Download citation
Download citation
link to html
A new gadolinium(III)–pyridine-2,5-di­carb­oxy­lic acid (GdIII–2,5-H2pdc)-based three-dimensional coordination polymer, namely, poly[di­methyl­aza­nium [bis­(μ-pyridine-2,5-di­carboxyl­ato)gadolinium(III)]], {[(CH3)2NH2][Gd(C7H3NO4)2]}n, CP-1, has been synthesized via a typical solvothermal method. The as-synthesized material was characterized in the solid state using single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis and FT–IR spectroscopy. During the synthesis of CP-1, the in situ di­methyl­formamide (DMF) promotes the formation of a dimeric unit and these act as secondary building blocks in the assembly of a three-dimensional anionic {[Gd(pdc)2]} framework. The framework has channels along the c axis which are filled by di­methyl­aza­nium cations. Inter­estingly, the framework shows a helical-type assembly running down the a axis. A Hirshfeld surface analysis of CP-1 suggests that extra stability is provided by hydrogen-bonding inter­actions. The magnetic properties of CP-1 showed weak anti­ferromagnetic couplings between adjacent Gd3+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622000419/dg3024sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622000419/dg3024Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622000419/dg3024sup3.pdf
Additional figures and tables

CCDC reference: 1990670

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Pennington, 1999) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[dimethylazanium [bis(µ-pyridine-2,5-dicarboxylato)gadolinium(III)]] top
Crystal data top
(C2H7N)[Gd(C7H3NO4)2]Dx = 1.646 Mg m3
Mr = 532.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 10910 reflections
a = 17.9185 (7) Åθ = 3.5–30.4°
b = 18.0874 (8) ŵ = 3.13 mm1
c = 26.5146 (11) ÅT = 296 K
V = 8593.4 (6) Å3Plate, clear light colourless
Z = 160.24 × 0.22 × 0.19 mm
F(000) = 4128
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with a Pilatus 200K detector
2173 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2015 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
ω scansθmax = 30.5°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 2123
Tmin = 0.686, Tmax = 1.000k = 2421
13872 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0211P)2 + 40.8363P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
2173 reflectionsΔρmax = 0.51 e Å3
133 parametersΔρmin = 0.52 e Å3
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Single-crystal structure determination of CP-1 was executed on a SuperNova, Dual, Mo at home/near, Pilatus 200 K diffractometer equipped with a microfocus, 2.4 kW sealed-tube X-ray source (Mo—Kα radiation, wavelength = 0.71073 Å) operating at 40 kV and 40 mA. Under OLEX2 software, the structure was solved by the direct method using SHELXT-2014 and refined on F2 by a full-matrix least-squares technique using the SHELXL2014 program package. ?(Sheldrick, 2014)? An empirical absorption correction based on symmetry-equivalent reflections was applied using SADABS. ?(Sheldrick, 2014)? The graphics programs DIAMOND (Pennington, 1999) and ORTEP-3 for Windows (Farrugia, 2012) were used to draw the structures.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.50093 (2)0.8750000.3750000.01937 (6)
O40.31052 (11)0.78977 (12)0.43005 (8)0.0491 (5)
O10.33860 (11)0.52839 (10)0.61310 (7)0.0418 (4)
O30.43328 (11)0.79673 (12)0.42726 (8)0.0527 (5)
N10.33178 (11)0.63435 (11)0.54518 (7)0.0295 (4)
C70.37391 (13)0.76847 (14)0.44120 (9)0.0295 (5)
C50.33041 (14)0.69163 (14)0.51301 (10)0.0329 (5)
C40.38030 (14)0.70176 (15)0.47455 (10)0.0344 (5)
C10.38371 (19)0.58430 (18)0.53825 (12)0.0532 (9)
O20.4217 (2)0.46732 (19)0.56820 (13)0.1366 (19)
C60.3818 (2)0.52096 (19)0.57581 (13)0.0613 (10)
N20.3750000.3750000.64885 (18)0.098 (2)
H2A0.3817000.3420400.6259190.117*0.5
C20.4356 (3)0.5905 (3)0.50064 (17)0.109 (2)
H20.4712360.5536170.4964000.131*
C30.4353 (2)0.6504 (2)0.46922 (16)0.0865 (16)
H30.4720460.6560700.4447170.104*
C80.4413 (4)0.3878 (3)0.6772 (2)0.1093 (19)
H8A0.4762460.3486120.6710270.164*
H8B0.4294280.3894950.7124630.164*
H8C0.4630150.4340970.6671330.164*
H50.2940 (14)0.7261 (14)0.5166 (11)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.02181 (9)0.01815 (9)0.01814 (9)0.0000.0000.00319 (5)
O40.0424 (11)0.0550 (13)0.0500 (12)0.0142 (9)0.0044 (9)0.0296 (10)
O10.0507 (11)0.0358 (10)0.0389 (10)0.0183 (9)0.0096 (8)0.0126 (8)
O30.0452 (11)0.0555 (13)0.0575 (13)0.0112 (10)0.0114 (10)0.0231 (11)
N10.0315 (10)0.0309 (10)0.0261 (10)0.0056 (8)0.0043 (8)0.0060 (8)
C70.0373 (13)0.0288 (12)0.0224 (11)0.0012 (10)0.0046 (9)0.0083 (9)
C50.0336 (13)0.0320 (13)0.0331 (13)0.0071 (10)0.0041 (10)0.0115 (10)
C40.0365 (13)0.0360 (14)0.0306 (12)0.0063 (10)0.0049 (10)0.0102 (11)
C10.067 (2)0.0455 (17)0.0468 (17)0.0291 (15)0.0230 (15)0.0190 (14)
O20.203 (4)0.095 (2)0.112 (3)0.112 (3)0.105 (3)0.069 (2)
C60.084 (2)0.0460 (18)0.0538 (19)0.0351 (17)0.0310 (17)0.0236 (15)
N20.196 (7)0.053 (3)0.044 (3)0.026 (3)0.0000.000
C20.125 (4)0.103 (3)0.099 (3)0.089 (3)0.082 (3)0.068 (3)
C30.091 (3)0.088 (3)0.080 (3)0.056 (2)0.060 (2)0.053 (2)
C80.133 (5)0.096 (4)0.100 (4)0.035 (3)0.007 (4)0.024 (3)
Geometric parameters (Å, º) top
Gd1—O4i2.3915 (18)C5—H50.908 (17)
Gd1—O4ii2.3915 (18)C4—C31.362 (4)
Gd1—O1iii2.3709 (18)C1—C61.518 (4)
Gd1—O1iv2.3709 (17)C1—C21.368 (4)
Gd1—O3v2.3224 (18)O2—C61.222 (4)
Gd1—O32.3223 (18)N2—H2Avi0.8598
Gd1—N1iii2.5704 (19)N2—H2A0.8599
Gd1—N1iv2.5704 (19)N2—C8vi1.425 (6)
O4—C71.235 (3)N2—C81.425 (6)
O1—C61.263 (3)C2—H20.9300
O3—C71.237 (3)C2—C31.368 (5)
N1—C51.342 (3)C3—H30.9300
N1—C11.311 (3)C8—H8A0.9600
C7—C41.500 (3)C8—H8B0.9600
C5—C41.368 (4)C8—H8C0.9600
O4ii—Gd1—O4i125.18 (10)O4—C7—O3126.2 (2)
O4i—Gd1—N1iii143.56 (7)O4—C7—C4117.5 (2)
O4ii—Gd1—N1iv143.56 (7)O3—C7—C4116.3 (2)
O4i—Gd1—N1iv73.41 (7)N1—C5—C4124.4 (2)
O4ii—Gd1—N1iii73.41 (7)N1—C5—H5119 (2)
O1iv—Gd1—O4ii84.90 (7)C4—C5—H5117 (2)
O1iii—Gd1—O4ii134.34 (7)C5—C4—C7119.8 (2)
O1iv—Gd1—O4i134.34 (7)C3—C4—C7122.8 (2)
O1iii—Gd1—O4i84.90 (7)C3—C4—C5117.3 (3)
O1iii—Gd1—O1iv97.00 (10)N1—C1—C6114.4 (2)
O1iv—Gd1—N1iii71.80 (7)N1—C1—C2121.9 (3)
O1iii—Gd1—N1iv71.80 (7)C2—C1—C6123.7 (3)
O1iii—Gd1—N1iii64.24 (6)O1—C6—C1116.6 (2)
O1iv—Gd1—N1iv64.24 (6)O2—C6—O1124.9 (3)
O3—Gd1—O4i77.79 (9)O2—C6—C1118.5 (3)
O3v—Gd1—O4ii77.79 (9)H2A—N2—H2Avi90.0
O3v—Gd1—O4i74.39 (8)C8vi—N2—H2Avi111.7 (3)
O3—Gd1—O4ii74.39 (8)C8—N2—H2A111.7
O3v—Gd1—O1iv150.99 (8)C8—N2—H2Avi112.1 (3)
O3v—Gd1—O1iii79.46 (8)C8vi—N2—H2A112.1
O3—Gd1—O1iv79.46 (8)C8vi—N2—C8116.4 (6)
O3—Gd1—O1iii150.99 (8)C1—C2—H2119.8
O3—Gd1—O3v117.07 (11)C1—C2—C3120.4 (3)
O3v—Gd1—N1iv138.19 (7)C3—C2—H2119.8
O3—Gd1—N1iii138.19 (7)C4—C3—C2118.7 (3)
O3v—Gd1—N1iii80.97 (7)C4—C3—H3120.7
O3—Gd1—N1iv80.97 (7)C2—C3—H3120.7
N1iv—Gd1—N1iii111.39 (9)N2—C8—H8A109.5
C7—O4—Gd1i140.40 (17)N2—C8—H8B109.5
C6—O1—Gd1vii126.06 (17)N2—C8—H8C109.5
C7—O3—Gd1151.55 (19)H8A—C8—H8B109.5
C5—N1—Gd1vii124.31 (16)H8A—C8—H8C109.5
C1—N1—Gd1vii118.03 (17)H8B—C8—H8C109.5
C1—N1—C5117.2 (2)
Gd1i—O4—C7—O39.3 (5)N1—C5—C4—C30.8 (5)
Gd1i—O4—C7—C4170.3 (2)N1—C1—C6—O19.8 (5)
Gd1vii—O1—C6—C17.4 (5)N1—C1—C6—O2170.6 (5)
Gd1vii—O1—C6—O2173.0 (4)N1—C1—C2—C31.0 (9)
Gd1—O3—C7—O414.6 (6)C7—C4—C3—C2178.4 (5)
Gd1—O3—C7—C4165.0 (3)C5—N1—C1—C6179.7 (3)
Gd1vii—N1—C5—C4170.5 (2)C5—N1—C1—C21.4 (6)
Gd1vii—N1—C1—C67.8 (4)C5—C4—C3—C23.1 (7)
Gd1vii—N1—C1—C2171.1 (4)C1—N1—C5—C41.5 (4)
O4—C7—C4—C537.5 (4)C1—C2—C3—C43.3 (9)
O4—C7—C4—C3144.1 (4)C6—C1—C2—C3177.8 (5)
O3—C7—C4—C5142.8 (3)C2—C1—C6—O1169.0 (5)
O3—C7—C4—C335.6 (5)C2—C1—C6—O210.6 (8)
N1—C5—C4—C7179.3 (2)
Symmetry codes: (i) x+3/4, y+7/4, z; (ii) x+3/4, y, z+3/4; (iii) x+1/4, y+3/2, z1/4; (iv) x+1/4, y+1/4, z+1; (v) x, y+7/4, z+3/4; (vi) x+3/4, y+3/4, z; (vii) x1/4, y1/4, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1vi0.862.273.004 (2)144
N2—H2A···O2vi0.862.102.839 (5)144
C2—H2···O2viii0.932.603.311 (6)134
C5—H5···O4ix0.91 (3)2.37 (3)2.961 (3)123 (2)
Symmetry codes: (vi) x+3/4, y+3/4, z; (viii) x+1, y+1, z+1; (ix) x+1/2, y+3/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds