Download citation
Download citation
link to html
In the title compound, C23H20N2O2S, the central thieno­pyridine ring system is essentially planar, the dihedral angle between the planes of the two rings being 0.3 (2)°. The terminal ethyl carboxyl­ate group is twisted by 26.7 (3)° away from the central ring system. A short intramolecular hydrogen bond involving the amino N atom and the carbonyl O atom [N...O = 2.806 (4) Å] forms a pseudo-six-membered ring. Significant intermolecular C—H...N, C—H...O and C—H...π interactions contribute strongly to the stability of the structure, along with weak π–π-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102020437/de1192sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020437/de1192Isup2.hkl
Contains datablock I

CCDC reference: 204047

Comment top

Thienopyridines are bicyclic heterocycles in which a thiophene ring is fused to a pyridine ring. Being isoesters of classical quinolines (Friedrichsen, 1984), these compounds show a wide range of pharmaceutical activities, such as antihypertensive (Davis & Fraser, 1987), antimicrobial (Gills et al., 1980) and antiulcer (Briel, 1998) properties. In continuation of our recent studies of the 2-pyridine class of compounds (Patel et al., 2002) to investigate the influence of different substituents upon the structural parameters of the molecule, we report here the crystal and molecular structure of a fused system of a π-deficient pyridine ring and a π-rich thiophene ring, the title compound, (I). \sch

Fig. 1 shows the molecular structure of (I). The molecular dimensions of the thienopyridine ring system are normal, except for a slight deviation observed in the endocyclic angle at C1 of the pyridine ring; the C2—C1—N1 angle is enlarged to 126.7 (3)° (Kvick & Noordik, 1977). The C1—N1—C5 angle of 116.3 (2)° is as expected for a non-protonated ring system, being smaller than 120° (Ghosh & Simonsen, 1993). The C—S bonds [1.739 (3) and 1.742 (3) Å] of the thiophene ring are long compared with the values observed in the free thiophene structure, measured using electron diffraction (1.714 Å; Bonham & Momany, 1963), and in thieno[2,3-c]pyridine [1.728 (1) and 1.731 (1) Å; Nerenz et al., 1997]. The corresponding values in the non-fused system, 2-(2-thienyl)pyridine (Ghosh & Simonsen, 1993), are 1.712 (3) and 1.723 (3) Å to the substituted and non-substituted C atoms, respectively. The C—S—C angle of 90.1 (2)° in (I) is comparable with that observed in thieno[2,3-c]pyridine, but is slightly less than that observed in free thiophene [92.2 (2)°]. In general, the molecular dimensions of the fused ring system of (I) agree well with the corresponding values of other similar compounds (Nerenz et al., 1997).

The O-Csp2 bond of the terminal ester group in (I) [1.360 (4) Å] is higher than the normal value but agrees well with the values found in other compounds containing this molecular fragment (Csöregh & Palm, 1977). The unusual C22—C23 bond distance [1.401 (7) Å] can probably be attributed to non-resolved disorder of the methyl terminus, as indicated by the unusual displacement parameters for atoms C22 and C23.

The C20—C21—O2—C22 torsional angle of 175.5 (4)° describes the trans configuration of the molecule about the C21—O2 bond. The central thienopyridine ring system is planar, the dihedral angle between these ring planes being 0.3 (2)°. Both phenyl rings are planar within themselves, with maximum deviations of 0.0035 and 0.0054 Å For which atoms? from their respective mean planes. However, the participation of two atoms (C10 and C11) of the phenyl ring at C3 in strong intermolecular interactions with the NH2 group at C19 (see below) rotates the ring markedly, by 69.9 (1)° out of central ring system, whereas in the absence of any such interactions, the phenyl ring at C5 is almost coplanar with the central ring system [dihedral angle 5.2 (2)°].

The terminal ester group is twisted substantially out of the central ring system [dihedral angle 26.7 (3)°]. The carbonyl moiety is coplanar with the thiophene ring and has a cis orientation, characterized by the C19—C20—C21—O1 torsion angle of 1.1 (6)°, thereby placing the amino atom N2 in strong intramolecular contact with carbonyl atom O1 [N2—H2A···O1 2.806 (4) Å, H2A···O1 2.2 Å and N2—H2A···O1 128°] and forming a pseudo six-membered ring.

A network of intermolecular C—H···N and C—H···O interactions (Fig. 2.), as well as C—H···π and ππ interactions, provide a strong packing to the structure of (I). Phenyl ring atoms C10 and C11 are hydrogen bonded to atom N1 of two different symmetry-related molecules at (x + 1, y, z) and (1 − x, 1 − y, 1 − z), respectively (Table 2). Carbonyl atom O1 of one molecule acts as an acceptor in another hydrogen-bond interaction with phenyl atom C18 in a symmetry-related molecule at (1 − x, y − 1/2, 1/2 − z) (Table 2). In addition, methyl atom C12 is involved in two separate C—H···π interactions, with C12···Cg1 4.070 (4) Å, H12A···Cg1 3.1 Å and C12—H12A···Cg1 163°, and C12···Cg2 4.001 (5) Å, H12B···Cg2 3.1 Å and C12—H12B···Cg2 133°, where Cg1 is the centre of gravity of the pyridine ring of the molecule at (1 + x, y, z) and Cg2 is the centre of gravity of the phenyl ring of the molecule at (2 − x, 1 − y, z) Please check this has been rephrased correctly. A comparatively weak ππ interaction between the thiophene ring and a symmetry-related pyridine ring at (1 − x, −y, 2 − z), with their centroids seperated by 3.721 (2) Å, is also observed in the structure of (I).

Experimental top

The title compound was synthesized according to the method of Shah (2000); the details of the synthesis will be published elsewhere by Dave et al. Plate-like single crystals of (I) were grown from a solution in ethyl acetate under slow evaporation.

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.93–0.97 Å and N—H distances of 0.86 Å. Is this added text correct?

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: Please provide missing information; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of (I) viewed on the bc plane, with the C—H···O and C—H···N interactions shown as dashed lines.
Ethyl 3-amino-6-phenyl-4-tolylthieno[2,3-b]pyridine-2-carboxylate top
Crystal data top
C23H20N2O2SF(000) = 816
Mr = 388.47Dx = 1.289 Mg m3
Dm = 1.289 Mg m3
Dm measured by flotation in aqueous potassium iodide
Monoclinic, P21/cMo Kα1 radiation, λ = 0.70930 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.200 (3) Åθ = 25–35°
b = 22.465 (5) ŵ = 0.18 mm1
c = 9.708 (3) ÅT = 293 K
β = 94.06 (3)°Plate-like, light yellow
V = 2001.4 (10) Å30.2 × 0.2 × 0.1 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 24.9°, θmin = 2.2°
Graphite monochromatorh = 1010
ω/2θ scansk = 026
3513 measured reflectionsl = 011
3513 independent reflections2 standard reflections every 60 min
1922 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0763P)2]
where P is Please define
wR(F2) = 0.156(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.27 e Å3
3504 reflectionsΔρmin = 0.23 e Å3
253 parameters
Crystal data top
C23H20N2O2SV = 2001.4 (10) Å3
Mr = 388.47Z = 4
Monoclinic, P21/cMo Kα1 radiation
a = 9.200 (3) ŵ = 0.18 mm1
b = 22.465 (5) ÅT = 293 K
c = 9.708 (3) Å0.2 × 0.2 × 0.1 mm
β = 94.06 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
3513 measured reflections2 standard reflections every 60 min
3513 independent reflections intensity decay: none
1922 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
3504 reflectionsΔρmin = 0.23 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25735 (9)0.57982 (4)0.36908 (10)0.0541 (3)
N10.2743 (3)0.46300 (11)0.4170 (3)0.0452 (7)
N20.6155 (3)0.58257 (14)0.1697 (3)0.0693 (9)
H2A0.62810.61860.14320.083*
H2B0.67610.55530.14970.083*
C50.3419 (3)0.41030 (14)0.4051 (3)0.0450 (8)
O20.2873 (3)0.70191 (11)0.2975 (3)0.0869 (9)
C40.4708 (3)0.40581 (15)0.3351 (4)0.0529 (9)
H40.51310.36850.32620.063*
C20.4666 (3)0.50964 (14)0.2910 (3)0.0439 (8)
C60.6786 (3)0.44665 (14)0.2154 (3)0.0453 (8)
C190.4995 (3)0.56869 (15)0.2435 (3)0.0512 (9)
O10.4894 (3)0.69617 (12)0.1767 (3)0.0896 (9)
C10.3369 (3)0.50983 (14)0.3606 (3)0.0439 (8)
C130.2755 (3)0.35870 (14)0.4729 (4)0.0514 (9)
C30.5368 (3)0.45445 (15)0.2792 (3)0.0469 (8)
C90.9478 (4)0.42671 (16)0.1046 (4)0.0558 (9)
C180.3346 (4)0.30191 (17)0.4688 (5)0.0761 (12)
H180.41610.29530.41940.091*
C70.6872 (4)0.41533 (17)0.0949 (4)0.0625 (10)
H70.60260.40070.04880.075*
C80.8201 (4)0.40528 (18)0.0413 (4)0.0690 (11)
H80.82330.38340.03980.083*
C140.1542 (4)0.36607 (16)0.5475 (4)0.0702 (11)
H140.11200.40360.55180.084*
C200.3974 (3)0.61012 (15)0.2797 (4)0.0524 (9)
C110.8065 (3)0.46833 (16)0.2796 (4)0.0582 (10)
H110.80320.49020.36060.070*
C100.9391 (4)0.45808 (17)0.2256 (4)0.0612 (10)
H101.02390.47260.27160.073*
C150.0941 (4)0.31918 (18)0.6156 (5)0.0856 (14)
H150.01180.32520.66420.103*
C210.3994 (4)0.67236 (17)0.2442 (4)0.0666 (11)
C170.2745 (5)0.25545 (18)0.5366 (5)0.0927 (15)
H170.31510.21770.53160.111*
C121.0942 (4)0.41519 (19)0.0452 (4)0.0810 (13)
H12A1.17040.43330.10350.122*
H12B1.09350.43190.04580.122*
H12C1.11090.37310.04060.122*
C160.1559 (5)0.26394 (18)0.6114 (5)0.0869 (13)
H160.11760.23240.65910.104*
C220.2800 (6)0.76597 (19)0.2798 (7)0.1182 (19)
H22A0.24180.78370.36090.142*
H22B0.37770.78130.27230.142*
C230.1921 (7)0.7829 (2)0.1625 (6)0.133 (2)
H23A0.19090.82550.15530.200*
H23B0.09470.76860.17030.200*
H23C0.23060.76620.08170.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0481 (5)0.0486 (5)0.0678 (6)0.0000 (4)0.0187 (4)0.0019 (5)
N10.0405 (15)0.0437 (16)0.0526 (17)0.0028 (12)0.0118 (13)0.0063 (13)
N20.0526 (17)0.072 (2)0.086 (2)0.0038 (16)0.0268 (16)0.0185 (18)
C50.0387 (17)0.054 (2)0.043 (2)0.0044 (15)0.0079 (15)0.0085 (15)
O20.0843 (19)0.0505 (16)0.130 (3)0.0037 (14)0.0339 (18)0.0105 (16)
C40.0442 (18)0.052 (2)0.064 (2)0.0027 (15)0.0104 (17)0.0072 (17)
C20.0313 (16)0.056 (2)0.045 (2)0.0038 (15)0.0049 (14)0.0020 (16)
C60.0412 (18)0.053 (2)0.043 (2)0.0018 (15)0.0115 (15)0.0017 (16)
C190.0395 (17)0.066 (2)0.049 (2)0.0090 (16)0.0063 (15)0.0051 (17)
O10.0770 (19)0.0750 (19)0.120 (3)0.0176 (15)0.0274 (17)0.0302 (17)
C10.0380 (17)0.051 (2)0.043 (2)0.0022 (15)0.0056 (14)0.0047 (16)
C130.0475 (19)0.049 (2)0.059 (2)0.0039 (16)0.0125 (17)0.0068 (17)
C30.0378 (17)0.060 (2)0.043 (2)0.0004 (16)0.0065 (15)0.0033 (16)
C90.047 (2)0.064 (2)0.058 (2)0.0085 (18)0.0207 (17)0.0088 (19)
C180.073 (3)0.060 (3)0.101 (3)0.001 (2)0.042 (2)0.001 (2)
C70.0463 (19)0.087 (3)0.055 (2)0.0020 (19)0.0069 (17)0.014 (2)
C80.068 (3)0.086 (3)0.056 (2)0.001 (2)0.021 (2)0.014 (2)
C140.064 (2)0.052 (2)0.099 (3)0.0006 (18)0.038 (2)0.001 (2)
C200.0465 (19)0.051 (2)0.060 (2)0.0046 (16)0.0091 (17)0.0080 (17)
C110.048 (2)0.072 (2)0.057 (2)0.0026 (18)0.0130 (18)0.0120 (18)
C100.0401 (19)0.083 (3)0.061 (2)0.0060 (18)0.0073 (17)0.005 (2)
C150.075 (3)0.065 (3)0.123 (4)0.009 (2)0.051 (3)0.002 (3)
C210.060 (2)0.054 (2)0.085 (3)0.010 (2)0.007 (2)0.007 (2)
C170.094 (3)0.053 (2)0.137 (4)0.004 (2)0.047 (3)0.004 (3)
C120.059 (2)0.092 (3)0.097 (3)0.015 (2)0.037 (2)0.004 (2)
C160.087 (3)0.059 (3)0.120 (4)0.006 (2)0.043 (3)0.012 (2)
C220.137 (5)0.046 (3)0.172 (6)0.004 (3)0.017 (4)0.012 (3)
C230.178 (6)0.085 (4)0.133 (5)0.010 (4)0.026 (5)0.035 (4)
Geometric parameters (Å, º) top
S1—C11.739 (3)C18—C171.371 (5)
S1—C201.742 (3)C18—H180.9300
N1—C11.335 (4)C7—C81.381 (5)
N1—C51.346 (4)C7—H70.9300
N2—C191.362 (4)C8—H80.9300
N2—H2A0.8600C14—C151.380 (5)
N2—H2B0.8600C14—H140.9300
C5—C41.412 (4)C20—C211.441 (5)
C5—C131.486 (4)C11—C101.381 (4)
O2—C211.360 (4)C11—H110.9300
O2—C221.450 (5)C10—H100.9300
C4—C31.379 (4)C15—C161.367 (5)
C4—H40.9300C15—H150.9300
C2—C31.406 (4)C17—C161.366 (5)
C2—C11.413 (4)C17—H170.9300
C2—C191.444 (4)C12—H12A0.9600
C6—C71.372 (4)C12—H12B0.9600
C6—C111.380 (4)C12—H12C0.9600
C6—C31.494 (4)C16—H160.9300
C19—C201.385 (5)C22—C231.401 (7)
O1—C211.215 (4)C22—H22A0.9700
C13—C141.383 (4)C22—H22B0.9700
C13—C181.388 (5)C23—H23A0.9600
C9—C81.373 (5)C23—H23B0.9600
C9—C101.377 (5)C23—H23C0.9600
C9—C121.524 (4)
C1—S1—C2090.07 (15)C15—C14—C13121.7 (4)
C1—N1—C5116.3 (2)C15—C14—H14119.2
C19—N2—H2A120.0C13—C14—H14119.2
C19—N2—H2B120.0C19—C20—C21124.8 (3)
H2A—N2—H2B120.0C19—C20—S1113.8 (2)
N1—C5—C4120.9 (3)C21—C20—S1121.4 (3)
N1—C5—C13116.2 (3)C6—C11—C10121.1 (3)
C4—C5—C13122.9 (3)C6—C11—H11119.4
C21—O2—C22118.0 (3)C10—C11—H11119.4
C3—C4—C5122.7 (3)C9—C10—C11121.0 (3)
C3—C4—H4118.6C9—C10—H10119.5
C5—C4—H4118.6C11—C10—H10119.5
C3—C2—C1116.7 (3)C16—C15—C14119.8 (4)
C3—C2—C19132.6 (3)C16—C15—H15120.1
C1—C2—C19110.7 (3)C14—C15—H15120.1
C7—C6—C11117.8 (3)O1—C21—O2123.7 (4)
C7—C6—C3121.2 (3)O1—C21—C20125.2 (4)
C11—C6—C3120.8 (3)O2—C21—C20111.1 (3)
N2—C19—C20123.4 (3)C16—C17—C18120.9 (4)
N2—C19—C2124.6 (3)C16—C17—H17119.6
C20—C19—C2112.0 (3)C18—C17—H17119.6
N1—C1—C2126.7 (3)C9—C12—H12A109.5
N1—C1—S1119.9 (2)C9—C12—H12B109.5
C2—C1—S1113.4 (2)H12A—C12—H12B109.5
C14—C13—C18117.2 (3)C9—C12—H12C109.5
C14—C13—C5120.7 (3)H12A—C12—H12C109.5
C18—C13—C5122.0 (3)H12B—C12—H12C109.5
C4—C3—C2116.7 (3)C17—C16—C15119.5 (4)
C4—C3—C6119.4 (3)C17—C16—H16120.3
C2—C3—C6123.8 (3)C15—C16—H16120.3
C8—C9—C10117.5 (3)C23—C22—O2112.6 (5)
C8—C9—C12121.5 (3)C23—C22—H22A109.1
C10—C9—C12121.0 (3)O2—C22—H22A109.1
C17—C18—C13120.9 (3)C23—C22—H22B109.1
C17—C18—H18119.5O2—C22—H22B109.1
C13—C18—H18119.5H22A—C22—H22B107.8
C6—C7—C8120.7 (3)C22—C23—H23A109.5
C6—C7—H7119.6C22—C23—H23B109.5
C8—C7—H7119.6H23A—C23—H23B109.5
C9—C8—C7121.7 (3)C22—C23—H23C109.5
C9—C8—H8119.1H23A—C23—H23C109.5
C7—C8—H8119.1H23B—C23—H23C109.5
C1—N1—C5—C40.7 (4)C5—C13—C18—C17177.5 (4)
C1—N1—C5—C13177.6 (3)C11—C6—C7—C80.9 (5)
N1—C5—C4—C32.0 (5)C3—C6—C7—C8176.0 (3)
C13—C5—C4—C3176.1 (3)C10—C9—C8—C71.0 (6)
C3—C2—C19—N21.0 (6)C12—C9—C8—C7179.7 (3)
C1—C2—C19—N2178.2 (3)C6—C7—C8—C90.9 (6)
C3—C2—C19—C20179.9 (3)C18—C13—C14—C150.2 (6)
C1—C2—C19—C200.8 (4)C5—C13—C14—C15177.5 (4)
C5—N1—C1—C20.5 (5)N2—C19—C20—C210.3 (6)
C5—N1—C1—S1179.5 (2)C2—C19—C20—C21178.6 (3)
C3—C2—C1—N10.4 (5)N2—C19—C20—S1178.0 (3)
C19—C2—C1—N1179.6 (3)C2—C19—C20—S10.9 (4)
C3—C2—C1—S1179.6 (2)C1—S1—C20—C190.6 (3)
C19—C2—C1—S10.3 (3)C1—S1—C20—C21178.4 (3)
C20—S1—C1—N1179.9 (3)C7—C6—C11—C101.0 (5)
C20—S1—C1—C20.2 (3)C3—C6—C11—C10175.9 (3)
N1—C5—C13—C142.2 (5)C8—C9—C10—C111.1 (5)
C4—C5—C13—C14176.0 (3)C12—C9—C10—C11179.8 (3)
N1—C5—C13—C18179.8 (3)C6—C11—C10—C91.1 (6)
C4—C5—C13—C181.6 (5)C13—C14—C15—C160.7 (7)
C5—C4—C3—C22.0 (5)C22—O2—C21—O13.9 (6)
C5—C4—C3—C6175.7 (3)C22—O2—C21—C20175.5 (4)
C1—C2—C3—C40.9 (4)C19—C20—C21—O11.1 (6)
C19—C2—C3—C4178.2 (3)S1—C20—C21—O1176.4 (3)
C1—C2—C3—C6176.8 (3)C19—C20—C21—O2178.3 (3)
C19—C2—C3—C64.2 (5)S1—C20—C21—O24.2 (4)
C7—C6—C3—C468.5 (4)C13—C18—C17—C160.8 (7)
C11—C6—C3—C4108.3 (4)C18—C17—C16—C151.8 (8)
C7—C6—C3—C2113.9 (4)C14—C15—C16—C171.7 (8)
C11—C6—C3—C269.3 (4)C21—O2—C22—C2393.7 (6)
C14—C13—C18—C170.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.202.806 (4)128
C14—H14···N10.932.452.787 (4)101
C11—H11···N1i0.932.553.453 (4)164
C18—H18···O1ii0.932.593.253 (5)129
C10—H10···N1iii0.932.623.488 (4)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H20N2O2S
Mr388.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.200 (3), 22.465 (5), 9.708 (3)
β (°) 94.06 (3)
V3)2001.4 (10)
Z4
Radiation typeMo Kα1
µ (mm1)0.18
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3513, 3513, 1922
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 0.98
No. of reflections3504
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), Please provide missing information, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
S1—C11.739 (3)O2—C211.360 (4)
S1—C201.742 (3)O2—C221.450 (5)
N1—C11.335 (4)C2—C11.413 (4)
N1—C51.346 (4)O1—C211.215 (4)
N2—C191.362 (4)C22—C231.401 (7)
C1—S1—C2090.07 (15)O1—C21—O2123.7 (4)
C1—N1—C5116.3 (2)O1—C21—C20125.2 (4)
C21—O2—C22118.0 (3)O2—C21—C20111.1 (3)
N1—C1—C2126.7 (3)C23—C22—O2112.6 (5)
C22—O2—C21—C20175.5 (4)S1—C20—C21—O1176.4 (3)
C19—C20—C21—O11.1 (6)C21—O2—C22—C2393.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.202.806 (4)128
C14—H14···N10.932.452.787 (4)101
C11—H11···N1i0.932.553.453 (4)164
C18—H18···O1ii0.932.593.253 (5)129
C10—H10···N1iii0.932.623.488 (4)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds