Download citation
Download citation
link to html
As a continuation of a systematic structural analysis of 2-hydroxycycloalkanecarboxylic acids and their carboxamide analogs, the effects of antidromic rings [Jeffrey & Saenger (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg: Springer Verlag] upon the layer stacking of cyclopentane and cycloheptane derivatives are compared. Determination of the structure of trans-2-hydroxycycloheptanecarboxylic acid (2) led to the discovery of two polymorphs with virtually the same unit cell [Kálmán et al. (2003). J. Am. Chem. Soc. 125, 34-35]. (i) The layer stacking of the antidromic rings for the whole single crystal is antiparallel (2b). (ii) The antidromic rings and the 21 axis are parallel (2a), consequently the domains of the single crystal must be antiparallel. While their polymorphism is solvent-controlled, they illustrate a novel form of two-dimensional isostructurality. Antiparallel layer stacking is again demonstrated by trans-2-hydroxycycloheptanecarboxamide (3) (space group Pbca). It is built up from layers isostructural with those in the homologous trans-2-hydroxycyclopentanecarboxamide (4) [Kálmán et al. (2001). Acta Cryst. B57, 539-550], but in this structure (space group Pca21) the layers are stacked in parallel mode. Similar to (2a) and (2b), the antiparallel layer stacking in (3) versus their parallel array in (4) illustrates the two-dimensional isostructurality with alternating layer orientations. Although (3) and (4) display isostructurality, they are not isomorphous.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768104024553/de5011sup1.cif
Contains datablock bg93a

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768104024553/de5011sup2.fcf
Contains datablock bg93a

CCDC reference: 257804

Computing details top

Data collection: CAD-4 EXPRESS; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
trans-2-hydroxy-cycloheptanecarboxamide top
Crystal data top
C8H15NO2Dx = 1.216 Mg m3
Mr = 157.21Mo Kα radiation, λ = 0.710730 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 8.248 (1) Åθ = 15.4–17.2°
b = 19.679 (3) ŵ = 0.09 mm1
c = 10.581 (1) ÅT = 293 K
V = 1717.4 (4) Å3Prism, colourless
Z = 80.55 × 0.50 × 0.20 mm
F(000) = 688
Data collection top
Enraf-Nonius CAD4
diffractometer
1666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 32.0°, θmin = 2.8°
ω–2θ scansh = 1212
Absorption correction: ψ scan
DATCOR (Reibenspies, 1989)
k = 2929
Tmin = 0.876, Tmax = 0.980l = 1515
6109 measured reflections3 standard reflections every 60 min
2969 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145Riding
S = 0.85 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2969 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.30 e Å3
139 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H15NO2V = 1717.4 (4) Å3
Mr = 157.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.248 (1) ŵ = 0.09 mm1
b = 19.679 (3) ÅT = 293 K
c = 10.581 (1) Å0.55 × 0.50 × 0.20 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1666 reflections with I > 2σ(I)
Absorption correction: ψ scan
DATCOR (Reibenspies, 1989)
Rint = 0.022
Tmin = 0.876, Tmax = 0.9803 standard reflections every 60 min
6109 measured reflections intensity decay: 5%
2969 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045139 restraints
wR(F2) = 0.145Riding
S = 0.85Δρmax = 0.30 e Å3
2969 reflectionsΔρmin = 0.20 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15925 (11)0.23346 (5)0.56171 (9)0.0428 (2)
H10.13930.26630.51670.056*
O20.56510 (9)0.16858 (5)0.61384 (8)0.0392 (2)
N30.39337 (12)0.17709 (6)0.77762 (9)0.0403 (3)
H3A0.46730.19410.82530.052*
H3B0.29720.17090.80670.052*
C10.29351 (12)0.12841 (6)0.58154 (9)0.0291 (2)
H1A0.20450.11630.63860.038*
C20.22993 (14)0.18064 (6)0.48698 (10)0.0344 (3)
H20.32230.19960.44060.045*
C30.10694 (18)0.15365 (9)0.39157 (13)0.0530 (4)
H3C0.02240.12940.43670.069*
H3D0.05680.19180.34870.069*
C40.1808 (2)0.10624 (11)0.29291 (13)0.0669 (5)
H4A0.29000.12170.27470.087*
H4B0.11840.11030.21560.087*
C50.1883 (2)0.03162 (10)0.32952 (16)0.0675 (5)
H5A0.08420.01110.31060.088*
H5B0.26870.00950.27670.088*
C60.22912 (18)0.01696 (7)0.46668 (15)0.0530 (4)
H6A0.26480.02990.47350.069*
H6B0.13110.02160.51660.069*
C70.35954 (13)0.06279 (6)0.52316 (12)0.0372 (3)
H7A0.43660.07450.45740.048*
H7B0.41750.03760.58770.048*
C80.42747 (11)0.16047 (5)0.65990 (10)0.0288 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (5)0.0465 (5)0.0415 (5)0.0109 (4)0.0009 (4)0.0079 (4)
O20.0218 (4)0.0575 (5)0.0382 (4)0.0076 (3)0.0014 (3)0.0049 (4)
N30.0247 (4)0.0613 (7)0.0348 (5)0.0014 (4)0.0016 (4)0.0073 (4)
C10.0188 (4)0.0389 (5)0.0296 (5)0.0018 (4)0.0012 (4)0.0025 (4)
C20.0267 (5)0.0466 (6)0.0301 (5)0.0014 (4)0.0018 (4)0.0039 (4)
C30.0391 (7)0.0733 (9)0.0466 (7)0.0032 (6)0.0160 (6)0.0013 (7)
C40.0595 (10)0.1043 (14)0.0368 (7)0.0021 (9)0.0123 (7)0.0143 (8)
C50.0489 (8)0.0894 (13)0.0642 (9)0.0099 (8)0.0037 (7)0.0351 (9)
C60.0409 (7)0.0527 (8)0.0655 (9)0.0101 (6)0.0028 (7)0.0164 (7)
C70.0282 (5)0.0402 (6)0.0433 (6)0.0012 (4)0.0028 (5)0.0033 (5)
C80.0198 (4)0.0346 (5)0.0319 (5)0.0003 (4)0.0020 (4)0.0054 (4)
Geometric parameters (Å, º) top
O1—C21.4302 (15)C3—H3C0.9700
O1—H10.8200C3—H3D0.9700
O2—C81.2456 (12)C4—C51.520 (3)
N3—C81.3181 (15)C4—H4A0.9700
N3—H3A0.8600C4—H4B0.9700
N3—H3B0.8600C5—C61.517 (2)
C1—C21.5272 (15)C5—H5A0.9700
C1—C81.5186 (14)C5—H5B0.9700
C1—C71.5316 (16)C6—C71.5256 (17)
C1—H1A0.9800C6—H6A0.9700
C2—C31.5265 (18)C6—H6B0.9700
C2—H20.9800C7—H7A0.9700
C3—C41.527 (2)C7—H7B0.9700
C2—O1—H1109.5C3—C4—H4B108.4
C8—N3—H3A120.0C5—C4—H4B108.4
C8—N3—H3B120.0H4A—C4—H4B107.4
H3A—N3—H3B120.0C6—C5—C4115.88 (13)
C2—C1—C8109.15 (9)C6—C5—H5A108.3
C2—C1—C7115.16 (9)C4—C5—H5A108.3
C8—C1—C7108.17 (9)C6—C5—H5B108.3
C2—C1—H1A108.1C4—C5—H5B108.3
C8—C1—H1A108.1H5A—C5—H5B107.4
C7—C1—H1A108.1C5—C6—C7114.75 (13)
O1—C2—C1105.47 (8)C5—C6—H6A108.6
O1—C2—C3110.34 (10)C7—C6—H6A108.6
C1—C2—C3115.30 (11)C5—C6—H6B108.6
O1—C2—H2108.5C7—C6—H6B108.6
C1—C2—H2108.5H6A—C6—H6B107.6
C3—C2—H2108.5C6—C7—C1113.94 (10)
C4—C3—C2113.55 (12)C6—C7—H7A108.8
C4—C3—H3C108.9C1—C7—H7A108.8
C2—C3—H3C108.9C6—C7—H7B108.8
C4—C3—H3D108.9C1—C7—H7B108.8
C2—C3—H3D108.9H7A—C7—H7B107.7
H3C—C3—H3D107.7O2—C8—N3122.17 (10)
C3—C4—C5115.62 (14)O2—C8—C1120.18 (10)
C3—C4—H4A108.4N3—C8—C1117.63 (9)
C5—C4—H4A108.4
C8—C1—C2—O164.31 (11)C4—C5—C6—C740.1 (2)
C7—C1—C2—O1173.84 (9)C5—C6—C7—C188.39 (15)
C8—C1—C2—C3173.70 (10)C2—C1—C7—C670.69 (13)
C7—C1—C2—C351.85 (13)C8—C1—C7—C6166.93 (10)
O1—C2—C3—C4169.75 (12)C2—C1—C8—O276.23 (12)
C1—C2—C3—C470.91 (16)C7—C1—C8—O249.76 (13)
C2—C3—C4—C587.76 (18)C2—C1—C8—N3105.73 (11)
C3—C4—C5—C638.2 (2)C7—C1—C8—N3128.28 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7875 (12)168
N3—H3A···O1ii0.862.132.9883 (14)177
N3—H3B···O2iii0.862.092.9459 (13)173
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2; (iii) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H15NO2
Mr157.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.248 (1), 19.679 (3), 10.581 (1)
V3)1717.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.50 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
DATCOR (Reibenspies, 1989)
Tmin, Tmax0.876, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6109, 2969, 1666
Rint0.022
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.145, 0.85
No. of reflections2969
No. of parameters101
No. of restraints139
H-atom treatmentRiding
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: CAD-4 EXPRESS, XCAD4 (Harms 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7875 (12)167.8
N3—H3A···O1ii0.862.132.9883 (14)177.1
N3—H3B···O2iii0.862.092.9459 (13)172.6
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+3/2; (iii) x1/2, y, z+3/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds