Download citation
Download citation
link to html
Mol­ecular motion in crystals has attracted much attention for the development of stimuli-responsive materials. The most studied are mol­ecules with few atoms or highly symmetrical mol­ecules. To develop mol­ecules with new motion characteristics, we synthesized a charge-transfer compound, namely, tropylium hexa­fluorido­anti­monate(V)–1,4-di­methyl­naphthalene (1/1), (C7H7)[SbF6]·C12H12, and studied its structural phase transition. In this compound, the tropylium cation and the 1,4-di­methyl­naphthalene mol­ecule have planar geometry, but the latter has low symmetry. They are stacked as a one-dimensional chain structure through π–π charge-transfer inter­actions. Weak inter­molecular inter­actions and planar mol­ecular geometry result in a large degree of freedom of in-plane motion. Upon heating, due to the in-plane rotation of the mol­ecules, the com­pound undergoes an order–disorder structural phase transition (phase-transition tem­per­ature = 334 K). The space group of the room-tem­per­ature phase is P21/m and the space group of the high-tem­per­ature phase is P4/mmm. This phase transition is accompanied by significant dielectric anomalies. The current investigation shows that the structural features of the title compound can be used to construct functional materials with phase transitions, such as mol­ecular ferroelectrics.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622005320/dg3029sup1.cif
Contains datablocks 1_302K, 1_363K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622005320/dg30291_302Ksup2.hkl
Contains datablock 1_302K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622005320/dg30291_363Ksup3.hkl
Contains datablock 1

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622005320/dg3029sup4.pdf
PXRD pattern for the title compound

CCDC references: 2173717; 2173718

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for 1_302K.

Tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1) (1_302K) top
Crystal data top
(C7H7)[SbF6]·C12H12F(000) = 476
Mr = 483.09Dx = 1.673 Mg m3
Monoclinic, P121/m1Mo Kα radiation, λ = 0.71073 Å
a = 6.8156 (4) ÅCell parameters from 4421 reflections
b = 17.1703 (7) Åθ = 2.4–27.2°
c = 8.3590 (4) ŵ = 1.49 mm1
β = 101.331 (5)°T = 302 K
V = 959.15 (8) Å3Block, clear yellowish yellow
Z = 20.22 × 0.15 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer with a Dualflex HyPix detector
2712 independent reflections
Radiation source: micro-focus sealed X-ray tube, Mova (Mo) X-ray Source1765 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.0000 pixels mm-1θmax = 31.6°, θmin = 2.4°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 2323
Tmin = 0.801, Tmax = 1.000l = 911
9700 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.178P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2712 reflectionsΔρmax = 0.51 e Å3
122 parametersΔρmin = 0.50 e Å3
60 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Crystal structure data were collected on a Rigaku Synergy X-ray diffraction instrument using Mo—Kα (λ=0.71073 Å) radiation. The structure was solved by direct methods and continuous Fourier synthesis, and the full-matrix least-squares refinement of F2 was performed using the SHELXLTL-2018 software package. Non-hydrogen atoms were anisotropically refined using all reflections with I>2σ(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.5000000.5000001.0000000.06346 (14)
F10.4603 (6)0.50401 (10)0.7725 (3)0.1019 (9)
F30.4120 (5)0.39670 (13)0.9886 (2)0.1095 (8)
F20.7606 (4)0.4657 (2)1.0139 (3)0.1245 (8)
C70.0904 (4)0.29146 (16)0.4980 (3)0.0548 (5)
C60.1302 (5)0.3304 (2)0.3445 (4)0.0698 (7)
H60.1319850.3845080.3417510.084*
C80.0522 (5)0.3329 (2)0.6475 (4)0.0719 (7)
C50.1652 (5)0.2904 (2)0.2034 (4)0.0805 (9)
H50.1896610.3171710.1047730.097*
C90.0134 (5)0.2897 (2)0.7890 (4)0.0855 (10)
H90.0137840.3157560.8885100.103*
C100.0533 (7)0.4202 (2)0.6545 (6)0.1108 (14)
H10A0.0516250.4403620.6047350.166*
H10B0.0323030.4367790.7662650.166*
H10C0.1800450.4393180.5970150.166*
C20.4159 (7)0.3371 (3)0.5311 (8)0.1268 (15)
H20.4174680.3899110.5555800.152*
C10.4474 (6)0.2890 (3)0.6583 (5)0.127 (2)
H10.4726620.3126360.7604420.152*
C30.3822 (7)0.3191 (3)0.3724 (7)0.1207 (15)
H30.3676500.3612670.3012020.145*
C40.3669 (8)0.2500000.3033 (7)0.1103 (18)
H40.3417120.2500010.1898890.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0839 (2)0.05559 (19)0.05024 (18)0.00541 (12)0.01163 (14)0.00258 (10)
F10.158 (3)0.0933 (18)0.0530 (13)0.0122 (11)0.0166 (14)0.0005 (8)
F30.164 (2)0.0728 (14)0.0868 (15)0.0340 (16)0.0128 (13)0.0055 (9)
F20.1009 (19)0.144 (2)0.133 (2)0.0239 (19)0.0340 (16)0.015 (2)
C70.0397 (13)0.0714 (14)0.0565 (12)0.0004 (12)0.0174 (9)0.0006 (10)
C60.0579 (18)0.0839 (19)0.0715 (14)0.0079 (14)0.0223 (14)0.0164 (12)
C80.0501 (17)0.0980 (18)0.0723 (14)0.0071 (15)0.0238 (14)0.0211 (13)
C50.065 (2)0.124 (2)0.0570 (15)0.0099 (17)0.0212 (14)0.0170 (14)
C90.061 (2)0.147 (3)0.0523 (14)0.0067 (17)0.0188 (14)0.0214 (14)
C100.103 (3)0.100 (2)0.138 (4)0.017 (2)0.046 (3)0.044 (2)
C20.074 (3)0.084 (3)0.230 (4)0.014 (2)0.050 (4)0.048 (3)
C10.056 (2)0.229 (6)0.097 (3)0.009 (3)0.015 (2)0.081 (3)
C30.084 (3)0.125 (3)0.170 (3)0.021 (3)0.064 (3)0.072 (2)
C40.050 (3)0.216 (5)0.068 (3)0.0000.017 (2)0.000
Geometric parameters (Å, º) top
Sb1—F1i1.869 (3)C5—H50.9300
Sb1—F11.869 (3)C9—C9ii1.364 (7)
Sb1—F3i1.869 (2)C9—H90.9300
Sb1—F31.869 (2)C10—H10A0.9600
Sb1—F2i1.853 (3)C10—H10B0.9600
Sb1—F21.853 (3)C10—H10C0.9600
C7—C7ii1.424 (5)C2—H20.9300
C7—C61.425 (4)C2—C11.330 (6)
C7—C81.417 (4)C2—C31.336 (7)
C6—H60.9300C1—C1ii1.340 (10)
C6—C51.345 (4)C1—H10.9300
C8—C91.377 (5)C3—H30.9300
C8—C101.501 (5)C3—C41.315 (6)
C5—C5ii1.387 (7)C4—H40.9300
F1—Sb1—F1i180.0C6—C5—C5ii120.7 (2)
F3—Sb1—F190.13 (8)C6—C5—H5119.6
F3—Sb1—F1i89.86 (8)C5ii—C5—H5119.6
F3i—Sb1—F1i90.14 (8)C8—C9—H9118.7
F3i—Sb1—F189.87 (8)C9ii—C9—C8122.6 (2)
F3—Sb1—F3i180.0 (2)C9ii—C9—H9118.7
F2i—Sb1—F188.80 (15)C8—C10—H10A109.5
F2—Sb1—F1i88.80 (15)C8—C10—H10B109.5
F2—Sb1—F191.20 (15)C8—C10—H10C109.5
F2i—Sb1—F1i91.20 (15)H10A—C10—H10B109.5
F2—Sb1—F389.77 (15)H10A—C10—H10C109.5
F2i—Sb1—F390.23 (15)H10B—C10—H10C109.5
F2—Sb1—F3i90.23 (15)C1—C2—H2115.8
F2i—Sb1—F3i89.77 (15)C1—C2—C3128.3 (5)
F2—Sb1—F2i180.0C3—C2—H2115.8
C7ii—C7—C6117.96 (18)C2—C1—C1ii128.3 (3)
C8—C7—C7ii120.12 (18)C2—C1—H1115.8
C8—C7—C6121.9 (3)C1ii—C1—H1115.8
C7—C6—H6119.3C2—C3—H3115.6
C5—C6—C7121.3 (3)C4—C3—C2128.8 (5)
C5—C6—H6119.3C4—C3—H3115.6
C7—C8—C10122.3 (3)C3—C4—C3ii129.0 (6)
C9—C8—C7117.3 (3)C3ii—C4—H4115.5
C9—C8—C10120.4 (3)C3—C4—H4115.5
C7ii—C7—C6—C50.5 (4)C6—C7—C8—C100.8 (5)
C7ii—C7—C8—C90.8 (4)C8—C7—C6—C5179.6 (3)
C7ii—C7—C8—C10179.1 (3)C10—C8—C9—C9ii179.1 (2)
C7—C6—C5—C5ii0.5 (4)C2—C3—C4—C3ii0.6 (11)
C7—C8—C9—C9ii0.8 (4)C1—C2—C3—C41.9 (9)
C6—C7—C8—C9179.4 (3)C3—C2—C1—C1ii2.1 (7)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z.
Tropylium hexafluoridoantimonate(V)–1,4-dimethylnaphthalene (1/1) (1_363K) top
Crystal data top
(C7H7)[SbF6]·C12H12Dx = 1.583 Mg m3
Mr = 483.09Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/mmmCell parameters from 467 reflections
a = 8.5249 (7) Åθ = 2.4–30.5°
c = 6.9744 (17) ŵ = 1.41 mm1
V = 506.86 (15) Å3T = 363 K
Z = 1Block, yellow
F(000) = 2380.22 × 0.15 × 0.12 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer with a Dualflex HyPix detector
258 reflections with I > 2σ(I)
ω scansRint = 0.044
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
θmax = 31.1°, θmin = 2.4°
Tmin = 0.029, Tmax = 1.000h = 109
2185 measured reflectionsk = 710
441 independent reflectionsl = 79
Refinement top
Refinement on F220 restraints
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.086 w = 1/[σ2(Fo2) + (0.1603P)2 + 0.0184P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.253(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.77 e Å3
441 reflectionsΔρmin = 0.52 e Å3
33 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Crystal structure data were collected on a Rigaku Synergy X-ray diffraction instrument using Mo—Kα (λ=0.71073 Å) radiation. The structure was solved by direct methods and continuous Fourier synthesis, and the full-matrix least-squares refinement of F2 was performed using the SHELXLTL-2018 software package. Non-hydrogen atoms were anisotropically refined using all reflections with I>2σ(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.5000000.5000000.0000000.1390 (12)
F10.5000000.2831 (14)0.0000000.242 (9)
F20.5000000.5000000.259 (6)0.34 (2)
C10.073 (3)0.166 (2)0.091 (3)0.171 (11)0.43750 (10)
C30.0000000.175 (9)0.431 (3)0.46 (5)0.7500 (1)
C20.196 (5)0.196 (5)0.404 (7)0.43 (4)0.7500 (1)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.1030 (11)0.1030 (11)0.211 (2)0.0000.0000.000
F10.145 (9)0.098 (5)0.48 (3)0.0000.0000.000
F20.38 (4)0.38 (4)0.26 (3)0.0000.0000.000
C10.25 (3)0.117 (10)0.147 (8)0.045 (14)0.010 (11)0.000 (8)
C30.53 (9)0.78 (10)0.078 (10)0.0000.0000.048 (18)
C20.53 (6)0.53 (6)0.22 (3)0.16 (7)0.09 (2)0.09 (2)
Geometric parameters (Å, º) top
Sb1—F21.81 (4)C1—C1vii1.69 (5)
Sb1—F2i1.81 (4)C1—C1viii1.78 (4)
Sb1—F1ii1.849 (12)C3—C3ix0.97 (4)
Sb1—F1i1.849 (12)C3—C2x1.69 (5)
Sb1—F1iii1.849 (12)C3—C21.69 (5)
Sb1—F11.849 (12)C3—C2ix2.04 (4)
C1—C1iv1.12 (5)C3—C2xi2.04 (4)
C1—C1v1.25 (5)C2—C2ix1.34 (10)
C1—C1vi1.26 (4)
F2—Sb1—F2i180.0C1vi—C1—C1viii44.7 (16)
F2—Sb1—F1ii90.000 (3)C1vii—C1—C1viii78.3 (18)
F2i—Sb1—F1ii90.000 (3)C3ix—C3—C2x96 (2)
F2—Sb1—F1i90.0C3ix—C3—C296 (2)
F2i—Sb1—F1i90.0C2x—C3—C2163 (4)
F1ii—Sb1—F1i90.000 (1)C3ix—C3—C2ix55.4 (17)
F2—Sb1—F1iii90.000 (3)C2x—C3—C2ix150 (2)
F2i—Sb1—F1iii90.000 (3)C2—C3—C2ix41 (3)
F1ii—Sb1—F1iii180.0C3ix—C3—C2xi55.4 (17)
F1i—Sb1—F1iii90.000 (1)C2x—C3—C2xi41 (3)
F2—Sb1—F190.0C2—C3—C2xi150 (2)
F2i—Sb1—F190.0C2ix—C3—C2xi110 (3)
F1ii—Sb1—F190.000 (1)C2ix—C2—C3xii84 (2)
F1i—Sb1—F1180.0C2ix—C2—C384 (2)
F1iii—Sb1—F190.0C3xii—C2—C378 (5)
C1iv—C1—C1v134.998 (2)C2ix—C2—C3ix55.4 (17)
C1iv—C1—C1vi89.998 (1)C3xii—C2—C3ix77 (4)
C1v—C1—C1vi89.999 (1)C3—C2—C3ix28.2 (12)
C1iv—C1—C1vii48.6 (15)C2ix—C2—C3xiii55.4 (17)
C1v—C1—C1vii117.9 (9)C3xii—C2—C3xiii28.2 (12)
C1vi—C1—C1vii41.4 (15)C3—C2—C3xiii77 (4)
C1iv—C1—C1viii119.8 (9)C3ix—C2—C3xiii63 (4)
C1v—C1—C1viii45.3 (16)
C3ix—C3—C2—C2ix0.000 (8)C2x—C3—C2—C3ix137 (19)
C2x—C3—C2—C2ix137 (19)C2ix—C3—C2—C3ix0.000 (7)
C2xi—C3—C2—C2ix19 (9)C2xi—C3—C2—C3ix19 (9)
C3ix—C3—C2—C3xii84.8 (18)C3ix—C3—C2—C3xiii55.9 (14)
C2x—C3—C2—C3xii138 (17)C2x—C3—C2—C3xiii167 (18)
C2ix—C3—C2—C3xii84.8 (18)C2ix—C3—C2—C3xiii55.9 (14)
C2xi—C3—C2—C3xii104 (10)C2xi—C3—C2—C3xiii75 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) y, x+1, z; (iii) y+1, x, z; (iv) y, x, z; (v) x, y, z; (vi) x, y, z; (vii) y, x, z; (viii) x, y, z; (ix) x, y, z+1; (x) y, x, z; (xi) y, x, z+1; (xii) y, x, z; (xiii) y, x, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds