Download citation
Download citation
link to html
The title compound, C36H28O4P2·CH4O, was synthesized directly from the methoxy analogue. The crystal structure shows that one OH group interacts with an O atom of a phosphine oxide group in an adjacent mol­ecule, while the other OH group complexes with the methanol solvent molecule via intermolecular hydrogen bonds. An O atom of one phosphine oxide group interacts with the hydroxy H atom of methanol via a hydrogen bond. There are intra- and intermolecular π–π interactions between the phenyl rings. All these interactions result in the formation of supramolecular chiral parallelogram channels via self-assembly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102021042/de1193sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102021042/de1193Isup2.hkl
Contains datablock I

CCDC reference: 204048

Comment top

Chiral bidentate phosphines are among the most important auxiliaries in enantioselective homogeneous catalysis. The atropisomeric diphosphine ligands, such as Noyori's BINAP (Noyori, 1989; Noyori & Takaya, 1990) and Schmid's BIPHEP classes (Schmid et al., 1988, 1991, 1996) have been widely applied in asymmetric catalysis, especially in hydrogenation, and excellent results have been achieved.

The theories of supramolecular chemistry and crystal engineering inspire the design of microporous layers employing self-assembly of molecular subunits (tectons), driven by non-covalent interactions as the synthetic tool (Moulton & Zaworotko, 2001). In this paper, the synthesis of the title compound, (I), a derivative of (R)-(6,6'-methoxybiphenyl-2,2'-diyl)bis(diphenylphosphine oxide), MeO-BIPHEPO, is described. The compound can be used as a building block for the synthesis of new diphosphine ligands. \sch

In the crystal of (I), there are three kinds of hydrogen bonds (Fig. 1). In the first, the O1—H1 group of one molecule of (I) interacts with atom O4 of a phosphine oxide group in an adjacent molecule, with O1—H1···O4A 2.648 Å. In the second, the O2—H2B group in (I) with atom O5B in the CH3OH solvate, with O2—H2B···O5B 2.669 Å. In the third, atom O3 of the phosphine oxide group interacts with H5—O5 in the CH3OH solvate, with O3···H5—O5 2.656 Å.

In addition to these hydrogen bonds, there are intra- and intermolecular ππ interactions between the phenyl rings of (I). The distance between the centroid of ring C1—C6 (CgA) and that of ring C25—C30 (CgB) is 3.568 Å, and the angle between the two ring planes of this intramolecular ππ stacking interaction is 13.7°. The phenyl rings C7—C12 (CgC) and C31—C36 (CgD) are also involved in a weak intramolecular ππ stacking interaction, with CgC···CgD 4.912 Å and with the angle between the two planes being 179.9°. There are also ππ stacking interactions between the phenyl rings of the Ph2PO groups and the equivalent phenyl rings in an adjacent molecule. The shortest of these has a distance between the two symmetry-related phenyl rings of 4.339 Å and an angle of 162.1° (Table 1 and Fig. 1).

Through these rich hydrogen-bonding interactions, every molecule of (I) is linked to four adjacent molecules. Furthermore, a three-dimensional supramolecular chiral parallelogram channel (cavity demension ca 9.2 × 6.7 Å2) along the crystallographic a axis, having the empirical formula C36H28O4P2·CH3OH, is constructed via self-assembly (Figs. 2 and 3). These channels are divided into mini compartments by the phenyl groups linked to the P atoms. This result suggests a novel approach to the design of chiral microporous structures containing P atoms.

Experimental top

The preparation of (I) proceeded as follows. A solution of (R)-(6,6'-methoxybiphenyl-2,2'-diyl)bis(diphenylphosphine oxide) (1 g, 1.6 mmol) in CH2Cl2 (20 ml) was cooled to 195 K. To this solution, BBr3 (1.6 g, 6.4 mmol) was added via a syringe over 30 min. The mixture was stirred at 195 K for 1 hr, and then slowly warmed to room temperature and reacted overnight. After cooling the mixture to 273 K, water was added slowly and the aqueous layer was removed via a cannula. The organic layer was mixed with methanol and dichloromethane (Ratio?). The resulting solution was dried over Na2SO4 and evaporated to dryness to give the raw product, which was purified by silica-gel column chromatography with CHCl3 and CH3OH (Ratio?). Spectroscopic analysis: 1H NMR (DMSO, 500 MHz, δ, p.p.m.): 6.5–6.7 (dd, 2H, J = 7.5 Hz,), 6.6–6.8 (d, 2H, J = 8 Hz), 7.0–7.1 (m, 2H), 7.3–7.7 (m, 20H); 31P NMR (DMSO, δ, p.p.m.): 29.2; high-resolution MS: 586.1439; calculated for C36H28P2O4: 586.1463.

Refinement top

H atoms were placed in their geometrically calculated positions and included in the final refinement in the riding model approximation, with O—H distances of 0.82 Å and C—H distances in the range 0.93–0.98 Å. Is this added text correct?

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL-NT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with displacement ellipsoids at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of the crystal of (I) along the a axis. For clarity, the four phenyl rings connected to the P atoms have been omitted.
[Figure 3] Fig. 3. The packing of the crystal of (I) along the (111) direction. For clarity, the four phenyl rings connected to the P atoms have been omitted.
(R)-(6,6'-dihydroxybiphenyl-2,2'-diyl)bis(diphenylphosphine oxide) top
Crystal data top
C36H28O4P2·CH4ODx = 1.326 Mg m3
Mr = 618.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5948 reflections
a = 9.9351 (16) Åθ = 1.0–27.5°
b = 11.1490 (17) ŵ = 0.18 mm1
c = 27.977 (4) ÅT = 294 K
V = 3098.9 (8) Å3Plate, colourless
Z = 40.26 × 0.24 × 0.10 mm
F(000) = 1296
Data collection top
Bruker Model CCD area-detector
diffractometer
7141 independent reflections
Radiation source: fine-focus sealed tube3814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(SAINT; Siemens, 1995)
h = 1212
Tmin = 0.954, Tmax = 0.982k = 1410
21252 measured reflectionsl = 3536
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.001
7141 reflectionsΔρmax = 0.25 e Å3
400 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), with 3113 Friedel pairs Is this correct
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (8)
Crystal data top
C36H28O4P2·CH4OV = 3098.9 (8) Å3
Mr = 618.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9351 (16) ŵ = 0.18 mm1
b = 11.1490 (17) ÅT = 294 K
c = 27.977 (4) Å0.26 × 0.24 × 0.10 mm
Data collection top
Bruker Model CCD area-detector
diffractometer
7141 independent reflections
Absorption correction: empirical (using intensity measurements)
(SAINT; Siemens, 1995)
3814 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.982Rint = 0.066
21252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.25 e Å3
S = 0.83Δρmin = 0.24 e Å3
7141 reflectionsAbsolute structure: Flack (1983), with 3113 Friedel pairs Is this correct
400 parametersAbsolute structure parameter: 0.06 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.28454 (7)0.93328 (7)0.80954 (2)0.03429 (18)
P20.52558 (8)1.07782 (8)0.95518 (2)0.0418 (2)
O10.24160 (19)1.27489 (17)0.93534 (6)0.0511 (6)
H10.19571.29430.95840.077*
O20.30313 (19)1.25192 (18)0.79898 (6)0.0506 (5)
H2B0.31571.30670.77990.076*
O30.41916 (19)0.97721 (16)0.79465 (6)0.0423 (5)
O40.5903 (2)1.15499 (18)0.99192 (6)0.0571 (6)
C10.1984 (3)1.0284 (2)0.85186 (8)0.0298 (6)
C20.0626 (3)1.0025 (2)0.85959 (9)0.0374 (7)
H2A0.02090.94330.84150.045*
C30.0106 (3)1.0634 (3)0.89371 (8)0.0423 (7)
H3A0.10041.04390.89880.051*
C40.0488 (3)1.1532 (3)0.92028 (9)0.0409 (7)
H4A0.00011.19310.94370.049*
C50.1807 (3)1.1831 (2)0.91184 (9)0.0351 (7)
C60.2595 (2)1.1215 (2)0.87798 (8)0.0273 (6)
C70.3981 (3)1.1681 (2)0.86871 (9)0.0308 (7)
C80.4137 (3)1.2389 (2)0.82709 (9)0.0317 (7)
C90.5337 (3)1.2933 (2)0.81631 (9)0.0394 (7)
H9A0.54141.33950.78880.047*
C100.6433 (3)1.2796 (3)0.84625 (10)0.0452 (8)
H10A0.72491.31600.83890.054*
C110.6305 (3)1.2118 (2)0.88690 (9)0.0410 (8)
H11A0.70461.20210.90680.049*
C120.5089 (3)1.1568 (2)0.89915 (8)0.0330 (7)
C130.1708 (3)0.9193 (3)0.75935 (8)0.0356 (7)
C140.1599 (3)1.0161 (3)0.72887 (10)0.0521 (9)
H14A0.20871.08570.73500.063*
C150.0765 (4)1.0103 (3)0.68903 (11)0.0634 (10)
H15A0.06881.07610.66880.076*
C160.0056 (3)0.9076 (3)0.67959 (10)0.0591 (9)
H16A0.04940.90340.65270.071*
C170.0155 (3)0.8117 (3)0.70946 (10)0.0545 (9)
H17A0.03330.74230.70300.065*
C180.0985 (3)0.8169 (3)0.74974 (10)0.0448 (8)
H18A0.10490.75110.77000.054*
C190.2971 (3)0.7846 (2)0.83587 (9)0.0422 (8)
C200.2041 (3)0.7330 (3)0.86620 (10)0.0510 (8)
H20A0.12720.77590.87440.061*
C210.2220 (4)0.6202 (3)0.88450 (11)0.0635 (10)
H21A0.15830.58800.90520.076*
C220.3334 (4)0.5547 (3)0.87240 (13)0.0793 (12)
H22A0.34460.47750.88430.095*
C230.4277 (4)0.6030 (3)0.84282 (14)0.0826 (12)
H23A0.50440.55930.83500.099*
C240.4098 (3)0.7183 (3)0.82406 (11)0.0617 (9)
H24A0.47410.75050.80350.074*
C250.3697 (3)1.0198 (3)0.97765 (9)0.0408 (8)
C260.3126 (3)1.0775 (3)1.01647 (10)0.0617 (9)
H26A0.35541.14331.03010.074*
C270.1912 (4)1.0371 (3)1.03490 (11)0.0724 (11)
H27A0.15271.07631.06090.087*
C280.1276 (3)0.9405 (3)1.01538 (11)0.0631 (10)
H28A0.04610.91411.02790.076*
C290.1843 (3)0.8829 (3)0.97741 (10)0.0527 (9)
H29A0.14100.81700.96400.063*
C300.3048 (3)0.9212 (3)0.95875 (9)0.0423 (7)
H30A0.34290.88040.93310.051*
C310.6339 (3)0.9540 (2)0.94028 (9)0.0398 (7)
C320.6311 (3)0.8975 (3)0.89636 (11)0.0562 (9)
H32A0.56860.92160.87350.067*
C330.7196 (4)0.8060 (3)0.88585 (12)0.0695 (10)
H33A0.71640.76860.85620.083*
C340.8122 (4)0.7701 (3)0.91921 (14)0.0705 (10)
H34A0.87110.70770.91240.085*
C350.8176 (3)0.8258 (3)0.96211 (13)0.0679 (11)
H35A0.88170.80220.98440.081*
C360.7292 (3)0.9175 (3)0.97322 (10)0.0546 (8)
H36A0.73380.95461.00290.066*
O50.6678 (2)0.9158 (2)0.76975 (8)0.0618 (6)
H50.59170.93760.77710.150*
C370.7566 (4)1.0118 (3)0.77421 (12)0.0755 (11)
H37A0.73961.06610.74830.091*
H37B0.84880.98030.77110.120*
H37C0.76521.05810.80380.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0323 (4)0.0352 (4)0.0353 (4)0.0000 (4)0.0001 (3)0.0050 (4)
P20.0446 (5)0.0492 (5)0.0316 (4)0.0078 (4)0.0057 (4)0.0040 (4)
O10.0561 (15)0.0477 (13)0.0494 (13)0.0101 (11)0.0190 (10)0.0252 (11)
O20.0407 (13)0.0553 (14)0.0558 (13)0.0060 (11)0.0063 (11)0.0220 (11)
O30.0302 (11)0.0482 (13)0.0485 (11)0.0006 (9)0.0052 (9)0.0118 (10)
O40.0619 (15)0.0714 (15)0.0382 (11)0.0172 (12)0.0132 (11)0.0136 (11)
C10.0277 (17)0.0341 (16)0.0275 (13)0.0016 (13)0.0007 (13)0.0016 (12)
C20.0317 (19)0.0397 (18)0.0409 (16)0.0041 (13)0.0036 (14)0.0046 (14)
C30.0288 (17)0.053 (2)0.0450 (16)0.0005 (17)0.0097 (14)0.0022 (17)
C40.0350 (19)0.044 (2)0.0434 (17)0.0016 (15)0.0104 (15)0.0048 (15)
C50.0385 (19)0.0363 (18)0.0305 (15)0.0021 (15)0.0064 (14)0.0036 (14)
C60.0260 (16)0.0303 (15)0.0258 (14)0.0010 (12)0.0023 (12)0.0019 (12)
C70.0323 (18)0.0309 (16)0.0292 (15)0.0006 (13)0.0051 (13)0.0078 (13)
C80.0300 (18)0.0293 (16)0.0359 (16)0.0008 (14)0.0002 (14)0.0046 (14)
C90.0394 (18)0.0405 (18)0.0383 (16)0.0038 (15)0.0083 (16)0.0042 (14)
C100.0373 (19)0.048 (2)0.0500 (18)0.0083 (16)0.0076 (16)0.0084 (17)
C110.0330 (19)0.049 (2)0.0412 (17)0.0036 (15)0.0082 (14)0.0024 (16)
C120.0317 (18)0.0352 (17)0.0320 (14)0.0065 (14)0.0002 (14)0.0063 (13)
C130.0318 (16)0.0358 (16)0.0391 (15)0.0008 (15)0.0026 (13)0.0066 (16)
C140.063 (2)0.042 (2)0.0512 (19)0.0020 (17)0.0045 (18)0.0014 (17)
C150.075 (3)0.063 (2)0.051 (2)0.009 (2)0.017 (2)0.0053 (19)
C160.052 (2)0.076 (3)0.0493 (19)0.012 (2)0.0189 (17)0.009 (2)
C170.042 (2)0.064 (2)0.057 (2)0.0043 (18)0.0075 (17)0.0146 (19)
C180.041 (2)0.046 (2)0.0475 (19)0.0011 (16)0.0015 (16)0.0022 (16)
C190.045 (2)0.0396 (18)0.0424 (17)0.0060 (17)0.0082 (15)0.0103 (15)
C200.063 (2)0.041 (2)0.0490 (18)0.0006 (18)0.0035 (18)0.0039 (16)
C210.089 (3)0.049 (2)0.052 (2)0.012 (2)0.005 (2)0.0049 (18)
C220.103 (4)0.046 (3)0.089 (3)0.008 (3)0.026 (3)0.005 (2)
C230.074 (3)0.049 (3)0.125 (3)0.026 (2)0.017 (3)0.005 (2)
C240.060 (3)0.047 (2)0.078 (2)0.0075 (19)0.000 (2)0.0014 (19)
C250.045 (2)0.047 (2)0.0305 (16)0.0049 (15)0.0062 (14)0.0007 (14)
C260.074 (3)0.061 (2)0.0499 (19)0.021 (2)0.0144 (18)0.0167 (19)
C270.078 (3)0.080 (3)0.058 (2)0.012 (2)0.023 (2)0.020 (2)
C280.056 (2)0.072 (3)0.061 (2)0.015 (2)0.0128 (18)0.000 (2)
C290.057 (2)0.051 (2)0.0507 (19)0.0099 (18)0.0035 (18)0.0016 (17)
C300.049 (2)0.0412 (18)0.0370 (15)0.0005 (17)0.0032 (15)0.0024 (16)
C310.0363 (18)0.044 (2)0.0388 (16)0.0051 (15)0.0059 (14)0.0015 (15)
C320.054 (2)0.055 (2)0.059 (2)0.0056 (18)0.0076 (17)0.0063 (18)
C330.071 (3)0.059 (2)0.079 (3)0.007 (2)0.001 (2)0.016 (2)
C340.056 (3)0.054 (2)0.101 (3)0.0078 (19)0.003 (2)0.011 (2)
C350.048 (2)0.078 (3)0.077 (3)0.004 (2)0.013 (2)0.027 (2)
C360.049 (2)0.066 (2)0.0490 (18)0.004 (2)0.0054 (16)0.0135 (18)
O50.0444 (13)0.0692 (15)0.0719 (14)0.0036 (13)0.0100 (12)0.0297 (13)
C370.057 (3)0.079 (3)0.091 (3)0.009 (2)0.002 (2)0.025 (2)
Geometric parameters (Å, º) top
P1—O31.4839 (19)C17—H17A0.9300
P1—C11.805 (3)C18—H18A0.9300
P1—C131.809 (3)C19—C201.381 (4)
P1—C191.818 (3)C19—C241.382 (4)
P2—O41.4866 (18)C20—C211.369 (4)
P2—C251.792 (3)C20—H20A0.9300
P2—C311.800 (3)C21—C221.369 (4)
P2—C121.806 (3)C21—H21A0.9300
O1—C51.359 (3)C22—C231.362 (5)
O1—H10.8200C22—H22A0.9300
O2—C81.359 (3)C23—C241.400 (4)
O2—H2B0.8200C23—H23A0.9300
C1—C21.397 (3)C24—H24A0.9300
C1—C61.407 (3)C25—C301.379 (4)
C2—C31.379 (3)C25—C261.384 (4)
C2—H2A0.9300C26—C271.387 (4)
C3—C41.379 (3)C26—H26A0.9300
C3—H3A0.9300C27—C281.362 (4)
C4—C51.373 (4)C27—H27A0.9300
C4—H4A0.9300C28—C291.363 (4)
C5—C61.407 (3)C28—H28A0.9300
C6—C71.495 (3)C29—C301.375 (4)
C7—C121.397 (3)C29—H29A0.9300
C7—C81.415 (3)C30—H30A0.9300
C8—C91.371 (3)C31—C321.381 (3)
C9—C101.382 (4)C31—C361.382 (3)
C9—H9A0.9300C32—C331.379 (4)
C10—C111.372 (3)C32—H32A0.9300
C10—H10A0.9300C33—C341.370 (4)
C11—C121.397 (3)C33—H33A0.9300
C11—H11A0.9300C34—C351.353 (4)
C13—C181.376 (3)C34—H34A0.9300
C13—C141.380 (3)C35—C361.383 (4)
C14—C151.391 (4)C35—H35A0.9300
C14—H14A0.9300C36—H36A0.9300
C15—C161.370 (4)O5—C371.393 (3)
C15—H15A0.9300O5—H50.8200
C16—C171.361 (4)C37—H37A0.9599
C16—H16A0.9300C37—H37B0.9845
C17—C181.398 (4)C37—H37C0.9802
O3—P1—C1114.67 (12)C13—C18—C17120.0 (3)
O3—P1—C13111.93 (11)C13—C18—H18A120.0
C1—P1—C13105.29 (12)C17—C18—H18A120.0
O3—P1—C19110.66 (13)C20—C19—C24117.8 (3)
C1—P1—C19107.59 (12)C20—C19—P1125.7 (2)
C13—P1—C19106.20 (13)C24—C19—P1116.5 (2)
O4—P2—C25109.90 (12)C21—C20—C19121.7 (3)
O4—P2—C31110.21 (13)C21—C20—H20A119.1
C25—P2—C31108.72 (13)C19—C20—H20A119.1
O4—P2—C12110.95 (12)C22—C21—C20120.2 (3)
C25—P2—C12113.65 (12)C22—C21—H21A119.9
C31—P2—C12103.19 (12)C20—C21—H21A119.9
C5—O1—H1109.5C23—C22—C21119.7 (4)
C8—O2—H2B109.5C23—C22—H22A120.1
C2—C1—C6119.2 (2)C21—C22—H22A120.1
C2—C1—P1116.0 (2)C22—C23—C24120.3 (4)
C6—C1—P1124.7 (2)C22—C23—H23A119.9
C3—C2—C1121.0 (3)C24—C23—H23A119.9
C3—C2—H2A119.5C19—C24—C23120.3 (3)
C1—C2—H2A119.5C19—C24—H24A119.9
C4—C3—C2120.3 (3)C23—C24—H24A119.9
C4—C3—H3A119.8C30—C25—C26118.7 (3)
C2—C3—H3A119.8C30—C25—P2123.9 (2)
C5—C4—C3119.5 (3)C26—C25—P2117.5 (2)
C5—C4—H4A120.3C25—C26—C27119.8 (3)
C3—C4—H4A120.3C25—C26—H26A120.1
O1—C5—C4121.6 (2)C27—C26—H26A120.1
O1—C5—C6116.5 (2)C28—C27—C26120.7 (3)
C4—C5—C6121.9 (3)C28—C27—H27A119.6
C1—C6—C5118.0 (2)C26—C27—H27A119.6
C1—C6—C7124.3 (2)C27—C28—C29119.6 (3)
C5—C6—C7117.3 (2)C27—C28—H28A120.2
C12—C7—C8117.7 (2)C29—C28—H28A120.2
C12—C7—C6126.1 (2)C28—C29—C30120.6 (3)
C8—C7—C6116.0 (2)C28—C29—H29A119.7
O2—C8—C9121.9 (2)C30—C29—H29A119.7
O2—C8—C7116.6 (2)C29—C30—C25120.6 (3)
C9—C8—C7121.5 (2)C29—C30—H30A119.7
C8—C9—C10120.2 (3)C25—C30—H30A119.7
C8—C9—H9A119.9C32—C31—C36118.2 (3)
C10—C9—H9A119.9C32—C31—P2122.9 (2)
C11—C10—C9119.4 (3)C36—C31—P2118.7 (2)
C11—C10—H10A120.3C33—C32—C31120.9 (3)
C9—C10—H10A120.3C33—C32—H32A119.5
C10—C11—C12121.7 (3)C31—C32—H32A119.5
C10—C11—H11A119.2C34—C33—C32119.9 (3)
C12—C11—H11A119.2C34—C33—H33A120.0
C11—C12—C7119.5 (2)C32—C33—H33A120.0
C11—C12—P2110.3 (2)C35—C34—C33119.8 (3)
C7—C12—P2130.2 (2)C35—C34—H34A120.1
C18—C13—C14119.2 (2)C33—C34—H34A120.1
C18—C13—P1123.3 (2)C34—C35—C36120.9 (3)
C14—C13—P1117.5 (2)C34—C35—H35A119.6
C13—C14—C15120.4 (3)C36—C35—H35A119.6
C13—C14—H14A119.8C31—C36—C35120.2 (3)
C15—C14—H14A119.8C31—C36—H36A119.9
C16—C15—C14120.0 (3)C35—C36—H36A119.9
C16—C15—H15A120.0C37—O5—H5109.5
C14—C15—H15A120.0O5—C37—H37A107.7
C17—C16—C15120.1 (3)O5—C37—H37B107.9
C17—C16—H16A120.0H37A—C37—H37B108.8
C15—C16—H16A120.0O5—C37—H37C122.4
C16—C17—C18120.3 (3)H37A—C37—H37C108.8
C16—C17—H17A119.8H37B—C37—H37C100.5
C18—C17—H17A119.8
O3—P1—C1—C2168.16 (18)C18—C13—C14—C150.2 (4)
C13—P1—C1—C244.7 (2)P1—C13—C14—C15178.6 (2)
C19—P1—C1—C268.3 (2)C13—C14—C15—C160.7 (5)
O3—P1—C1—C614.1 (2)C14—C15—C16—C170.7 (5)
C13—P1—C1—C6137.6 (2)C15—C16—C17—C180.4 (5)
C19—P1—C1—C6109.4 (2)C14—C13—C18—C170.1 (4)
C6—C1—C2—C32.7 (4)P1—C13—C18—C17178.2 (2)
P1—C1—C2—C3175.1 (2)C16—C17—C18—C130.0 (4)
C1—C2—C3—C41.3 (4)O3—P1—C19—C20158.7 (2)
C2—C3—C4—C51.3 (4)C1—P1—C19—C2032.7 (3)
C3—C4—C5—O1176.6 (2)C13—P1—C19—C2079.7 (2)
C3—C4—C5—C62.5 (4)O3—P1—C19—C2421.6 (3)
C2—C1—C6—C51.4 (3)C1—P1—C19—C24147.6 (2)
P1—C1—C6—C5176.17 (19)C13—P1—C19—C24100.1 (2)
C2—C1—C6—C7171.9 (2)C24—C19—C20—C210.4 (4)
P1—C1—C6—C710.5 (3)P1—C19—C20—C21179.8 (2)
O1—C5—C6—C1178.0 (2)C19—C20—C21—C220.9 (5)
C4—C5—C6—C11.1 (4)C20—C21—C22—C231.3 (5)
O1—C5—C6—C74.2 (3)C21—C22—C23—C241.2 (6)
C4—C5—C6—C7174.9 (2)C20—C19—C24—C230.4 (4)
C1—C6—C7—C12112.7 (3)P1—C19—C24—C23179.9 (2)
C5—C6—C7—C1273.9 (3)C22—C23—C24—C190.8 (5)
C1—C6—C7—C873.1 (3)O4—P2—C25—C30161.1 (2)
C5—C6—C7—C8100.2 (3)C31—P2—C25—C3040.4 (3)
C12—C7—C8—O2177.8 (2)C12—P2—C25—C3073.9 (3)
C6—C7—C8—O23.1 (3)O4—P2—C25—C2618.5 (3)
C12—C7—C8—C91.0 (4)C31—P2—C25—C26139.2 (2)
C6—C7—C8—C9175.7 (2)C12—P2—C25—C26106.5 (2)
O2—C8—C9—C10178.9 (2)C30—C25—C26—C271.2 (4)
C7—C8—C9—C100.1 (4)P2—C25—C26—C27179.3 (3)
C8—C9—C10—C110.4 (4)C25—C26—C27—C280.3 (5)
C9—C10—C11—C120.6 (4)C26—C27—C28—C290.2 (5)
C10—C11—C12—C71.8 (4)C27—C28—C29—C300.1 (5)
C10—C11—C12—P2178.6 (2)C28—C29—C30—C250.9 (4)
C8—C7—C12—C112.0 (4)C26—C25—C30—C291.5 (4)
C6—C7—C12—C11176.0 (2)P2—C25—C30—C29179.0 (2)
C8—C7—C12—P2178.6 (2)O4—P2—C31—C32152.7 (2)
C6—C7—C12—P24.5 (4)C25—P2—C31—C3286.8 (3)
O4—P2—C12—C1148.3 (2)C12—P2—C31—C3234.2 (3)
C25—P2—C12—C11172.76 (19)O4—P2—C31—C3623.8 (3)
C31—P2—C12—C1169.7 (2)C25—P2—C31—C3696.7 (2)
O4—P2—C12—C7132.2 (2)C12—P2—C31—C36142.3 (2)
C25—P2—C12—C77.8 (3)C36—C31—C32—C330.9 (5)
C31—P2—C12—C7109.8 (3)P2—C31—C32—C33177.5 (2)
O3—P1—C13—C18128.7 (2)C31—C32—C33—C340.2 (5)
C1—P1—C13—C18106.1 (2)C32—C33—C34—C350.9 (5)
C19—P1—C13—C187.8 (3)C33—C34—C35—C361.2 (5)
O3—P1—C13—C1449.6 (2)C32—C31—C36—C350.7 (4)
C1—P1—C13—C1475.6 (2)P2—C31—C36—C35177.3 (2)
C19—P1—C13—C14170.5 (2)C34—C35—C36—C310.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.832.648 (2)177
O2—H2B···O5ii0.821.852.669 (3)172
O5—H5···O30.821.842.656 (3)177
CgA—CgB??3.568 (6)14
CgC—CgD??4.912 (6)180
CgE—CgF??4.339 (8)162
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC36H28O4P2·CH4O
Mr618.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)9.9351 (16), 11.1490 (17), 27.977 (4)
V3)3098.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.26 × 0.24 × 0.10
Data collection
DiffractometerBruker Model CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SAINT; Siemens, 1995)
Tmin, Tmax0.954, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
21252, 7141, 3814
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.075, 0.83
No. of reflections7141
No. of parameters400
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24
Absolute structureFlack (1983), with 3113 Friedel pairs Is this correct
Absolute structure parameter0.06 (8)

Computer programs: SMART (Siemens, 1995), SMART, SHELXTL-NT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.832.648 (2)176.8
O2—H2B···O5ii0.821.852.669 (3)171.6
O5—H5···O30.821.842.656 (3)176.6
CgA—CgB??3.568 (6)13.7
CgC—CgD??4.912 (6)179.9
CgE—CgF??4.339 (8)162.1
Symmetry codes: (i) x1/2, y+5/2, z+2; (ii) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds