H8A109.2
O4—Cu1—Cu2129.40 (3)N2—C8—H8B109.2
O1—Cu1—Cu2129.34 (3)C7—C8—H8B109.2
O2—Cu1—Cu237.88 (3)H8A—C8—H8B107.9
O3—Cu1—Cu237.87 (3)N2—C9—C10123.47 (14)
N3—Cu1—Cu295.51 (3)N2—C9—C16119.63 (14)
N1—Cu2—N289.11 (5)C10—C9—C16116.89 (14)
N1—Cu2—O3172.95 (5)C11—C10—C9128.15 (14)
N2—Cu2—O396.15 (5)C11—C10—H10115.9
N1—Cu2—O296.14 (5)C9—C10—H10115.9
N2—Cu2—O2173.15 (5)O3—C11—C10120.35 (14)
O3—Cu2—O278.27 (4)O3—C11—C12117.70 (13)
N1—Cu2—Cu1134.73 (4)C10—C11—C12121.95 (14)
N2—Cu2—Cu1135.12 (4)C13—C12—C11126.53 (14)
O3—Cu2—Cu139.35 (3)C13—C12—H12116.7
O2—Cu2—Cu139.00 (3)C11—C12—H12116.7
C6—N1—C7122.22 (13)O4—C13—C12127.96 (14)
C6—N1—Cu2124.18 (10)O4—C13—C14113.09 (13)
C7—N1—Cu2113.59 (10)C12—C13—C14118.95 (14)
C9—N2—C8121.97 (13)C13—C14—H14A109.5
C9—N2—Cu2124.47 (11)C13—C14—H14B109.5
C8—N2—Cu2113.53 (10)H14A—C14—H14B109.5
C17—N3—C21117.19 (13)C13—C14—H14C109.5
C17—N3—Cu1117.85 (10)H14A—C14—H14C109.5
C21—N3—Cu1124.18 (10)H14B—C14—H14C109.5
C2—O1—Cu1123.78 (9)C6—C15—H15A109.5
C4—O2—Cu2126.53 (9)C6—C15—H15B109.5
C4—O2—Cu1130.30 (9)H15A—C15—H15B109.5
Cu2—O2—Cu1103.12 (5)C6—C15—H15C109.5
C11—O3—Cu2126.89 (10)H15A—C15—H15C109.5
C11—O3—Cu1130.31 (10)H15B—C15—H15C109.5
Cu2—O3—Cu1102.78 (5)C9—C16—H16A109.5
C13—O4—Cu1124.28 (10)C9—C16—H16B109.5
C2—C1—H1A109.5H16A—C16—H16B109.5
C2—C1—H1B109.5C9—C16—H16C109.5
H1A—C1—H1B109.5H16A—C16—H16C109.5
C2—C1—H1C109.5H16B—C16—H16C109.5
H1A—C1—H1C109.5N3—C17—C18123.38 (15)
H1B—C1—H1C109.5N3—C17—H17118.3
O1—C2—C3128.09 (13)C18—C17—H17118.3
O1—C2—C1113.90 (13)C19—C18—C17118.85 (15)
C3—C2—C1118.01 (13)C19—C18—H18120.6
C2—C3—C4126.58 (14)C17—C18—H18120.6
C2—C3—H3116.7C18—C19—C20118.67 (15)
C4—C3—H3116.7C18—C19—H19120.7
O2—C4—C5120.43 (13)C20—C19—H19120.7
O2—C4—C3117.93 (13)C21—C20—C19118.63 (15)
C5—C4—C3121.63 (14)C21—C20—H20120.7
C4—C5—C6128.09 (14)C19—C20—H20120.7
C4—C5—H13116.0N3—C21—C20123.25 (15)
C6—C5—H13116.0N3—C21—H21118.4
N1—C6—C5123.86 (14)C20—C21—H21118.4
N1—C6—C15119.59 (14)
Selected bond lengths (Å) of the H4daaden ligand, the mononuclear complex Cu(H2daaen) and the dinuclear complex Cu2(daaen)(py) top
BondH4daadenCu(H2daaen)Cu2(daaen)(py)
C2—C31.379 (1)1.505 (8)1.383 (2)
C4—C51.448 (1)1.366 (5)1.399 (2)
C5—C61.376 (1)1.416 (6)1.425 (2)
C6—N11.346 (1)1.301 (5)1.317 (2)
Bond valence sum of the CuN2O2 and CuO2O2 coordination sites top
CuN2O2CuO2O2
BondValenceBondValence
Cu1—N10.633Cu2—O20.443
Cu1—N20.633Cu2—O40.429
Cu1—O20.503Cu2—O10.485
Cu1—O40.503Cu2—O30.500
Sum2.272Cu2—N30.225
Sum2.082
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds