Download citation
Download citation
link to html
A Schiff base derived from ethyl­enedi­amine and heptane-2,4,6-trione, namely, 5,9,14,18-tetra­methyl-1,4,10,13-tetra­aza­cyclo­octa­deca-5,8,14,17-tetra­ene-7,16-dione (C18H28N4O2), abbreviated H4daaden, was prepared and characterized for the first time by single-crystal X-ray diffraction. The atoms of the Schiff base occupy two different planes and thus the mol­ecule is essentially nonplanar. An axis running through the C—C atoms of the ethyl­enedi­amine groups separate the two planes and these two planes are connected by bridging ethyl­ene groups showing an angle of 117.34 (8)°. As a result, the side view of the mol­ecule shows a `step-stool' conformation. The nonplanar nature of the Schiff base plays an important role in metal coordination, which leads to partial hydrolysis of the ring structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622004582/dg3026sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622004582/dg3026Isup2.hkl
Contains datablock I

CCDC reference: 2166693

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: APEX2 (Bruker, 2015); data reduction: APEX2 (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

5,9,14,18-Tetramethyl-1,4,10,13-tetraazacyclooctadeca-5,8,14,17-tetraene-7,16-dione top
Crystal data top
C18H28N4O2Dx = 1.276 Mg m3
Mr = 332.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1245 reflections
a = 6.9163 (4) Åθ = 2.0–28.5°
b = 12.5609 (8) ŵ = 0.09 mm1
c = 19.9264 (12) ÅT = 100 K
V = 1731.11 (18) Å3Prism frag, colorless
Z = 40.24 × 0.19 × 0.13 mm
F(000) = 720
Data collection top
Bruker APEXII
diffractometer
1833 reflections with I > 2σ(I)
profile data from θ/2θ scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 28.5°, θmin = 2.0°
Tmin = 0.980, Tmax = 0.989h = 99processed/
19156 measured reflectionsk = 1616
2101 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.4795P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2101 reflectionsΔρmax = 0.27 e Å3
118 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single crystal X-ray diffraction data were recorded on a Bruker Smart 1000 diffractometer equipped with a CCD detector, using molybdenum Kα radiation (λ = 0.71073 Å). All data were collected at 100 K. The structures were solved and refined using the APEX4 v2021 4-0 software package.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05303 (10)0.04672 (6)0.42962 (3)0.02367 (18)
N20.28758 (12)0.14375 (7)0.56538 (4)0.0221 (2)
N10.34399 (13)0.08857 (7)0.42794 (4)0.0235 (2)
H10.265 (2)0.0384 (11)0.4484 (7)0.034 (2)*
C10.39987 (14)0.19559 (8)0.32716 (5)0.0234 (2)
H1A0.4034900.2628200.3520870.035*
H1B0.3398860.2073820.2832280.035*
H1C0.5319080.1690420.3209610.035*
C20.28368 (14)0.11502 (7)0.36587 (5)0.0193 (2)
C30.12097 (14)0.06916 (7)0.33860 (5)0.0194 (2)
H30.0849630.0893480.2943850.023*
C40.00123 (14)0.00794 (7)0.37310 (5)0.0189 (2)
C50.17790 (13)0.03998 (7)0.34211 (5)0.0196 (2)
H50.2038690.0150000.2980230.024*
C60.31405 (13)0.10443 (7)0.37216 (5)0.0192 (2)
C70.42669 (14)0.20225 (8)0.52470 (5)0.0222 (2)
H7A0.5370480.2240220.5532120.027*
H7B0.3647460.2676040.5071300.027*
C80.50186 (14)0.13546 (8)0.46575 (5)0.0213 (2)
H8A0.5799420.1811510.4356700.026*
H8B0.5866480.0781960.4830410.026*
C90.49507 (14)0.13417 (8)0.33512 (5)0.0237 (2)
H9A0.5028980.2118180.3311680.036*
H9B0.4926360.1023650.2902170.036*
H9C0.6078840.1077460.3597760.036*
H20.176 (2)0.1212 (10)0.5469 (7)0.034 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (4)0.0276 (4)0.0188 (3)0.0052 (3)0.0036 (3)0.0049 (3)
N20.0203 (4)0.0263 (4)0.0198 (4)0.0056 (3)0.0011 (3)0.0019 (3)
N10.0251 (4)0.0268 (4)0.0187 (4)0.0082 (4)0.0021 (3)0.0024 (3)
C10.0236 (5)0.0237 (5)0.0229 (5)0.0015 (4)0.0032 (4)0.0029 (4)
C20.0218 (5)0.0176 (4)0.0186 (4)0.0025 (4)0.0033 (3)0.0007 (3)
C30.0216 (5)0.0204 (4)0.0162 (4)0.0019 (4)0.0010 (3)0.0015 (3)
C40.0208 (5)0.0186 (4)0.0173 (4)0.0018 (4)0.0014 (3)0.0013 (3)
C50.0217 (5)0.0203 (4)0.0168 (4)0.0021 (4)0.0013 (3)0.0002 (3)
C60.0199 (4)0.0178 (4)0.0199 (4)0.0032 (3)0.0004 (3)0.0031 (3)
C70.0215 (5)0.0226 (5)0.0225 (5)0.0041 (4)0.0011 (4)0.0002 (4)
C80.0193 (5)0.0232 (5)0.0214 (5)0.0029 (4)0.0012 (4)0.0004 (4)
C90.0213 (5)0.0241 (5)0.0258 (5)0.0007 (4)0.0035 (4)0.0017 (4)
Geometric parameters (Å, º) top
O1—C41.2783 (11)C3—H30.9500
N2—C6i1.3514 (12)C4—C51.4415 (13)
N2—C71.4569 (12)C5—C61.3787 (13)
N2—H20.898 (14)C5—H50.9500
N1—C21.3470 (12)C6—C91.5006 (13)
N1—C81.4514 (12)C7—C81.5343 (13)
N1—H10.928 (14)C7—H7A0.9900
C1—C21.5049 (13)C7—H7B0.9900
C1—H1A0.9800C8—H8A0.9900
C1—H1B0.9800C8—H8B0.9900
C1—H1C0.9800C9—H9A0.9800
C2—C31.3760 (13)C9—H9B0.9800
C3—C41.4480 (13)C9—H9C0.9800
C6i—N2—C7127.39 (8)C4—C5—H5117.8
C6i—N2—H2112.3 (8)N2i—C6—C5121.47 (9)
C7—N2—H2119.7 (8)N2i—C6—C9118.36 (9)
C2—N1—C8127.55 (9)C5—C6—C9120.15 (9)
C2—N1—H1112.8 (8)N2—C7—C8111.96 (8)
C8—N1—H1119.4 (8)N2—C7—H7A109.2
C2—C1—H1A109.5C8—C7—H7A109.2
C2—C1—H1B109.5N2—C7—H7B109.2
H1A—C1—H1B109.5C8—C7—H7B109.2
C2—C1—H1C109.5H7A—C7—H7B107.9
H1A—C1—H1C109.5N1—C8—C7111.37 (8)
H1B—C1—H1C109.5N1—C8—H8A109.4
N1—C2—C3120.84 (9)C7—C8—H8A109.4
N1—C2—C1118.11 (9)N1—C8—H8B109.4
C3—C2—C1121.06 (8)C7—C8—H8B109.4
C2—C3—C4124.08 (9)H8A—C8—H8B108.0
C2—C3—H3118.0C6—C9—H9A109.5
C4—C3—H3118.0C6—C9—H9B109.5
O1—C4—C5120.79 (9)H9A—C9—H9B109.5
O1—C4—C3120.86 (9)C6—C9—H9C109.5
C5—C4—C3118.35 (8)H9A—C9—H9C109.5
C6—C5—C4124.39 (9)H9B—C9—H9C109.5
C6—C5—H5117.8
C8—N1—C2—C3174.55 (9)C3—C4—C5—C6173.43 (9)
C8—N1—C2—C15.77 (15)C4—C5—C6—N2i0.38 (15)
N1—C2—C3—C40.99 (15)C4—C5—C6—C9179.26 (8)
C1—C2—C3—C4179.34 (8)C6i—N2—C7—C8108.38 (11)
C2—C3—C4—O17.49 (14)C2—N1—C8—C7109.08 (11)
C2—C3—C4—C5172.54 (8)N2—C7—C8—N150.53 (11)
O1—C4—C5—C66.60 (14)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds