Download citation
Download citation
link to html
A new mixed-valence CuI/CuII three-dimensional coordination polymer, poly[[di­aqua­bis­[μ4-2-(pyra­zin-2-yl)quinoline-4-carboxyl­ato]dicopper(I)copper(II)] bis­(tetra­fluorido­borate)], {[Cu3(C14H8N3O2)2(H2O)2](BF4)2}n, was synthesized and characterized, with 2-(pyra­zin-2-yl)quinoline-4-carb­oxy­lic acid being em­ployed as a linker ligand. The ligand was isolated as its hydro­chloride salt, 4-carb­oxy-2-(pyra­zin-2-yl)quinolin-1-ium chloride dihydrate, C14H10N3O2+·Cl·2H2O. The compounds show luminescence at 550 nm for the ligand and at 565 nm for the polymer at 297 K. The ligand structure was rationalized by means of quantum-chemical calculations, which led to a similar conformation to that determined from X-ray diffraction studies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622005812/dg3031sup1.cif
Contains datablocks II, I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622005812/dg3031Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622005812/dg3031IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622005812/dg3031sup4.pdf
Structural data and NMR spectra and assignments

CCDC references: 2175804; 2177474

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

4-Carboxy-2-(pyrazin-2-yl)quinolin-1-ium chloride dihydrate (II) top
Crystal data top
C14H10N3O2+·Cl·2H2ODx = 1.520 Mg m3
Mr = 323.73Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, Pca21Cell parameters from 2129 reflections
a = 23.7648 (5) Åθ = 3.7–67.7°
b = 8.5785 (2) ŵ = 2.61 mm1
c = 6.9373 (2) ÅT = 100 K
V = 1414.28 (6) Å3Block, colorless
Z = 40.35 × 0.25 × 0.20 mm
F(000) = 672
Data collection top
Rigaku Xcalibur Gemini Ultra
diffractometer
2018 reflections with I > 2σ(I)
CCD scansRint = 0.024
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 68.0°, θmin = 3.7°
Tmin = 0.678, Tmax = 0.789h = 1828
4162 measured reflectionsk = 610
2129 independent reflectionsl = 88
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
2129 reflectionsΔρmin = 0.16 e Å3
205 parametersAbsolute structure: Flack x determined using 662 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.019 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Both studied crystal structures were solved with direct methods in SHELXTL software suite. They were refined using the full-matrix method in SHELXL (Sheldrick, 2008; Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57021 (3)0.02306 (7)0.58883 (12)0.01968 (16)
O10.20340 (8)0.5778 (2)0.4474 (3)0.0213 (5)
H1O0.1733460.6281460.4239680.065 (15)*
O20.15808 (8)0.3614 (2)0.3561 (3)0.0203 (5)
O1W0.11188 (8)0.7174 (2)0.3812 (4)0.0232 (5)
H1W0.0996910.7955370.4438820.055 (14)*
H2W0.0837780.6569590.3683690.050 (13)*
O2W0.44705 (8)0.0708 (2)0.6426 (3)0.0234 (5)
H3W0.4806460.0412130.6218840.028 (9)*
H4W0.4426090.0650820.7639590.036 (12)*
N10.36031 (9)0.2092 (3)0.4718 (3)0.0147 (5)
H1N0.3919150.1681000.4983900.025 (10)*
N20.51044 (10)0.4540 (3)0.3605 (4)0.0190 (6)
N30.40649 (10)0.6021 (3)0.4078 (4)0.0193 (6)
C10.25663 (11)0.3459 (3)0.4331 (4)0.0143 (6)
C20.30491 (11)0.4296 (3)0.4009 (4)0.0158 (6)
H20.3025470.5363130.3650720.019*
C30.35785 (11)0.3584 (3)0.4207 (4)0.0144 (6)
C40.31372 (11)0.1190 (3)0.5047 (4)0.0146 (6)
C50.32126 (12)0.0371 (3)0.5603 (4)0.0168 (6)
H50.3579550.0802870.5706150.020*
C60.27472 (11)0.1259 (3)0.5993 (5)0.0173 (6)
H60.2790560.2320040.6358110.021*
C70.22053 (11)0.0608 (3)0.5856 (5)0.0175 (6)
H70.1887700.1234870.6157760.021*
C80.21244 (11)0.0903 (3)0.5299 (4)0.0159 (6)
H80.1753780.1309990.5202860.019*
C90.25940 (11)0.1866 (3)0.4862 (4)0.0147 (6)
C100.41089 (12)0.4462 (3)0.3966 (4)0.0165 (6)
C110.46230 (11)0.3725 (3)0.3666 (5)0.0178 (6)
H110.4633330.2625610.3501010.021*
C120.50659 (12)0.6079 (3)0.3794 (5)0.0200 (7)
H120.5399910.6687050.3809450.024*
C130.45439 (11)0.6822 (3)0.3969 (5)0.0204 (7)
H130.4531030.7927890.4011740.024*
C140.20016 (11)0.4280 (3)0.4083 (4)0.0149 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0146 (3)0.0177 (3)0.0268 (4)0.0011 (3)0.0013 (3)0.0013 (4)
O10.0162 (10)0.0121 (10)0.0357 (14)0.0026 (8)0.0030 (9)0.0026 (10)
O20.0145 (9)0.0167 (11)0.0296 (12)0.0005 (9)0.0027 (10)0.0019 (10)
O1W0.0146 (10)0.0156 (10)0.0394 (13)0.0012 (9)0.0005 (10)0.0037 (11)
O2W0.0140 (9)0.0310 (12)0.0251 (13)0.0052 (9)0.0006 (9)0.0042 (10)
N10.0112 (11)0.0149 (12)0.0181 (13)0.0010 (10)0.0000 (10)0.0013 (11)
N20.0162 (13)0.0177 (13)0.0231 (13)0.0026 (10)0.0007 (11)0.0028 (12)
N30.0190 (12)0.0148 (12)0.0239 (15)0.0006 (10)0.0005 (11)0.0013 (12)
C10.0137 (13)0.0166 (14)0.0128 (14)0.0012 (11)0.0030 (12)0.0036 (12)
C20.0159 (14)0.0145 (13)0.0172 (17)0.0013 (11)0.0001 (12)0.0003 (13)
C30.0167 (13)0.0123 (14)0.0142 (14)0.0007 (11)0.0012 (12)0.0014 (12)
C40.0142 (13)0.0141 (14)0.0154 (13)0.0026 (11)0.0006 (12)0.0021 (12)
C50.0175 (12)0.0141 (14)0.0187 (17)0.0021 (11)0.0010 (13)0.0027 (13)
C60.0218 (13)0.0119 (12)0.0181 (15)0.0024 (10)0.0024 (15)0.0011 (14)
C70.0177 (12)0.0171 (13)0.0176 (14)0.0051 (10)0.0021 (15)0.0041 (15)
C80.0135 (13)0.0181 (14)0.0161 (16)0.0006 (12)0.0002 (11)0.0037 (12)
C90.0152 (13)0.0162 (14)0.0127 (14)0.0005 (12)0.0018 (11)0.0026 (12)
C100.0194 (14)0.0147 (14)0.0155 (16)0.0005 (11)0.0005 (12)0.0014 (13)
C110.0180 (13)0.0136 (14)0.0219 (14)0.0010 (12)0.0008 (14)0.0001 (14)
C120.0179 (14)0.0173 (15)0.0248 (18)0.0046 (12)0.0005 (14)0.0023 (14)
C130.0211 (14)0.0116 (13)0.0283 (19)0.0026 (12)0.0009 (13)0.0017 (13)
C140.0134 (14)0.0137 (13)0.0176 (17)0.0006 (11)0.0020 (12)0.0005 (12)
Geometric parameters (Å, º) top
O1—C141.316 (3)C2—H20.9500
O1—H1O0.8501C3—C101.478 (4)
O2—C141.207 (3)C4—C51.405 (4)
O1W—H1W0.8500C4—C91.421 (4)
O1W—H2W0.8499C5—C61.370 (4)
O2W—H3W0.8499C5—H50.9500
O2W—H4W0.8501C6—C71.407 (4)
N1—C31.329 (4)C6—H60.9500
N1—C41.370 (3)C7—C81.366 (4)
N1—H1N0.8501C7—H70.9500
N2—C121.329 (4)C8—C91.421 (4)
N2—C111.342 (4)C8—H80.9500
N3—C131.331 (4)C10—C111.391 (4)
N3—C101.344 (4)C11—H110.9500
C1—C21.372 (4)C12—C131.400 (4)
C1—C91.417 (4)C12—H120.9500
C1—C141.525 (4)C13—H130.9500
C2—C31.405 (4)
C14—O1—H1O114.0C7—C6—H6119.8
H1W—O1W—H2W105.5C8—C7—C6121.6 (2)
H3W—O2W—H4W105.5C8—C7—H7119.2
C3—N1—C4123.6 (2)C6—C7—H7119.2
C3—N1—H1N119.8C7—C8—C9120.1 (3)
C4—N1—H1N116.3C7—C8—H8119.9
C12—N2—C11117.1 (2)C9—C8—H8119.9
C13—N3—C10116.3 (2)C1—C9—C4117.4 (2)
C2—C1—C9120.5 (2)C1—C9—C8125.4 (3)
C2—C1—C14118.4 (2)C4—C9—C8117.2 (3)
C9—C1—C14121.0 (2)N3—C10—C11122.0 (3)
C1—C2—C3120.4 (3)N3—C10—C3115.7 (2)
C1—C2—H2119.8C11—C10—C3122.3 (3)
C3—C2—H2119.8N2—C11—C10121.1 (3)
N1—C3—C2118.9 (3)N2—C11—H11119.5
N1—C3—C10118.9 (2)C10—C11—H11119.5
C2—C3—C10122.1 (3)N2—C12—C13121.4 (3)
N1—C4—C5118.8 (2)N2—C12—H12119.3
N1—C4—C9119.2 (3)C13—C12—H12119.3
C5—C4—C9122.0 (3)N3—C13—C12121.8 (3)
C6—C5—C4118.8 (3)N3—C13—H13119.1
C6—C5—H5120.6C12—C13—H13119.1
C4—C5—H5120.6O2—C14—O1124.9 (3)
C5—C6—C7120.3 (3)O2—C14—C1123.0 (3)
C5—C6—H6119.8O1—C14—C1112.1 (2)
C9—C1—C2—C30.2 (5)C5—C4—C9—C81.1 (4)
C14—C1—C2—C3179.5 (3)C7—C8—C9—C1177.8 (3)
C4—N1—C3—C20.7 (4)C7—C8—C9—C40.5 (4)
C4—N1—C3—C10177.6 (3)C13—N3—C10—C112.8 (5)
C1—C2—C3—N10.3 (4)C13—N3—C10—C3176.4 (3)
C1—C2—C3—C10177.0 (3)N1—C3—C10—N3159.1 (3)
C3—N1—C4—C5179.3 (3)C2—C3—C10—N317.7 (4)
C3—N1—C4—C90.7 (4)N1—C3—C10—C1120.2 (5)
N1—C4—C5—C6177.9 (3)C2—C3—C10—C11163.1 (3)
C9—C4—C5—C60.6 (5)C12—N2—C11—C101.7 (5)
C4—C5—C6—C70.6 (5)N3—C10—C11—N24.6 (5)
C5—C6—C7—C81.3 (5)C3—C10—C11—N2174.6 (3)
C6—C7—C8—C90.7 (5)C11—N2—C12—C132.5 (5)
C2—C1—C9—C40.2 (4)C10—N3—C13—C121.4 (5)
C14—C1—C9—C4179.5 (3)N2—C12—C13—N34.3 (5)
C2—C1—C9—C8177.5 (3)C2—C1—C14—O2149.1 (3)
C14—C1—C9—C83.1 (5)C9—C1—C14—O230.3 (5)
N1—C4—C9—C10.2 (4)C2—C1—C14—O130.0 (4)
C5—C4—C9—C1178.7 (3)C9—C1—C14—O1150.6 (3)
N1—C4—C9—C8177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2W0.851.852.658 (3)159
O1—H1O···O1W0.851.682.525 (3)176
O1W—H1W···Cl1i0.852.303.151 (2)174
O1W—H2W···N2i0.851.992.827 (3)170
O2W—H3W···Cl10.852.213.058 (2)175
O2W—H4W···Cl1ii0.852.303.149 (2)174
C5—H5···O2W0.952.533.181 (3)126
C8—H8···O20.952.322.921 (3)121
C8—H8···Cl1iii0.952.713.453 (3)136
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1, y, z+1/2; (iii) x1/2, y, z.
Poly[[diaquabis[µ4-2-(pyrazin-2-yl)quinoline-4-carboxylato]dicopper(I)copper(II)] bis(tetrafluoridoborate)] (I) top
Crystal data top
[Cu3(C14H8N3O2)2(H2O)2](BF4)2Dx = 1.895 Mg m3
Mr = 900.74Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 2839 reflections
a = 21.9637 (8) Åθ = 4.0–67.5°
b = 12.4106 (3) ŵ = 3.28 mm1
c = 11.5844 (4) ÅT = 100 K
V = 3157.71 (18) Å3Prism, light green
Z = 40.20 × 0.20 × 0.19 mm
F(000) = 1788
Data collection top
Rigaku Xcalibur Gemini Ultra
diffractometer
2565 reflections with I > 2σ(I)
CCD scansRint = 0.032
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 67.5°, θmin = 4.0°
Tmin = 0.897, Tmax = 0.970h = 2626
13656 measured reflectionsk = 1414
2839 independent reflectionsl = 1113
Refinement top
Refinement on F251 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.055P)2 + 2.3063P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2839 reflectionsΔρmax = 0.45 e Å3
256 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Both studied crystal structures were solved with direct methods in SHELXTL software suite. They were refined using the full-matrix method in SHELXL (Sheldrick, 2008; Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.0000000.74536 (3)0.2500000.01528 (14)
Cu20.19245 (2)0.65799 (2)0.23617 (3)0.01571 (13)
O10.10315 (7)0.69880 (12)0.17283 (13)0.0181 (3)
O20.01259 (7)0.63081 (13)0.13388 (14)0.0204 (3)
O3W0.00091 (7)0.85819 (14)0.36894 (15)0.0221 (4)
H1W0.0312230.8783910.4036250.047 (10)*
H2W0.0193340.9164840.3527490.048 (10)*
N10.15991 (8)0.41714 (14)0.11511 (15)0.0154 (4)
N20.22414 (8)0.49183 (14)0.29452 (16)0.0155 (4)
N30.27101 (9)0.70098 (14)0.28718 (16)0.0163 (4)
C10.09924 (9)0.55395 (17)0.04000 (19)0.0163 (4)
C20.13321 (10)0.59515 (17)0.04871 (19)0.0168 (4)
H20.1361470.6708300.0597200.020*
C30.16378 (10)0.52364 (17)0.12356 (18)0.0154 (4)
C40.12735 (9)0.37494 (17)0.02503 (18)0.0165 (4)
C50.12736 (11)0.26115 (17)0.0108 (2)0.0204 (5)
H50.1465160.2165130.0666410.024*
C60.09978 (10)0.21597 (19)0.0834 (2)0.0218 (5)
H60.1004270.1399970.0932910.026*
C70.07027 (11)0.28172 (19)0.1661 (2)0.0223 (5)
H70.0519600.2495560.2319580.027*
C80.06788 (10)0.39095 (19)0.1522 (2)0.0198 (5)
H80.0469940.4339180.2073720.024*
C90.09622 (10)0.44048 (17)0.05653 (19)0.0170 (4)
C100.06988 (10)0.63278 (17)0.12175 (18)0.0157 (4)
C110.20558 (10)0.56378 (17)0.21402 (18)0.0152 (4)
C120.22827 (10)0.66791 (16)0.21289 (19)0.0159 (4)
H120.2129870.7174840.1575310.019*
C130.28982 (10)0.62874 (18)0.36614 (19)0.0179 (4)
H130.3202500.6488540.4202920.021*
C140.26566 (10)0.52536 (17)0.37010 (19)0.0177 (4)
H140.2791670.4771840.4284570.021*
F10.07315 (7)0.02535 (12)0.69342 (13)0.0344 (4)
F2A0.16332 (7)0.02487 (12)0.61020 (14)0.0285 (4)0.933 (4)
F3A0.14104 (8)0.15184 (12)0.63147 (15)0.0309 (5)0.933 (4)
F4A0.08928 (7)0.05038 (13)0.50054 (13)0.0319 (5)0.933 (4)
F2B0.0863 (9)0.1354 (16)0.5440 (17)0.047 (8)*0.067 (4)
F3B0.1331 (12)0.0271 (15)0.543 (2)0.074 (11)*0.067 (4)
F4B0.1640 (10)0.107 (2)0.6651 (19)0.096 (15)*0.070 (4)
B10.11668 (12)0.0520 (2)0.6110 (2)0.0211 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0180 (3)0.0088 (2)0.0191 (2)0.0000.00242 (17)0.000
Cu20.0191 (2)0.00685 (19)0.0212 (2)0.00066 (12)0.00091 (12)0.00235 (11)
O10.0192 (7)0.0120 (8)0.0230 (8)0.0007 (6)0.0021 (6)0.0032 (6)
O20.0186 (7)0.0163 (8)0.0262 (8)0.0007 (6)0.0029 (6)0.0052 (6)
O3W0.0253 (9)0.0155 (8)0.0255 (8)0.0033 (7)0.0037 (7)0.0041 (6)
N10.0190 (9)0.0098 (8)0.0173 (8)0.0007 (7)0.0004 (7)0.0009 (7)
N20.0176 (8)0.0099 (8)0.0190 (9)0.0010 (7)0.0004 (7)0.0024 (7)
N30.0191 (9)0.0102 (9)0.0196 (9)0.0004 (7)0.0004 (7)0.0014 (7)
C10.0163 (10)0.0125 (11)0.0200 (11)0.0010 (8)0.0023 (8)0.0008 (8)
C20.0193 (10)0.0075 (9)0.0234 (11)0.0000 (8)0.0002 (9)0.0010 (8)
C30.0168 (10)0.0103 (10)0.0192 (10)0.0002 (8)0.0018 (8)0.0008 (8)
C40.0174 (10)0.0132 (10)0.0190 (10)0.0011 (8)0.0025 (8)0.0009 (8)
C50.0257 (11)0.0107 (10)0.0248 (11)0.0005 (9)0.0006 (10)0.0012 (9)
C60.0257 (12)0.0124 (10)0.0272 (12)0.0007 (9)0.0002 (9)0.0033 (9)
C70.0242 (11)0.0197 (11)0.0229 (11)0.0007 (10)0.0015 (9)0.0044 (10)
C80.0197 (10)0.0177 (11)0.0219 (11)0.0008 (9)0.0000 (9)0.0014 (9)
C90.0171 (10)0.0129 (11)0.0209 (11)0.0009 (8)0.0018 (8)0.0003 (9)
C100.0198 (10)0.0102 (10)0.0170 (10)0.0025 (9)0.0002 (8)0.0027 (8)
C110.0189 (10)0.0096 (10)0.0173 (10)0.0018 (8)0.0024 (8)0.0008 (8)
C120.0201 (11)0.0084 (10)0.0192 (10)0.0019 (8)0.0011 (9)0.0027 (8)
C130.0208 (10)0.0139 (10)0.0190 (10)0.0012 (9)0.0019 (9)0.0015 (9)
C140.0226 (11)0.0120 (10)0.0186 (10)0.0011 (9)0.0019 (9)0.0029 (8)
F10.0392 (9)0.0310 (8)0.0331 (8)0.0154 (7)0.0104 (7)0.0038 (7)
F2A0.0349 (9)0.0179 (8)0.0326 (9)0.0038 (6)0.0038 (7)0.0018 (6)
F3A0.0363 (9)0.0143 (8)0.0421 (10)0.0089 (7)0.0076 (7)0.0053 (7)
F4A0.0340 (8)0.0332 (10)0.0284 (9)0.0005 (7)0.0082 (7)0.0043 (7)
B10.0249 (13)0.0150 (12)0.0235 (13)0.0036 (10)0.0012 (10)0.0009 (10)
Geometric parameters (Å, º) top
Cu1—O3W1.9646 (17)C3—C111.480 (3)
Cu1—O3Wi1.9647 (17)C4—C51.422 (3)
Cu1—O2i1.9766 (16)C4—C91.422 (3)
Cu1—O21.9766 (16)C5—C61.368 (3)
Cu2—N3ii1.9444 (18)C5—H50.9500
Cu2—N2iii2.0169 (18)C6—C71.416 (3)
Cu2—N1iii2.0853 (18)C6—H60.9500
Cu2—O12.1545 (15)C7—C81.366 (3)
O1—C101.247 (3)C7—H70.9500
O2—C101.266 (3)C8—C91.412 (3)
O3W—H1W0.8499C8—H80.9500
O3W—H2W0.8499C11—C121.385 (3)
N1—C31.328 (3)C12—H120.9500
N1—C41.369 (3)C13—C141.389 (3)
N2—C141.331 (3)C13—H130.9500
N2—C111.354 (3)C14—H140.9500
N3—C121.338 (3)F1—B11.391 (3)
N3—C131.346 (3)F2A—B11.399 (3)
C1—C21.369 (3)F3A—B11.371 (3)
C1—C91.423 (3)F4A—B11.414 (3)
C1—C101.507 (3)F2B—B11.455 (13)
C2—C31.411 (3)F3B—B11.311 (14)
C2—H20.9500F4B—B11.391 (14)
O3W—Cu1—O3Wi89.08 (10)C4—C5—H5120.0
O3W—Cu1—O2i92.11 (7)C5—C6—C7120.4 (2)
O3Wi—Cu1—O2i171.31 (7)C5—C6—H6119.8
O3W—Cu1—O2171.31 (7)C7—C6—H6119.8
O3Wi—Cu1—O292.11 (7)C8—C7—C6120.6 (2)
O2i—Cu1—O288.02 (10)C8—C7—H7119.7
N3ii—Cu2—N2iii131.52 (8)C6—C7—H7119.7
N3ii—Cu2—N1iii131.22 (8)C7—C8—C9120.5 (2)
N2iii—Cu2—N1iii81.48 (7)C7—C8—H8119.8
N3ii—Cu2—O196.70 (7)C9—C8—H8119.8
N2iii—Cu2—O1118.08 (6)C8—C9—C4119.0 (2)
N1iii—Cu2—O194.27 (7)C8—C9—C1123.8 (2)
C10—O1—Cu2122.72 (13)C4—C9—C1117.02 (19)
C10—O2—Cu1101.57 (13)O1—C10—O2122.8 (2)
Cu1—O3W—H1W122.2O1—C10—C1118.29 (18)
Cu1—O3W—H2W117.2O2—C10—C1118.85 (19)
H1W—O3W—H2W104.4N2—C11—C12120.9 (2)
C3—N1—C4118.06 (19)N2—C11—C3116.91 (19)
C3—N1—Cu2iv111.23 (14)C12—C11—C3122.1 (2)
C4—N1—Cu2iv129.62 (14)N3—C12—C11122.2 (2)
C14—N2—C11116.95 (18)N3—C12—H12118.9
C14—N2—Cu2iv129.84 (15)C11—C12—H12118.9
C11—N2—Cu2iv112.50 (15)N3—C13—C14121.4 (2)
C12—N3—C13116.63 (19)N3—C13—H13119.3
C12—N3—Cu2v118.44 (15)C14—C13—H13119.3
C13—N3—Cu2v124.58 (15)N2—C14—C13121.9 (2)
C2—C1—C9119.7 (2)N2—C14—H14119.0
C2—C1—C10117.55 (19)C13—C14—H14119.0
C9—C1—C10122.56 (19)F3B—B1—F4B115.6 (11)
C1—C2—C3119.06 (19)F3B—B1—F1115.2 (10)
C1—C2—H2120.5F3A—B1—F1111.3 (2)
C3—C2—H2120.5F4B—B1—F1108.6 (10)
N1—C3—C2123.4 (2)F3A—B1—F2A109.4 (2)
N1—C3—C11115.28 (19)F1—B1—F2A110.22 (19)
C2—C3—C11121.25 (19)F3A—B1—F4A109.6 (2)
N1—C4—C5117.9 (2)F1—B1—F4A109.0 (2)
N1—C4—C9122.60 (19)F2A—B1—F4A107.25 (19)
C5—C4—C9119.4 (2)F3B—B1—F2B109.7 (10)
C6—C5—C4120.0 (2)F4B—B1—F2B103.6 (10)
C6—C5—H5120.0F1—B1—F2B102.7 (8)
C9—C1—C2—C31.1 (3)C10—C1—C9—C4178.21 (19)
C10—C1—C2—C3176.94 (19)Cu2—O1—C10—O2143.62 (17)
C4—N1—C3—C23.9 (3)Cu2—O1—C10—C137.9 (3)
Cu2iv—N1—C3—C2165.33 (17)Cu1—O2—C10—O12.7 (2)
C4—N1—C3—C11172.87 (18)Cu1—O2—C10—C1178.81 (16)
Cu2iv—N1—C3—C1117.9 (2)C2—C1—C10—O156.8 (3)
C1—C2—C3—N12.3 (3)C9—C1—C10—O1118.9 (2)
C1—C2—C3—C11174.29 (19)C2—C1—C10—O2121.8 (2)
C3—N1—C4—C5175.0 (2)C9—C1—C10—O262.6 (3)
Cu2iv—N1—C4—C518.1 (3)C14—N2—C11—C121.3 (3)
C3—N1—C4—C92.2 (3)Cu2iv—N2—C11—C12172.55 (17)
Cu2iv—N1—C4—C9164.73 (15)C14—N2—C11—C3174.51 (18)
N1—C4—C5—C6174.5 (2)Cu2iv—N2—C11—C33.2 (2)
C9—C4—C5—C62.7 (3)N1—C3—C11—N214.8 (3)
C4—C5—C6—C71.0 (3)C2—C3—C11—N2168.4 (2)
C5—C6—C7—C81.2 (4)N1—C3—C11—C12160.9 (2)
C6—C7—C8—C91.7 (3)C2—C3—C11—C1215.9 (3)
C7—C8—C9—C40.1 (3)C13—N3—C12—C112.0 (3)
C7—C8—C9—C1175.7 (2)Cu2v—N3—C12—C11171.48 (17)
N1—C4—C9—C8174.8 (2)N2—C11—C12—N32.9 (3)
C5—C4—C9—C82.3 (3)C3—C11—C12—N3172.7 (2)
N1—C4—C9—C11.0 (3)C12—N3—C13—C140.3 (3)
C5—C4—C9—C1178.2 (2)Cu2v—N3—C13—C14173.30 (16)
C2—C1—C9—C8173.0 (2)C11—N2—C14—C131.0 (3)
C10—C1—C9—C82.6 (3)Cu2iv—N2—C14—C13168.51 (16)
C2—C1—C9—C42.6 (3)N3—C13—C14—N21.8 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x, y+1, z1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y+3/2, z+1/2.
Atomic charges and spin densities calculated at the M06/SDD level within the NBO approach for the model of the studied polymer top
Gas phasePCM (water)
NBO chargeNBO spin densityNBO chargeNBO spin density
CuII0.7050.3150.5890.090
CuI0.4050.0010.3940.001
CuI0.3920.0010.4000.000
Electron density and its Laplacian (in atomic units, respectively, e.a0-3 and e.a0-5) for the selected bond critical points in the vicinity of the CuII center (Cu1) of the metal organic compound model. Atom numbering in accordance with the crystal structure (as per Fig. 13) top
Gas phasePCM (water)
BCP:Electron densityLaplacianElectron densityLaplacian
Cu1—O10.0280.0960.0280.097
Cu1—O20.0810.4790.0810.493
Cu1—O3W0.0770.5540.0780.557
O3W—H1W0.469-2.8390.465-2.924
C10—O20.345-0.5330.346-0.538
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds