Download citation
Download citation
link to html
The title compound, C32H45N2O+·Br·0.5H2O, has the outer two six-membered rings in chair conformations, while the central ring is in an 8β,9α-half-chair conformation. The five-mem­bered ring of the steroid nucleus adopts a slightly deformed 14α-envelope conformation. The pyridyl­methyl­ene moiety has an E configuration with respect to the hydroxyl group at position 17. The structure is stabilized by a network of O—H...Br-type intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013434/de1189sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013434/de1189Isup2.hkl
Contains datablock I

CCDC reference: 197332

Comment top

The present X-ray investigation of the title compound, (I), was undertaken as part of our study of the structure and conformation of new synthetic steroid derivatives (Vasuki et al., 2001; Vasuki, Parthasarathi, Ramamurthi, Jindal & Dubey, 2002; Vasuki, Parthasarathi, Ramamurthi, Dubey & Jindal, 2002; Vasuki, Thamotharan et al., 2002). It is well known that minor changes in the basic composition of steroids significantly alters their biological activities (Duax & Norton, 1975). We are particularly interested in studying the conformational flexibilities of steroids due to various possible substitutions at the C3, C16 and C17 positions. \sch

The puckering parameters in (I) [Ring A: Q = 0.576 (5) Å, θ = 10.1 (5)° and ϕ = 84 (3)°; Ring C: Q = 0.562 (5) Å, θ = 8.9 (5)° and ϕ = 251 (3)° (Cremer & Pople, 1975)] show that rings A and C adopt chair conformations. The presence of the pyrrolidine moiety bonded to C3 does not disturb the usual chair conformation of ring A of the steroid nucleus. The C5—C6 [Csp2—Csp2] distance of 1.331 (6) Å confirms the localization of a double bond at this position. Due to this double bond, the environment of atom C5 is planar, and hence ring B adopts the 8β,9α half-chair conformation [Q = 0.498 (5) Å, θ = 50.9 (6)° and ϕ = 217.5 (7)°]. Similar observations have been reported by Caira et al. (1995), Andrade et al. (2001) and Hema et al. (2002).

Ring D adopts a slightly deformed 14α envelope conformation, with pseudorotation parameters Δ = 12.6° and ϕm = 46.0° (Altona et al., 1968). The pyrrolidine ring at C3 exhibits a slightly distorted β envelope conformation, with Δ = 18° and ϕm = 42.6 (3)°. The C17—C16—C20—C21 torsion angle of -171.9 (5)° indicates that the 2-pyridyl ring has an E configuration with respect to the hydroxyl group at position 17. The larger exocyclic angle at C15—C16—C20 [129.3 (4)°] compared with C17—C16—C20 [123.1 (4)°] might be a consequence of repulsion between the lone pair of electrons on atom N26 of the pyridine ring and atom H15B on C15 (N26···H15B 2.573 Å).

The C19—C10···C13—C18 pseudo torsion angle is 7.5 (4)°. The equatorially substituted pyrrolidine moiety is oriented at an angle of 78.5 (3)° with respect to the central steroid nucleus. The dihedral angle between the plane of the pyridine ring and the average molecular plane comprising rings A, B, C and D is 11.4 (2)°. The dihedral angle between the pyridine and pyrrolidine rings is 59.6 (3)°. The valency angles C8—C14—C15 [119.2 (4)°] and C14—C13—C17 [99.5 (3)°] are close to the expected values of 121.2° and 101.4°, respectively (Duax & Norton, 1975). The geometry of the rings is trans at the B/C and C/D ring junctions.

The structure of (I) is stabilized by an O—H···Br network which involves both the hydroxyl group of the steroid and the water molecules included in the lattice, and a projection down the b axis is shown in Fig. 2.

Experimental top

The title compound was prepared by dissolving 16-(2-pyridylmethylene)-3β-pyrrolidinoandrost-5-en-17β-ol (500 mg, 1.15 mmol) in dried dichloromethane (50 ml) and adding allylbromide (1 ml, 7.04 mol). The reaction mixture was stirred for a few minutes and kept at room temperature overnight. The solid residues were filtered and washed with dichloromethane to afford crystals of (I) (yield: 0.45 g, 68.36%; m.p. 517–521 K).

Refinement top

The structure was solved with DIRDIF99 (Beurskens et al., 1999) using the TRACOR option, with the Br atom at the origin. All H atoms, except the hydroxyl H atom and the water H atom, were treated as riding, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.5Ueq (C) for methyl H atoms and 1.2Ueq(C) for all others. The hydroxyl H atom was located from a difference Fourier map and refined using the DFIX option in SHELXL97 (Sheldrick, 1997), with H27—O27 0.81 (2) Å. It was included in the structure factor calculation with Uiso(H27) = 1.1Ueq(O27). At this stage, the maximum residual electron density of 2.87 e Å-3 indicated the presence of a possible atom site in a special position with half occupancy. This peak was found near Br, at a distance of 3.404 Å. It was assumed to be an O atom of the water molecule and was refined. One of the H atoms of the water molecule was located from a difference Fourier map and, using the DFIX option in SHELXL97, the coordinates of atom H1W were refined, with O1W—H1W restrained to 0.88 (2) Å, and H1W—H1W(symmetry equivalent) restrained to 1.44 (1) Å. It was included in the structure factor calculation with Uiso(H1W) = 1.1Ueq(O1W).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of molecules of (I) viewed down the b axis.
3β-(1-Allyl-1-pyrrolidinio)-16-(2-pyridylmethylene)androst-5-ene-17β-ol bromide hemihydrate top
Crystal data top
C32H45BrN2O·0.5H2OF(000) = 1196
Mr = 562.61Dx = 1.277 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 25 reflections
a = 21.054 (4) Åθ = 10–15°
b = 9.3083 (18) ŵ = 1.43 mm1
c = 15.551 (4) ÅT = 293 K
β = 106.15 (2)°Plate, white
V = 2927.4 (11) Å30.20 × 0.17 × 0.17 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
2100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 024
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.763, Tmax = 0.793l = 1817
2835 measured reflections2 standard reflections every 120 min
2751 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0413P)2 + 2.1207P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2751 reflectionsΔρmax = 0.29 e Å3
336 parametersΔρmin = 0.23 e Å3
4 restraintsAbsolute structure: Flack (1983) How many Friedels?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (12)
Crystal data top
C32H45BrN2O·0.5H2OV = 2927.4 (11) Å3
Mr = 562.61Z = 4
Monoclinic, C2Mo Kα radiation
a = 21.054 (4) ŵ = 1.43 mm1
b = 9.3083 (18) ÅT = 293 K
c = 15.551 (4) Å0.20 × 0.17 × 0.17 mm
β = 106.15 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2100 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.763, Tmax = 0.7932 standard reflections every 120 min
2835 measured reflections intensity decay: none
2751 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.23 e Å3
2751 reflectionsAbsolute structure: Flack (1983) How many Friedels?
336 parametersAbsolute structure parameter: 0.002 (12)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0921 (2)0.2900 (6)0.6058 (3)0.0429 (11)
H1A0.05060.29310.55900.051*
H1B0.10900.19260.60840.051*
C20.0791 (2)0.3259 (6)0.6955 (3)0.0473 (12)
H2A0.06160.42270.69390.057*
H2B0.04680.25980.70700.057*
C30.1437 (2)0.3138 (5)0.7689 (3)0.0396 (11)
H30.16200.21820.76430.048*
C40.1926 (2)0.4242 (5)0.7512 (3)0.0428 (11)
H4A0.17550.52020.75420.051*
H4B0.23440.41600.79710.051*
C50.2036 (2)0.4006 (5)0.6603 (3)0.0364 (10)
C60.2648 (2)0.3911 (5)0.6524 (3)0.0402 (11)
H60.29960.39470.70450.048*
C70.2816 (2)0.3752 (6)0.5656 (3)0.0430 (12)
H7A0.29900.27940.56250.052*
H7B0.31610.44330.56410.052*
C80.22291 (19)0.3993 (5)0.4840 (3)0.0351 (10)
H80.21490.50270.47550.042*
C90.16032 (19)0.3267 (5)0.4986 (2)0.0371 (10)
H90.17250.22650.51430.045*
C100.1417 (2)0.3925 (5)0.5803 (3)0.0374 (11)
C110.1027 (2)0.3219 (7)0.4127 (3)0.0494 (12)
H11A0.06820.26070.42270.059*
H11B0.08460.41790.40000.059*
C120.1221 (2)0.2667 (6)0.3309 (3)0.0474 (12)
H12A0.13430.16610.33950.057*
H12B0.08440.27410.27840.057*
C130.1795 (2)0.3512 (5)0.3154 (3)0.0382 (10)
C140.23666 (19)0.3374 (5)0.4013 (3)0.0356 (10)
H140.24320.23410.41240.043*
C150.2974 (2)0.3899 (6)0.3737 (3)0.0439 (11)
H15A0.30120.49370.37780.053*
H15B0.33770.34710.41100.053*
C160.2833 (2)0.3397 (5)0.2775 (3)0.0442 (11)
C170.2121 (2)0.2845 (5)0.2485 (3)0.0449 (11)
H170.21350.18030.25780.054*
C180.1600 (2)0.5075 (8)0.2884 (3)0.0514 (11)
H18A0.19750.55760.27930.077*
H18B0.14590.55380.33500.077*
H18C0.12460.50860.23390.077*
C190.1117 (2)0.5415 (6)0.5600 (3)0.0529 (15)
H19A0.07280.53620.51010.079*
H19B0.14320.60480.54560.079*
H19C0.10010.57760.61140.079*
C200.3233 (2)0.3344 (6)0.2254 (3)0.0478 (12)
H200.30380.30630.16660.057*
C210.3940 (3)0.3666 (5)0.2477 (3)0.0523 (13)
C220.4291 (3)0.3459 (7)0.1857 (4)0.0692 (16)
H220.40700.31710.12790.083*
C230.4967 (3)0.3676 (8)0.2089 (6)0.091 (2)
H230.52070.35240.16770.109*
C240.5270 (3)0.4116 (9)0.2930 (6)0.095 (2)
H240.57250.42620.31110.114*
C250.4900 (3)0.4344 (9)0.3514 (5)0.095 (2)
H250.51160.46500.40900.114*
N260.4249 (2)0.4155 (6)0.3305 (3)0.0713 (14)
O270.17983 (18)0.3102 (4)0.1567 (2)0.0548 (9)
H270.167 (3)0.231 (3)0.138 (3)0.060*
N280.13579 (18)0.3287 (5)0.8641 (2)0.0409 (9)
C290.0840 (3)0.2230 (7)0.8782 (3)0.0566 (14)
H29A0.06780.16230.82600.068*
H29B0.10250.16250.92990.068*
C300.0292 (3)0.3158 (9)0.8929 (4)0.082 (2)
H30A0.00300.33790.83650.098*
H30B0.00700.26830.93200.098*
C310.0632 (3)0.4480 (8)0.9354 (4)0.084 (2)
H31A0.08580.43200.99810.101*
H31B0.03220.52680.93040.101*
C320.1118 (2)0.4776 (7)0.8822 (3)0.0526 (14)
H32A0.14830.53600.91640.063*
H32B0.09050.52660.82660.063*
C330.2020 (2)0.3001 (6)0.9335 (3)0.0471 (12)
H33A0.23330.37360.92810.057*
H33B0.19600.30730.99290.057*
C340.2299 (3)0.1567 (6)0.9232 (3)0.0553 (13)
H340.20530.07550.92780.066*
C350.2872 (3)0.1390 (7)0.9080 (3)0.0629 (15)
H35A0.31270.21850.90310.076*
H35B0.30250.04690.90200.076*
Br0.12664 (3)0.00156 (7)0.08584 (3)0.0677 (2)
O1W0.50000.2660 (8)0.00000.104 (2)
H1W0.5354 (9)0.319 (4)0.021 (5)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.063 (3)0.033 (2)0.009 (2)0.0085 (18)0.003 (2)
C20.041 (3)0.064 (3)0.038 (2)0.007 (3)0.014 (2)0.005 (2)
C30.046 (2)0.046 (3)0.029 (2)0.001 (2)0.0134 (19)0.001 (2)
C40.042 (3)0.052 (3)0.032 (2)0.010 (2)0.008 (2)0.006 (2)
C50.039 (2)0.043 (3)0.025 (2)0.003 (2)0.0048 (18)0.000 (2)
C60.035 (2)0.054 (3)0.030 (2)0.003 (2)0.0057 (18)0.004 (2)
C70.034 (2)0.057 (3)0.037 (2)0.003 (2)0.0087 (19)0.002 (2)
C80.033 (2)0.039 (2)0.035 (2)0.006 (2)0.0118 (19)0.000 (2)
C90.033 (2)0.046 (3)0.029 (2)0.003 (2)0.0040 (17)0.005 (2)
C100.036 (2)0.045 (3)0.032 (2)0.002 (2)0.0106 (19)0.000 (2)
C110.036 (2)0.077 (4)0.035 (2)0.009 (3)0.0093 (19)0.001 (3)
C120.037 (2)0.071 (3)0.030 (2)0.011 (2)0.0022 (18)0.000 (2)
C130.037 (2)0.045 (3)0.033 (2)0.007 (2)0.0103 (19)0.002 (2)
C140.034 (2)0.041 (2)0.030 (2)0.008 (2)0.0068 (18)0.001 (2)
C150.044 (3)0.052 (3)0.039 (2)0.009 (2)0.017 (2)0.005 (2)
C160.052 (3)0.039 (3)0.046 (3)0.006 (2)0.020 (2)0.006 (2)
C170.058 (3)0.044 (3)0.033 (2)0.007 (2)0.011 (2)0.002 (2)
C180.061 (3)0.055 (3)0.039 (2)0.003 (4)0.0148 (19)0.007 (3)
C190.051 (3)0.063 (5)0.046 (2)0.007 (3)0.014 (2)0.009 (2)
C200.063 (3)0.044 (3)0.042 (3)0.005 (3)0.023 (2)0.002 (2)
C210.065 (3)0.041 (3)0.060 (3)0.009 (3)0.034 (3)0.003 (2)
C220.089 (4)0.062 (4)0.072 (4)0.010 (3)0.050 (3)0.010 (3)
C230.078 (4)0.090 (5)0.132 (6)0.018 (4)0.074 (5)0.018 (5)
C240.060 (4)0.100 (6)0.137 (6)0.022 (4)0.045 (4)0.029 (5)
C250.059 (4)0.126 (7)0.112 (5)0.030 (4)0.042 (4)0.027 (5)
N260.058 (3)0.087 (4)0.076 (3)0.017 (3)0.031 (3)0.018 (3)
O270.074 (2)0.059 (2)0.0288 (16)0.015 (2)0.0103 (16)0.0005 (16)
N280.048 (2)0.046 (2)0.0326 (18)0.0011 (19)0.0171 (16)0.0004 (18)
C290.072 (4)0.069 (4)0.034 (2)0.017 (3)0.024 (2)0.006 (3)
C300.050 (3)0.130 (6)0.074 (4)0.010 (4)0.033 (3)0.022 (4)
C310.074 (4)0.111 (6)0.080 (4)0.006 (4)0.040 (3)0.019 (4)
C320.059 (3)0.053 (4)0.049 (2)0.009 (3)0.020 (2)0.006 (3)
C330.056 (3)0.056 (3)0.030 (2)0.000 (3)0.012 (2)0.002 (2)
C340.066 (3)0.051 (3)0.043 (3)0.003 (3)0.008 (2)0.009 (2)
C350.080 (4)0.057 (4)0.054 (3)0.014 (3)0.022 (3)0.005 (3)
Br0.0699 (3)0.0681 (3)0.0571 (3)0.0114 (4)0.0044 (2)0.0042 (4)
O1W0.108 (5)0.079 (5)0.118 (6)0.0000.020 (5)0.000
Geometric parameters (Å, º) top
C1—C21.532 (6)C17—O271.420 (5)
C1—C101.544 (6)C17—H170.9800
C1—H1A0.9700C18—H18A0.9600
C1—H1B0.9700C18—H18B0.9600
C2—C31.518 (6)C18—H18C0.9600
C2—H2A0.9700C19—H19A0.9600
C2—H2B0.9700C19—H19B0.9600
C3—C41.531 (6)C19—H19C0.9600
C3—N281.543 (5)C20—C211.463 (7)
C3—H30.9800C20—H200.9300
C4—C51.511 (6)C21—N261.351 (7)
C4—H4A0.9700C21—C221.381 (7)
C4—H4B0.9700C22—C231.384 (8)
C5—C61.331 (6)C22—H220.9300
C5—C101.533 (6)C23—C241.349 (10)
C6—C71.494 (6)C23—H230.9300
C6—H60.9300C24—C251.367 (9)
C7—C81.522 (6)C24—H240.9300
C7—H7A0.9700C25—N261.329 (7)
C7—H7B0.9700C25—H250.9300
C8—C141.510 (6)O27—H270.81 (2)
C8—C91.553 (6)N28—C321.528 (7)
C8—H80.9800N28—C291.529 (7)
C9—C111.535 (5)N28—C331.530 (6)
C9—C101.557 (6)C29—C301.510 (8)
C9—H90.9800C29—H29A0.9700
C10—C191.520 (7)C29—H29B0.9700
C11—C121.528 (6)C30—C311.483 (10)
C11—H11A0.9700C30—H30A0.9700
C11—H11B0.9700C30—H30B0.9700
C12—C131.516 (6)C31—C321.510 (8)
C12—H12A0.9700C31—H31A0.9700
C12—H12B0.9700C31—H31B0.9700
C13—C171.530 (6)C32—H32A0.9700
C13—C141.534 (5)C32—H32B0.9700
C13—C181.537 (9)C33—C341.486 (8)
C14—C151.537 (6)C33—H33A0.9700
C14—H140.9800C33—H33B0.9700
C15—C161.516 (6)C34—C351.301 (7)
C15—H15A0.9700C34—H340.9300
C15—H15B0.9700C35—H35A0.9300
C16—C201.321 (6)C35—H35B0.9300
C16—C171.529 (6)O1W—H1W0.88 (2)
C2—C1—C10113.8 (4)C20—C16—C15129.3 (4)
C2—C1—H1A108.8C20—C16—C17123.1 (4)
C10—C1—H1A108.8C15—C16—C17107.6 (4)
C2—C1—H1B108.8O27—C17—C16113.3 (4)
C10—C1—H1B108.8O27—C17—C13115.8 (4)
H1A—C1—H1B107.7C16—C17—C13104.6 (4)
C3—C2—C1108.5 (4)O27—C17—H17107.6
C3—C2—H2A110.0C16—C17—H17107.6
C1—C2—H2A110.0C13—C17—H17107.6
C3—C2—H2B110.0C13—C18—H18A109.5
C1—C2—H2B110.0C13—C18—H18B109.5
H2A—C2—H2B108.4H18A—C18—H18B109.5
C2—C3—C4108.8 (4)C13—C18—H18C109.5
C2—C3—N28113.6 (3)H18A—C18—H18C109.5
C4—C3—N28111.7 (4)H18B—C18—H18C109.5
C2—C3—H3107.5C10—C19—H19A109.5
C4—C3—H3107.5C10—C19—H19B109.5
N28—C3—H3107.5H19A—C19—H19B109.5
C5—C4—C3110.8 (4)C10—C19—H19C109.5
C5—C4—H4A109.5H19A—C19—H19C109.5
C3—C4—H4A109.5H19B—C19—H19C109.5
C5—C4—H4B109.5C16—C20—C21128.8 (5)
C3—C4—H4B109.5C16—C20—H20115.6
H4A—C4—H4B108.1C21—C20—H20115.6
C6—C5—C4120.1 (4)N26—C21—C22120.2 (5)
C6—C5—C10123.3 (4)N26—C21—C20118.9 (4)
C4—C5—C10116.7 (4)C22—C21—C20120.8 (5)
C5—C6—C7124.7 (4)C21—C22—C23120.6 (6)
C5—C6—H6117.7C21—C22—H22119.7
C7—C6—H6117.7C23—C22—H22119.7
C6—C7—C8113.4 (3)C24—C23—C22118.0 (6)
C6—C7—H7A108.9C24—C23—H23121.0
C8—C7—H7A108.9C22—C23—H23121.0
C6—C7—H7B108.9C23—C24—C25119.3 (6)
C8—C7—H7B108.9C23—C24—H24120.4
H7A—C7—H7B107.7C25—C24—H24120.4
C14—C8—C7110.5 (3)N26—C25—C24123.8 (7)
C14—C8—C9109.3 (3)N26—C25—H25118.1
C7—C8—C9109.8 (3)C24—C25—H25118.1
C14—C8—H8109.1C25—N26—C21117.9 (5)
C7—C8—H8109.1C17—O27—H27104 (4)
C9—C8—H8109.1C32—N28—C29105.8 (4)
C11—C9—C8112.5 (3)C32—N28—C33108.1 (4)
C11—C9—C10113.9 (3)C29—N28—C33109.5 (4)
C8—C9—C10111.4 (4)C32—N28—C3112.8 (4)
C11—C9—H9106.1C29—N28—C3110.6 (4)
C8—C9—H9106.1C33—N28—C3109.9 (3)
C10—C9—H9106.1C30—C29—N28105.0 (5)
C19—C10—C5109.6 (4)C30—C29—H29A110.7
C19—C10—C1110.2 (4)N28—C29—H29A110.7
C5—C10—C1107.8 (3)C30—C29—H29B110.7
C19—C10—C9111.9 (4)N28—C29—H29B110.7
C5—C10—C9109.3 (3)H29A—C29—H29B108.8
C1—C10—C9107.9 (4)C31—C30—C29104.4 (5)
C12—C11—C9113.9 (4)C31—C30—H30A110.9
C12—C11—H11A108.8C29—C30—H30A110.9
C9—C11—H11A108.8C31—C30—H30B110.9
C12—C11—H11B108.8C29—C30—H30B110.9
C9—C11—H11B108.8H30A—C30—H30B108.9
H11A—C11—H11B107.7C30—C31—C32103.0 (5)
C13—C12—C11111.5 (4)C30—C31—H31A111.2
C13—C12—H12A109.3C32—C31—H31A111.2
C11—C12—H12A109.3C30—C31—H31B111.2
C13—C12—H12B109.3C32—C31—H31B111.2
C11—C12—H12B109.3H31A—C31—H31B109.1
H12A—C12—H12B108.0C31—C32—N28104.2 (5)
C12—C13—C17115.2 (4)C31—C32—H32A110.9
C12—C13—C14106.6 (3)N28—C32—H32A110.9
C17—C13—C1499.5 (3)C31—C32—H32B110.9
C12—C13—C18111.8 (4)N28—C32—H32B110.9
C17—C13—C18109.5 (4)H32A—C32—H32B108.9
C14—C13—C18113.7 (4)C34—C33—N28113.0 (4)
C8—C14—C13114.8 (3)C34—C33—H33A109.0
C8—C14—C15119.2 (4)N28—C33—H33A109.0
C13—C14—C15104.1 (3)C34—C33—H33B109.0
C8—C14—H14105.9N28—C33—H33B109.0
C13—C14—H14105.9H33A—C33—H33B107.8
C15—C14—H14105.9C35—C34—C33123.2 (5)
C16—C15—C14103.1 (3)C35—C34—H34118.4
C16—C15—H15A111.1C33—C34—H34118.4
C14—C15—H15A111.1C34—C35—H35A120.0
C16—C15—H15B111.1C34—C35—H35B120.0
C14—C15—H15B111.1H35A—C35—H35B120.0
H15A—C15—H15B109.1
C10—C1—C2—C361.2 (6)C15—C16—C17—O27146.3 (4)
C1—C2—C3—C462.2 (5)C20—C16—C17—C13163.7 (5)
C1—C2—C3—N28172.7 (4)C15—C16—C17—C1319.2 (5)
C2—C3—C4—C558.0 (5)C12—C13—C17—O2781.6 (5)
N28—C3—C4—C5175.7 (4)C14—C13—C17—O27164.9 (4)
C3—C4—C5—C6129.1 (5)C18—C13—C17—O2745.4 (5)
C3—C4—C5—C1052.4 (6)C12—C13—C17—C16152.9 (4)
C4—C5—C6—C7176.9 (5)C14—C13—C17—C1639.3 (4)
C10—C5—C6—C71.6 (8)C18—C13—C17—C1680.1 (4)
C5—C6—C7—C811.1 (7)C15—C16—C20—C214.5 (10)
C6—C7—C8—C14162.1 (4)C17—C16—C20—C21171.9 (5)
C6—C7—C8—C941.5 (6)C16—C20—C21—N263.6 (9)
C14—C8—C9—C1147.7 (5)C16—C20—C21—C22175.7 (6)
C7—C8—C9—C11169.1 (4)N26—C21—C22—C233.5 (9)
C14—C8—C9—C10177.0 (4)C20—C21—C22—C23175.8 (6)
C7—C8—C9—C1061.6 (5)C21—C22—C23—C241.0 (11)
C6—C5—C10—C19105.8 (5)C22—C23—C24—C250.8 (12)
C4—C5—C10—C1972.7 (5)C23—C24—C25—N260.2 (13)
C6—C5—C10—C1134.2 (5)C24—C25—N26—C212.2 (11)
C4—C5—C10—C147.3 (6)C22—C21—N26—C253.9 (9)
C6—C5—C10—C917.2 (6)C20—C21—N26—C25175.3 (6)
C4—C5—C10—C9164.3 (4)C2—C3—N28—C3264.9 (5)
C2—C1—C10—C1968.2 (5)C4—C3—N28—C3258.6 (5)
C2—C1—C10—C551.3 (5)C2—C3—N28—C2953.4 (6)
C2—C1—C10—C9169.3 (4)C4—C3—N28—C29176.9 (4)
C11—C9—C10—C1954.8 (5)C2—C3—N28—C33174.3 (4)
C8—C9—C10—C1973.6 (4)C4—C3—N28—C3362.1 (5)
C11—C9—C10—C5176.4 (4)C32—N28—C29—C306.4 (5)
C8—C9—C10—C548.0 (5)C33—N28—C29—C30122.7 (4)
C11—C9—C10—C166.6 (5)C3—N28—C29—C30116.1 (4)
C8—C9—C10—C1164.9 (4)N28—C29—C30—C3130.1 (6)
C8—C9—C11—C1248.2 (6)C29—C30—C31—C3242.3 (7)
C10—C9—C11—C12176.1 (4)C30—C31—C32—N2837.8 (6)
C9—C11—C12—C1354.3 (6)C29—N28—C32—C3119.1 (5)
C11—C12—C13—C17167.3 (4)C33—N28—C32—C3198.1 (5)
C11—C12—C13—C1457.9 (5)C3—N28—C32—C31140.1 (4)
C11—C12—C13—C1866.9 (5)C32—N28—C33—C34179.3 (4)
C7—C8—C14—C13177.9 (4)C29—N28—C33—C3464.5 (5)
C9—C8—C14—C1357.0 (5)C3—N28—C33—C3457.2 (5)
C7—C8—C14—C1557.7 (5)N28—C33—C34—C35120.3 (5)
C9—C8—C14—C15178.6 (4)C13—C17—O27—H27113 (4)
C12—C13—C14—C862.1 (5)C16—C17—O27—H27126 (4)
C17—C13—C14—C8177.8 (4)C15—C16—C17—H1795.0
C18—C13—C14—C861.5 (5)C20—C16—C17—H1782.1
C12—C13—C14—C15165.9 (4)C17—C16—C20—H208.1
C17—C13—C14—C1545.8 (4)C22—C21—C20—H204.3
C18—C13—C14—C1570.5 (5)C15—C16—C20—H20175.5
C8—C14—C15—C16163.9 (4)N26—C21—C20—H20176.4
C13—C14—C15—C1634.5 (5)C18—C13—C14—H14178.0
C14—C15—C16—C20167.6 (5)H9—C9—C8—H8172.9
C14—C15—C16—C179.3 (5)C19—C10—C13—C187.5 (4)
C20—C16—C17—O2736.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27···Br0.81 (3)2.38 (3)3.194 (4)178 (6)
O1W—H1W···Bri0.88 (4)2.53 (4)3.405 (5)172 (3)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC32H45BrN2O·0.5H2O
Mr562.61
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)21.054 (4), 9.3083 (18), 15.551 (4)
β (°) 106.15 (2)
V3)2927.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.20 × 0.17 × 0.17
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.763, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
2835, 2751, 2100
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.08
No. of reflections2751
No. of parameters336
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23
Absolute structureFlack (1983) How many Friedels?
Absolute structure parameter0.002 (12)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27···Br0.81 (3)2.38 (3)3.194 (4)178 (6)
O1W—H1W···Bri0.88 (4)2.53 (4)3.405 (5)172 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds