Download citation
Download citation
link to html
The structure of the supramolecular complex calcium-tri­fluoro­methane­sulfonate-1,3-di-4-pyridyl­urea-methanol (1/2/2/4), Ca2+·2CF3SO3-·2C11H10N4O·4CH4O, is presented. The Ca2+ ion lies on an inversion centre and is octahedrally coordinated by four methanol mol­ecules and two tri­fluoro­methane­sulfonate counter-ions. The molecular packing is dominated by hydrogen-bonded sheets in the (110) plane which contain R44(32) rings; in these rings, significant [pi]-[pi] interactions are observed between inversion-related 1,3-di-4-pyridyl­urea mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011454/de1212sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011454/de1212Isup2.hkl
Contains datablock I

CCDC reference: 221064

Comment top

Functional supramolecular architectures as constitutionally dynamic adaptative materials have emerged as a major field in supramolecular chemistry, geared towards the design of self-organizing nanosystems of increasing complexity (Lehn, 2000a,b, 2002; Funeriu et al., 2001). The self-assembly of different entities is based both on the implementation of ligands containing specific molecular information stored in the arrangement of suitable binding sites and on complexed ions reading out the structural information through the algorithm defined by their recognition geometry. Of special interest are so-called hereon–heteroditopic ligand systems, containing different binding units that can combine to form different superstructures according to the specific interaction involved (Funeriu et al., 2001).

We consider in this context the 1,3-di-4-pyridylurea ligand, L, in which the available urea and pyridine moities are covalently linked. We reasoned that, by an appropriate choice of these binding units and of a specific metal salt, we could obtain, under specific conditions, a supramolecular structure (output device). The different interaction types (subprograms) involved are (a) pyridine–metal coordination (Scudder et al., 1999; Lu et al., 2001), (b) metal–anion association (coordination), (c) urea–anion complexation (Scheerder et al., 1996) and (d) urea head-to-tail association (Etter, 1990). These interactions combine either in an independent way (linear combination) or by a crossover with interference between the individual subprograms.

The structure of the complex of L with CaTf2(methanol)4 (Tf = CF3SO3) was determined from a crystal obtained in a methanol/diisopropyl ether (1:1) solution at room temperature. This complex proves to be an intriguing coordination polymer with a novel architecture and results from the crossover of the simultaneous independent trifluoromethanesulfonate–urea and trifluoromethanesulfonate–Ca2+ complexation subprograms.

The molecular structure of (I) is presented in Fig. 1. The unit cell contains two L ligands, one Ca2+ cation on an inversion centre, two trifluoromethanesulfonate counter-ions and four methanol molecules. The unique L ligand has an almost planar conformation; the angle between the two pyridyl rings is 4.28 (10)°. Two inversion-related Tf ions are coordinated to the Ca2+ cation and octahedral coordination at Ca is completed by two pairs of inversion-relate methanol molecules; pertinent dimensions are given in Table 1. The inversion-related L ligands are linked to the Tf ion by pairs of N—H···O hydrogen bonds, as shown in Fig. 1; hydrogen-bond geometry details are given in Table 2. Possibly assisting the retention of this structure are C—H···O contacts (Table 2) between C3—H3A and O12 (at 2 − x, −y, −z)

The crystal structure contains sheets of molecules lying in the (110) plane (Fig. 2). A feature of this sheet structure is the R(32)44 (Bernstein et al., 1995) hydrogen-bonded ring system, which is shown in more detail in Fig. 3. Infinite chains are thus generated which are further linked to yield the sheet structure by Tf–Ca2+–Tf moieties. The R(32)44 ring is stabilized by significant ππ interactions between inversion-related L ligands; details of the overlap are shown in Fig. 4, where the shortest intermolecular C···C distance is 3.388 (2) Å between C14 and C26 at (1 − x, 1 − y, 1 − z).

Experimental top

A solution of L (20 mg, 0.09 mmol) in methanol (1 ml) was added to a solution of CaTf2 (17.6 mg, 0.09 mmol) in methanol (1 ml) and the mixture was heated for 2 h at 333 K. Single crystals of the LCaTf2 complex were obtained by slow diffusion of diisopropyl ether as non-solvent into the resulting methanol solution at room temperature.

Refinement top

For simplicity, the atoms were positioned in the cell so that the ππ interaction was between molecules of the ligand L related by the inversion centre at (1/2,0.5, 1/2). All H atoms were located in difference maps and subsequently allowed for as riding atoms, with C—H = 0.93 and 0.96 Å, N—H = 0.86 Å and O—H = 0.82 Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001), SHELXL97 (Sheldrick, 1997) and WinGX (Version 1.64.05; Farrugia, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing displacement ellipsoids at the 30% probability level. [Symmetry code: (a) 2 − x,-y,-z.]
[Figure 2] Fig. 2. A view of part of the (110) sheet structure. For clarity, F atoms of the CF3 moieties and H atoms not involved in the hydrogen bonding are not shown. [Symmetry codes: (*) 1 − x, 1 − y, 1 − z; ($) x, y, −1 + z; (#) 1 − x, 1 − y, −z; (&) x, y, 1 + z.]
[Figure 3] Fig. 3. A detailed view of the R(32)44 ring. For clarity, H atoms not involved in the hydrogen bonding and the CF3 moieties are not shown. The symmetry codes are as in Fig. 2.
[Figure 4] Fig. 4. A view normal to the best plane through the L ligand, showing ring overlap. The symmetry code is as in Fig. 2.
(I) top
Crystal data top
Ca2+·2CF3O3S·2C11H10N4O·4CH4OZ = 1
Mr = 894.84F(000) = 462
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.157 (1) ÅCell parameters from 4175 reflections
b = 9.768 (1) Åθ = 1.8–23.2°
c = 11.366 (2) ŵ = 0.36 mm1
α = 98.95 (1)°T = 173 K
β = 97.14 (1)°Prism, colourless
γ = 94.03 (1)°0.30 × 0.30 × 0.25 mm
V = 992.3 (2) Å3
Data collection top
Xcalibur CCD
diffractometer
2931 reflections with I > 2σ(I)
Detector resolution: 17 pixels mm-1Rint = 0.030
area–detector scansθmax = 28.5°, θmin = 3.2°
Absorption correction: gaussian
(Schwarzenbach & Flack, 1991)
h = 1312
Tmin = 0.900, Tmax = 0.910k = 1213
17908 measured reflectionsl = 1716
5013 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.023P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.70(Δ/σ)max = 0.002
6255 reflectionsΔρmax = 0.26 e Å3
264 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Crystal data top
Ca2+·2CF3O3S·2C11H10N4O·4CH4Oγ = 94.03 (1)°
Mr = 894.84V = 992.3 (2) Å3
Triclinic, P1Z = 1
a = 9.157 (1) ÅMo Kα radiation
b = 9.768 (1) ŵ = 0.36 mm1
c = 11.366 (2) ÅT = 173 K
α = 98.95 (1)°0.30 × 0.30 × 0.25 mm
β = 97.14 (1)°
Data collection top
Xcalibur CCD
diffractometer
5013 independent reflections
Absorption correction: gaussian
(Schwarzenbach & Flack, 1991)
2931 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.910Rint = 0.030
17908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.70Δρmax = 0.26 e Å3
6255 reflectionsΔρmin = 0.31 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca11.00000.00000.00000.02014 (11)
O21.13628 (12)0.20800 (12)0.01142 (11)0.0316 (3)
H21.10870.24720.06790.047*
C21.28346 (19)0.26111 (19)0.03850 (17)0.0423 (5)
H2B1.30850.23000.11390.063*
H2C1.29070.36100.05110.063*
H2D1.35040.22820.01590.063*
O30.85768 (12)0.01471 (11)0.18068 (10)0.0302 (3)
H30.80030.07480.18670.045*
C30.8362 (2)0.08435 (19)0.28842 (16)0.0440 (5)
H3A0.88930.16340.27620.066*
H3B0.87190.04290.35180.066*
H3C0.73270.11370.31000.066*
S10.75716 (5)0.20720 (4)0.18066 (4)0.02909 (11)
F10.56130 (14)0.12817 (13)0.30814 (11)0.0658 (4)
F20.69659 (14)0.03200 (12)0.24689 (12)0.0649 (4)
F30.52539 (13)0.02686 (12)0.12473 (11)0.0585 (3)
O110.82191 (13)0.13343 (12)0.08232 (11)0.0384 (3)
O120.85742 (13)0.24608 (13)0.29065 (11)0.0479 (4)
O130.66623 (13)0.31371 (12)0.14929 (11)0.0397 (3)
C40.6278 (2)0.07484 (19)0.21640 (17)0.0372 (4)
O10.68198 (14)0.62088 (12)0.57166 (10)0.0406 (3)
N10.80701 (14)0.44014 (13)0.49423 (12)0.0264 (3)
H10.82110.39030.42800.032*
N20.64656 (14)0.54022 (13)0.36927 (11)0.0247 (3)
H2A0.67170.47840.31480.030*
C10.70925 (17)0.54100 (16)0.48560 (14)0.0249 (4)
N111.04683 (17)0.33489 (17)0.80203 (15)0.0443 (4)
C121.0463 (2)0.2641 (2)0.69164 (19)0.0440 (5)
H121.10120.18750.68340.053*
C130.97008 (19)0.29712 (18)0.58935 (17)0.0366 (4)
H130.97490.24450.51460.044*
C140.88485 (18)0.41131 (16)0.59933 (15)0.0273 (4)
C150.8866 (2)0.48728 (18)0.71277 (16)0.0369 (4)
H15A0.83440.56550.72390.044*
C160.9673 (2)0.4449 (2)0.80916 (17)0.0453 (5)
H160.96650.49680.88490.054*
N210.34134 (15)0.80415 (13)0.23998 (12)0.0290 (3)
C220.39556 (18)0.70308 (17)0.16774 (15)0.0298 (4)
H220.36380.69150.08560.036*
C230.49556 (18)0.61560 (16)0.20837 (14)0.0268 (4)
H230.52920.54730.15440.032*
C240.54559 (17)0.63065 (15)0.33099 (14)0.0221 (3)
C250.49125 (17)0.73559 (16)0.40699 (15)0.0274 (4)
H250.52160.75050.48950.033*
C260.39121 (18)0.81690 (17)0.35664 (15)0.0309 (4)
H260.35580.88620.40850.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0210 (2)0.0206 (2)0.0195 (2)0.00650 (19)0.00356 (19)0.00260 (19)
O20.0278 (6)0.0319 (7)0.0356 (7)0.0010 (5)0.0039 (5)0.0152 (5)
C20.0313 (10)0.0484 (12)0.0451 (12)0.0030 (9)0.0015 (9)0.0096 (10)
O30.0346 (7)0.0272 (6)0.0269 (6)0.0134 (5)0.0039 (5)0.0005 (5)
C30.0479 (12)0.0412 (11)0.0366 (11)0.0204 (10)0.0074 (9)0.0102 (9)
S10.0281 (2)0.0289 (2)0.0310 (2)0.01003 (19)0.00934 (19)0.00035 (19)
F10.0703 (9)0.0724 (9)0.0609 (8)0.0060 (7)0.0448 (7)0.0022 (7)
F20.0687 (9)0.0522 (8)0.0868 (10)0.0212 (7)0.0182 (8)0.0386 (7)
F30.0474 (7)0.0568 (8)0.0645 (8)0.0099 (6)0.0034 (6)0.0042 (6)
O110.0409 (7)0.0378 (7)0.0403 (7)0.0154 (6)0.0215 (6)0.0006 (6)
O120.0359 (8)0.0566 (9)0.0434 (8)0.0092 (7)0.0030 (6)0.0116 (7)
O130.0471 (8)0.0317 (7)0.0452 (8)0.0209 (6)0.0145 (6)0.0073 (6)
C40.0368 (11)0.0424 (11)0.0369 (11)0.0136 (9)0.0131 (9)0.0090 (9)
O10.0569 (9)0.0375 (7)0.0254 (7)0.0237 (7)0.0039 (6)0.0026 (6)
N10.0299 (8)0.0268 (7)0.0235 (7)0.0098 (6)0.0020 (6)0.0058 (6)
N20.0290 (8)0.0246 (7)0.0207 (7)0.0120 (6)0.0018 (6)0.0017 (6)
C10.0271 (9)0.0214 (8)0.0267 (9)0.0038 (7)0.0005 (7)0.0070 (7)
N110.0397 (10)0.0460 (10)0.0483 (11)0.0028 (8)0.0086 (8)0.0262 (9)
C120.0330 (11)0.0436 (12)0.0604 (14)0.0092 (9)0.0010 (10)0.0273 (11)
C130.0324 (10)0.0391 (11)0.0418 (11)0.0109 (9)0.0022 (9)0.0162 (9)
C140.0252 (9)0.0257 (9)0.0326 (10)0.0001 (7)0.0007 (7)0.0136 (7)
C150.0460 (12)0.0319 (10)0.0322 (10)0.0040 (9)0.0047 (9)0.0108 (8)
C160.0584 (13)0.0417 (12)0.0336 (11)0.0018 (10)0.0090 (10)0.0141 (9)
N210.0297 (8)0.0268 (8)0.0321 (8)0.0086 (6)0.0021 (7)0.0088 (6)
C220.0339 (10)0.0293 (9)0.0264 (9)0.0053 (8)0.0007 (8)0.0069 (7)
C230.0323 (9)0.0242 (8)0.0243 (9)0.0085 (7)0.0031 (7)0.0031 (7)
C240.0228 (8)0.0194 (8)0.0249 (9)0.0027 (6)0.0039 (7)0.0053 (7)
C250.0299 (9)0.0286 (9)0.0234 (9)0.0087 (7)0.0013 (7)0.0026 (7)
C260.0338 (10)0.0268 (9)0.0335 (10)0.0111 (8)0.0070 (8)0.0032 (8)
Geometric parameters (Å, º) top
Ca1—O22.3384 (11)N2—C11.3731 (19)
Ca1—O32.3215 (11)N2—C241.3996 (18)
Ca1—O112.3521 (11)N2—H2A0.86
O2—C21.4239 (19)N11—C121.334 (2)
O2—H20.82N11—C161.337 (2)
C2—H2B0.96C12—C131.375 (2)
C2—H2C0.96C12—H120.93
C2—H2D0.96C13—C141.404 (2)
O3—C31.4209 (19)C13—H130.93
O3—H30.82C14—C151.382 (2)
C3—H3A0.96C15—C161.379 (2)
C3—H3B0.96C15—H15A0.93
C3—H3C0.96C16—H160.93
S1—O131.4375 (11)N21—C261.331 (2)
S1—O121.4381 (13)N21—C221.3466 (19)
S1—O111.4471 (11)C22—C231.382 (2)
S1—C41.818 (2)C22—H220.93
F1—C41.3280 (19)C23—C241.394 (2)
F2—C41.3252 (19)C23—H230.93
F3—C41.315 (2)C24—C251.395 (2)
O1—C11.2160 (18)C25—C261.382 (2)
N1—C11.3834 (18)C25—H250.93
N1—C141.3913 (19)C26—H260.93
N1—H10.86
O3—Ca1—O289.42 (4)C1—N2—H2A116.9
O3—Ca1—O1183.08 (4)C24—N2—H2A116.9
O2—Ca1—O1188.24 (4)O1—C1—N2124.02 (14)
O3i—Ca1—O1196.92 (4)O1—C1—N1123.58 (15)
O2i—Ca1—O1191.76 (4)N2—C1—N1112.40 (14)
O11i—Ca1—O11180C12—N11—C16115.60 (16)
C2—O2—H2109.5N11—C12—C13124.31 (17)
O2—C2—H2B109.5N11—C12—H12117.8
O2—C2—H2C109.5C13—C12—H12117.8
H2B—C2—H2C109.5C12—C13—C14119.08 (18)
O2—C2—H2D109.5C12—C13—H13120.5
H2B—C2—H2D109.5C14—C13—H13120.5
H2C—C2—H2D109.5C15—C14—N1125.20 (14)
C3—O3—H3109.5C15—C14—C13117.27 (16)
O3—C3—H3A109.5N1—C14—C13117.53 (15)
O3—C3—H3B109.5C16—C15—C14118.72 (17)
H3A—C3—H3B109.5C16—C15—H15A120.6
O3—C3—H3C109.5C14—C15—H15A120.6
H3A—C3—H3C109.5N11—C16—C15124.99 (18)
H3B—C3—H3C109.5N11—C16—H16117.5
O13—S1—O12114.92 (8)C15—C16—H16117.5
O13—S1—O11114.99 (7)C26—N21—C22115.56 (13)
O12—S1—O11114.24 (7)N21—C22—C23123.95 (15)
O13—S1—C4104.20 (8)N21—C22—H22118.0
O12—S1—C4103.04 (9)C23—C22—H22118.0
O11—S1—C4103.28 (8)C22—C23—C24119.40 (15)
S1—O11—Ca1153.75 (8)C22—C23—H23120.3
F3—C4—F2107.80 (16)C24—C23—H23120.3
F3—C4—F1108.07 (15)C23—C24—C25117.36 (14)
F2—C4—F1108.13 (15)C23—C24—N2117.99 (13)
F3—C4—S1111.69 (13)C25—C24—N2124.64 (14)
F2—C4—S1111.16 (13)C26—C25—C24118.38 (15)
F1—C4—S1109.87 (13)C26—C25—H25120.8
C1—N1—C14126.53 (14)C24—C25—H25120.8
C1—N1—H1116.7N21—C26—C25125.36 (15)
C14—N1—H1116.7N21—C26—H26117.3
C1—N2—C24126.11 (13)C25—C26—H26117.3
O13—S1—O11—Ca1156.19 (15)N11—C12—C13—C140.8 (3)
O12—S1—O11—Ca120.2 (2)C1—N1—C14—C155.8 (3)
C4—S1—O11—Ca190.98 (18)C1—N1—C14—C13175.15 (16)
O3i—Ca1—O11—S10.18 (18)C12—C13—C14—C152.0 (3)
O2i—Ca1—O11—S189.45 (17)C12—C13—C14—N1178.86 (16)
O13—S1—C4—F359.24 (14)N1—C14—C15—C16179.02 (16)
O12—S1—C4—F3179.56 (12)C13—C14—C15—C161.9 (3)
O11—S1—C4—F361.25 (14)C12—N11—C16—C150.6 (3)
O13—S1—C4—F2179.69 (13)C14—C15—C16—N110.6 (3)
O12—S1—C4—F260.00 (14)C26—N21—C22—C230.4 (2)
O11—S1—C4—F259.19 (15)N21—C22—C23—C240.2 (3)
O13—S1—C4—F160.66 (14)C22—C23—C24—C250.3 (2)
O12—S1—C4—F159.65 (14)C22—C23—C24—N2179.86 (14)
O11—S1—C4—F1178.84 (12)C1—N2—C24—C23178.92 (15)
C24—N2—C1—O11.3 (3)C1—N2—C24—C250.9 (3)
C24—N2—C1—N1178.88 (14)C23—C24—C25—C260.4 (2)
C14—N1—C1—O11.9 (3)N2—C24—C25—C26179.70 (15)
C14—N1—C1—N2177.95 (14)C22—N21—C26—C250.3 (3)
C16—N11—C12—C130.6 (3)C24—C25—C26—N210.2 (3)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.862.012.8608 (18)170
N2—H2A···O130.862.273.1025 (17)163
C3—H3A···O12i0.962.523.316 (2)140
O2—H2···N11ii0.821.872.6891 (18)179
O3—H3···N21iii0.821.922.7250 (16)167
Symmetry codes: (i) x+2, y, z; (ii) x, y, z1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaCa2+·2CF3O3S·2C11H10N4O·4CH4O
Mr894.84
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.157 (1), 9.768 (1), 11.366 (2)
α, β, γ (°)98.95 (1), 97.14 (1), 94.03 (1)
V3)992.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerXcalibur CCD
diffractometer
Absorption correctionGaussian
(Schwarzenbach & Flack, 1991)
Tmin, Tmax0.900, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
17908, 5013, 2931
Rint0.030
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.066, 0.70
No. of reflections6255
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis RED (Oxford Diffraction, 2002), CrysAlis RED (2002), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), SHELXL97 (Sheldrick, 1997) and WinGX (Version 1.64.05; Farrugia, 1997), PLATON (Spek, 2003), PLATON.

Selected bond lengths (Å) top
Ca1—O22.3384 (11)N1—C11.3834 (18)
Ca1—O32.3215 (11)N1—C141.3913 (19)
Ca1—O112.3521 (11)N2—C11.3731 (19)
O1—C11.2160 (18)N2—C241.3996 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O120.862.012.8608 (18)170
N2—H2A···O130.862.273.1025 (17)163
C3—H3A···O12i0.962.523.316 (2)140
O2—H2···N11ii0.821.872.6891 (18)179
O3—H3···N21iii0.821.922.7250 (16)167
Symmetry codes: (i) x+2, y, z; (ii) x, y, z1; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds