Download citation
Download citation
link to html
The title compound, C27H29NO2, has the outer six-membered ring in a sofa conformation, while the central rings are in chair conformations. The five-membered ring adopts a slightly distorted 13β,14α-half-chair conformation. The cyano­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position 17.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000197/de1179sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000197/de1179Isup2.hkl
Contains datablock I

CCDC reference: 183005

Comment top

The structure determination of the title compound, (I), was undertaken to investigate the conformation of the fused-ring system and the configuration of the 16-(4-cyanobenzylidene) functionality with respect to the carbonyl group at position 17. Compound (I), an androgen derivative, is a steroid with the normal 8β,9α,10β,13β,14α configuration. The absolute configuration of (I) is based on the known configuration of the starting material, namely androstenedione (Busetta et al., 1972). \sch

Ring A adopts a sofa conformation with C1 in the α-position, as is evident from the deviation of C1 by -0.600 (5) Å from the mean plane of C2/C3/O30/C4/C5/C10. The puckering amplitudes (Cremer & Pople, 1975) are Q = 0.435 (3) Å, θ = 54.5 (4)° and ϕ = 11.2 (6)°. The C2—C3 bond distance of 1.489 (5) Å is comparable with the reported value of 1.492 Å in a related structure (Cowe et al., 1982), in which ring A also has the 1α-sofa conformation.

Rings B and C adopt normal chair conformations. The C4—C5 distance of 1.335 (4) Å confirms the localization of a double bond at this position. In a few typical related steroid structures (Cowe et al., 1982; Bhadbhade & Venkatesan 1984; Galdecki et al., 1990), the C4—C5 bond distance is in the range 1.309 (8)–1.363 (3) Å.

The conformation of ring D can be expressed by two parameters, a pseudorotation angle, Δ, and a maximum torsion angle, ϕm (Altona et al., 1968). For a perfect envelope (Cs symmetry), Δ is 36°, whereas it is 0° for a half chair. In (I), ring D exhibits a slightly distorted 13β,14α half-chair conformation (Δ = 11.4° and ϕm = 38.1°).

The C17—C16—C20—C21 torsion angle of -177.5 (3)° indicates that the 4-cyanobenzylidene ring has an E configuration with respect to the carbonyl group at position 17. Atom H20 is Z with respect to this carbonyl group. The exocyclic C15—C16—C20 angle [132.5 (2)°] is found to be significantly higher than the normal value and this may be due to the steric repulsion between atoms H15B and H22 [2.0531 (2) Å].

The pseudo torsion angle of C19—C10···C13—C18 is observed to be 7.4 (2)°. The C27—N28 bond length [1.134 (4) Å] and the C24—C27—N28 angle [177.1 (3)°] confirm the C—N triple bond. Atoms O29 and O30 are both equatorially substituted at C17 and C3, respectively. The dihedral angle between the cyanobenzylidene ring and the androstenedione moiety is 11.86 (8)°. The geometry of the rings is trans at the B/C and C/D ring junctions. The molecules are found to pack in antiparallel arrangements.

Experimental top

The title compound was prepared by dissolving 16-(4-cyanobenzylidene)-17-oxo-5-androsten-3β-ol (1 g, 2.49 mmol) in dry toluene (150 ml) by refluxing and then adding cyclohexanone (10 ml). Traces of moisture were removed by azeotropic distillation. The distillation was continued at a slow rate during dropwise addition of a solution of aluminium isopropoxide (1 g) in dry toluene. The reaction mixture was refluxed for 4 h and left overnight. The next day, the solvent was removed by steam distillation. The solid thus obtained was filtered, dried and crystallized from methanol to afford crystals of (I) (yield 0.6 g, 60.3%; m.p 528–531 K).

Refinement top

All H atoms were treated as riding, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for all others. Are these the correct restraints?

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: DIRDIF98 (Beurskens et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
4-(3,17-Dioxoandrost-4-en-16-ylidenemethyl)benzonitrile top
Crystal data top
C27H29NO2Dx = 1.216 Mg m3
Mr = 399.51Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P22121Cell parameters from 25 reflections
a = 7.7638 (10) Åθ = 20–30°
b = 8.4584 (10) ŵ = 0.59 mm1
c = 33.220 (5) ÅT = 293 K
V = 2181.5 (5) Å3Plate, colourless
Z = 40.30 × 0.25 × 0.10 mm
F(000) = 856
Data collection top
Enraf-Nonius CAD-4
diffractometer
1957 reflections with I > 2s(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 67.9°, θmin = 2.7°
ω/2θ scansh = 09
Absorption correction: ψ-scan
(North et al., 1968)
k = 105
Tmin = 0.842, Tmax = 0.943l = 039
2365 measured reflections2 standard reflections every 120 min
2363 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039Calculated w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2836P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.005
S = 1.11Δρmax = 0.14 e Å3
2363 reflectionsΔρmin = 0.12 e Å3
272 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0029 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.9 (5)
Crystal data top
C27H29NO2V = 2181.5 (5) Å3
Mr = 399.51Z = 4
Orthorhombic, P22121Cu Kα radiation
a = 7.7638 (10) ŵ = 0.59 mm1
b = 8.4584 (10) ÅT = 293 K
c = 33.220 (5) Å0.30 × 0.25 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1957 reflections with I > 2s(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.842, Tmax = 0.9432 standard reflections every 120 min
2365 measured reflections intensity decay: none
2363 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.14 e Å3
S = 1.11Δρmin = 0.12 e Å3
2363 reflectionsAbsolute structure: Flack (1983)
272 parametersAbsolute structure parameter: 0.9 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3161 (4)1.0084 (4)0.24648 (8)0.0751 (9)
H1A0.43991.02330.24560.090*
H1B0.29420.89550.24750.090*
C20.2469 (5)1.0835 (5)0.28461 (9)0.0905 (11)
H2A0.28361.19310.28570.109*
H2B0.29511.02950.30780.109*
C30.0555 (5)1.0768 (4)0.28677 (9)0.0747 (9)
C40.0336 (4)1.0807 (4)0.24841 (9)0.0655 (8)
H40.15331.08030.24880.079*
C50.0439 (4)1.0847 (3)0.21254 (8)0.0547 (7)
C60.0593 (4)1.1122 (4)0.17502 (7)0.0616 (7)
H6A0.18101.10370.18130.074*
H6B0.03781.21840.16520.074*
C70.0142 (3)0.9940 (4)0.14231 (7)0.0578 (7)
H7A0.07711.02010.11800.069*
H7B0.04940.88910.15080.069*
C80.1770 (3)0.9931 (3)0.13326 (7)0.0474 (6)
H80.20981.09760.12310.057*
C90.2804 (3)0.9595 (3)0.17214 (7)0.0484 (6)
H90.24480.85410.18110.058*
C100.2381 (4)1.0745 (3)0.20766 (7)0.0529 (6)
C110.4756 (3)0.9482 (4)0.16359 (8)0.0629 (8)
H11A0.53390.91480.18800.075*
H11B0.51831.05250.15670.075*
C120.5211 (4)0.8337 (4)0.12970 (8)0.0639 (8)
H12A0.49400.72640.13790.077*
H12B0.64360.83930.12410.077*
C130.4206 (3)0.8750 (3)0.09201 (8)0.0512 (6)
C140.2281 (3)0.8698 (3)0.10241 (7)0.0459 (6)
H140.20890.76730.11540.055*
C150.1350 (4)0.8609 (4)0.06158 (7)0.0559 (7)
H15A0.11660.96550.05040.067*
H15B0.02490.80760.06410.067*
C160.2580 (3)0.7666 (3)0.03594 (7)0.0509 (6)
C170.4295 (4)0.7627 (3)0.05658 (8)0.0554 (7)
C180.4790 (4)1.0340 (4)0.07394 (10)0.0715 (9)
H18A0.47691.11400.09440.107*
H18B0.59401.02360.06360.107*
H18C0.40261.06340.05250.107*
C190.3070 (4)1.2417 (3)0.19975 (9)0.0699 (9)
H19A0.25711.28230.17540.105*
H19B0.27711.30930.22190.105*
H19C0.43001.23800.19700.105*
C200.2409 (3)0.6956 (3)0.00009 (8)0.0516 (6)
H200.34190.65170.00990.062*
C210.0912 (4)0.6756 (3)0.02589 (7)0.0512 (6)
C220.0775 (4)0.7068 (4)0.01401 (7)0.0601 (7)
H220.09780.74820.01150.072*
C230.2143 (4)0.6777 (4)0.03905 (7)0.0643 (8)
H230.32610.69750.03030.077*
C240.1854 (4)0.6187 (3)0.07737 (7)0.0571 (7)
C250.0199 (4)0.5861 (4)0.08986 (7)0.0615 (8)
H250.00050.54540.11550.074*
C260.1163 (4)0.6138 (3)0.06447 (7)0.0578 (7)
H260.22750.59100.07310.069*
C270.3309 (5)0.5952 (4)0.10370 (9)0.0690 (9)
N280.4465 (5)0.5835 (4)0.12435 (9)0.0941 (10)
O290.5539 (3)0.6869 (3)0.04586 (6)0.0787 (7)
O300.0211 (4)1.0746 (3)0.31863 (6)0.1015 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (2)0.095 (2)0.0520 (15)0.001 (2)0.0221 (15)0.0012 (17)
C20.111 (3)0.111 (3)0.0495 (16)0.007 (3)0.0205 (19)0.0058 (19)
C30.110 (3)0.0641 (19)0.0499 (16)0.010 (2)0.0021 (18)0.0044 (14)
C40.071 (2)0.0675 (19)0.0583 (15)0.0093 (16)0.0043 (15)0.0007 (14)
C50.0620 (17)0.0522 (15)0.0498 (14)0.0090 (14)0.0042 (13)0.0004 (12)
C60.0508 (15)0.082 (2)0.0518 (14)0.0060 (16)0.0053 (13)0.0054 (14)
C70.0470 (14)0.0753 (19)0.0513 (14)0.0012 (15)0.0115 (12)0.0061 (14)
C80.0423 (13)0.0533 (14)0.0467 (12)0.0005 (13)0.0085 (11)0.0001 (11)
C90.0507 (14)0.0470 (14)0.0473 (13)0.0018 (12)0.0135 (12)0.0017 (11)
C100.0560 (16)0.0562 (15)0.0465 (13)0.0047 (14)0.0087 (12)0.0004 (12)
C110.0503 (16)0.074 (2)0.0646 (16)0.0051 (15)0.0183 (13)0.0079 (15)
C120.0472 (16)0.0733 (19)0.0712 (17)0.0083 (15)0.0157 (14)0.0062 (15)
C130.0442 (14)0.0533 (14)0.0562 (14)0.0002 (13)0.0053 (12)0.0001 (12)
C140.0448 (13)0.0468 (13)0.0461 (12)0.0023 (12)0.0087 (11)0.0000 (11)
C150.0530 (16)0.0684 (17)0.0463 (13)0.0023 (15)0.0095 (12)0.0051 (13)
C160.0543 (16)0.0524 (15)0.0461 (13)0.0031 (13)0.0003 (12)0.0020 (11)
C170.0525 (16)0.0565 (16)0.0570 (15)0.0021 (15)0.0019 (13)0.0025 (13)
C180.0688 (19)0.0639 (19)0.082 (2)0.0130 (17)0.0058 (17)0.0011 (15)
C190.076 (2)0.0598 (18)0.0742 (18)0.0167 (16)0.0048 (17)0.0158 (15)
C200.0556 (14)0.0492 (13)0.0499 (12)0.0012 (14)0.0059 (14)0.0029 (12)
C210.0659 (17)0.0437 (14)0.0441 (12)0.0027 (13)0.0009 (13)0.0008 (11)
C220.0632 (17)0.0735 (18)0.0437 (13)0.0024 (16)0.0002 (12)0.0125 (13)
C230.0655 (18)0.079 (2)0.0486 (14)0.0064 (17)0.0046 (14)0.0097 (14)
C240.0779 (19)0.0485 (14)0.0449 (13)0.0030 (15)0.0122 (13)0.0011 (12)
C250.088 (2)0.0573 (17)0.0392 (13)0.0064 (17)0.0016 (14)0.0043 (12)
C260.0699 (19)0.0580 (16)0.0456 (14)0.0055 (16)0.0048 (14)0.0001 (13)
C270.093 (2)0.0580 (17)0.0560 (16)0.0136 (18)0.0224 (17)0.0078 (14)
N280.115 (3)0.083 (2)0.0838 (18)0.021 (2)0.044 (2)0.0177 (17)
O290.0659 (13)0.0997 (17)0.0704 (12)0.0246 (14)0.0003 (11)0.0129 (12)
O300.142 (2)0.113 (2)0.0501 (11)0.0005 (19)0.0162 (14)0.0076 (12)
Geometric parameters (Å, º) top
C1—C21.516 (4)C13—C171.515 (4)
C1—C101.531 (4)C13—C141.535 (4)
C1—H1A0.9700C13—C181.541 (4)
C1—H1B0.9700C14—C151.539 (3)
C2—C31.489 (5)C14—H140.9800
C2—H2A0.9700C15—C161.508 (4)
C2—H2B0.9700C15—H15A0.9700
C3—O301.214 (4)C15—H15B0.9700
C3—C41.450 (4)C16—C201.340 (4)
C4—C51.335 (4)C16—C171.498 (4)
C4—H40.9300C17—O291.212 (3)
C5—C61.500 (4)C18—H18A0.9600
C5—C101.519 (4)C18—H18B0.9600
C6—C71.518 (4)C18—H18C0.9600
C6—H6A0.9700C19—H19A0.9600
C6—H6B0.9700C19—H19B0.9600
C7—C81.514 (4)C19—H19C0.9600
C7—H7A0.9700C20—C211.457 (4)
C7—H7B0.9700C20—H200.9300
C8—C141.515 (3)C21—C221.393 (4)
C8—C91.547 (3)C21—C261.397 (3)
C8—H80.9800C22—C231.372 (4)
C9—C111.545 (4)C22—H220.9300
C9—C101.564 (3)C23—C241.386 (4)
C9—H90.9800C23—H230.9300
C10—C191.534 (4)C24—C251.378 (4)
C11—C121.527 (4)C24—C271.442 (4)
C11—H11A0.9700C25—C261.373 (4)
C11—H11B0.9700C25—H250.9300
C12—C131.516 (4)C26—H260.9300
C12—H12A0.9700C27—N281.134 (4)
C12—H12B0.9700
C2—C1—C10114.2 (3)C11—C12—H12B109.6
C2—C1—H1A108.7H12A—C12—H12B108.2
C10—C1—H1A108.7C17—C13—C12118.2 (2)
C2—C1—H1B108.7C17—C13—C14101.6 (2)
C10—C1—H1B108.7C12—C13—C14108.0 (2)
H1A—C1—H1B107.6C17—C13—C18103.4 (2)
C3—C2—C1112.2 (3)C12—C13—C18111.8 (2)
C3—C2—H2A109.2C14—C13—C18113.6 (2)
C1—C2—H2A109.2C8—C14—C13112.8 (2)
C3—C2—H2B109.2C8—C14—C15120.5 (2)
C1—C2—H2B109.2C13—C14—C15105.1 (2)
H2A—C2—H2B107.9C8—C14—H14105.8
O30—C3—C4122.2 (3)C13—C14—H14105.8
O30—C3—C2122.1 (3)C15—C14—H14105.8
C4—C3—C2115.6 (3)C16—C15—C14103.1 (2)
C5—C4—C3124.8 (3)C16—C15—H15A111.1
C5—C4—H4117.6C14—C15—H15A111.1
C3—C4—H4117.6C16—C15—H15B111.1
C4—C5—C6120.4 (3)C14—C15—H15B111.1
C4—C5—C10122.7 (3)H15A—C15—H15B109.1
C6—C5—C10116.8 (2)C20—C16—C17119.0 (2)
C5—C6—C7111.7 (2)C20—C16—C15132.5 (2)
C5—C6—H6A109.3C17—C16—C15108.4 (2)
C7—C6—H6A109.3O29—C17—C16125.8 (2)
C5—C6—H6B109.3O29—C17—C13126.6 (3)
C7—C6—H6B109.3C16—C17—C13107.5 (2)
H6A—C6—H6B107.9C13—C18—H18A109.5
C8—C7—C6111.8 (2)C13—C18—H18B109.5
C8—C7—H7A109.3H18A—C18—H18B109.5
C6—C7—H7A109.3C13—C18—H18C109.5
C8—C7—H7B109.3H18A—C18—H18C109.5
C6—C7—H7B109.3H18B—C18—H18C109.5
H7A—C7—H7B107.9C10—C19—H19A109.5
C7—C8—C14113.2 (2)C10—C19—H19B109.5
C7—C8—C9110.1 (2)H19A—C19—H19B109.5
C14—C8—C9107.6 (2)C10—C19—H19C109.5
C7—C8—H8108.6H19A—C19—H19C109.5
C14—C8—H8108.6H19B—C19—H19C109.5
C9—C8—H8108.6C16—C20—C21131.1 (2)
C11—C9—C8111.5 (2)C16—C20—H20114.4
C11—C9—C10112.5 (2)C21—C20—H20114.4
C8—C9—C10114.0 (2)C22—C21—C26117.5 (2)
C11—C9—H9106.0C22—C21—C20124.0 (2)
C8—C9—H9106.0C26—C21—C20118.4 (3)
C10—C9—H9106.0C23—C22—C21121.5 (2)
C5—C10—C1108.9 (2)C23—C22—H22119.3
C5—C10—C19108.2 (2)C21—C22—H22119.3
C1—C10—C19110.1 (2)C22—C23—C24119.8 (3)
C5—C10—C9108.9 (2)C22—C23—H23120.1
C1—C10—C9109.0 (2)C24—C23—H23120.1
C19—C10—C9111.8 (2)C25—C24—C23120.0 (3)
C12—C11—C9113.7 (2)C25—C24—C27121.3 (2)
C12—C11—H11A108.8C23—C24—C27118.7 (3)
C9—C11—H11A108.8C26—C25—C24119.9 (2)
C12—C11—H11B108.8C26—C25—H25120.0
C9—C11—H11B108.8C24—C25—H25120.0
H11A—C11—H11B107.7C25—C26—C21121.3 (3)
C13—C12—C11110.1 (2)C25—C26—H26119.3
C13—C12—H12A109.6C21—C26—H26119.3
C11—C12—H12A109.6N28—C27—C24177.1 (3)
C13—C12—H12B109.6
C10—C1—C2—C354.1 (4)C17—C13—C14—C8170.9 (2)
C1—C2—C3—O30152.4 (3)C12—C13—C14—C864.0 (3)
C1—C2—C3—C430.5 (5)C18—C13—C14—C860.6 (3)
O30—C3—C4—C5179.3 (3)C17—C13—C14—C1537.8 (3)
C2—C3—C4—C52.2 (5)C12—C13—C14—C15162.9 (2)
C3—C4—C5—C6171.1 (3)C18—C13—C14—C1572.5 (3)
C3—C4—C5—C104.3 (5)C8—C14—C15—C16161.7 (2)
C4—C5—C6—C7132.3 (3)C13—C14—C15—C1633.1 (3)
C10—C5—C6—C752.1 (4)C14—C15—C16—C20166.8 (3)
C5—C6—C7—C854.9 (3)C14—C15—C16—C1715.3 (3)
C6—C7—C8—C14176.7 (2)C20—C16—C17—O297.9 (4)
C6—C7—C8—C956.2 (3)C15—C16—C17—O29173.9 (3)
C7—C8—C9—C11176.7 (2)C20—C16—C17—C13169.9 (2)
C14—C8—C9—C1152.9 (3)C15—C16—C17—C138.3 (3)
C7—C8—C9—C1054.5 (3)C12—C13—C17—O2936.0 (4)
C14—C8—C9—C10178.3 (2)C14—C13—C17—O29154.0 (3)
C4—C5—C10—C117.7 (4)C18—C13—C17—O2988.1 (4)
C6—C5—C10—C1166.8 (2)C12—C13—C17—C16146.2 (2)
C4—C5—C10—C19101.9 (3)C14—C13—C17—C1628.2 (3)
C6—C5—C10—C1973.6 (3)C18—C13—C17—C1689.7 (3)
C4—C5—C10—C9136.4 (3)C17—C16—C20—C21177.5 (3)
C6—C5—C10—C948.0 (3)C15—C16—C20—C214.8 (5)
C2—C1—C10—C546.1 (4)C16—C20—C21—C2211.7 (5)
C2—C1—C10—C1972.3 (4)C16—C20—C21—C26171.7 (3)
C2—C1—C10—C9164.8 (3)C26—C21—C22—C230.2 (4)
C11—C9—C10—C5177.2 (2)C20—C21—C22—C23176.4 (3)
C8—C9—C10—C548.9 (3)C21—C22—C23—C241.2 (5)
C11—C9—C10—C164.2 (3)C22—C23—C24—C251.5 (5)
C8—C9—C10—C1167.6 (2)C22—C23—C24—C27177.5 (3)
C11—C9—C10—C1957.7 (3)C23—C24—C25—C260.7 (4)
C8—C9—C10—C1970.6 (3)C27—C24—C25—C26178.2 (3)
C8—C9—C11—C1251.8 (3)C24—C25—C26—C210.3 (4)
C10—C9—C11—C12178.6 (2)C22—C21—C26—C250.5 (4)
C9—C11—C12—C1354.0 (3)C20—C21—C26—C25177.4 (3)
C11—C12—C13—C17172.1 (2)C25—C24—C27—N28116 (7)
C11—C12—C13—C1457.6 (3)C23—C24—C27—N2863 (7)
C11—C12—C13—C1868.1 (3)C17—C16—C20—H202.5
C7—C8—C14—C13177.4 (2)C15—C16—C20—H20175.2
C9—C8—C14—C1360.8 (3)H8—C8—C9—H9179.5
C7—C8—C14—C1552.2 (3)H14—C14—C13—C18175.8
C9—C8—C14—C15174.1 (2)C19—C10—C13—C187.4 (2)

Experimental details

Crystal data
Chemical formulaC27H29NO2
Mr399.51
Crystal system, space groupOrthorhombic, P22121
Temperature (K)293
a, b, c (Å)7.7638 (10), 8.4584 (10), 33.220 (5)
V3)2181.5 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.842, 0.943
No. of measured, independent and
observed [I > 2s(I)] reflections
2365, 2363, 1957
Rint0.014
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.11
No. of reflections2363
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12
Absolute structureFlack (1983)
Absolute structure parameter0.9 (5)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, MolEN (Fair, 1990), DIRDIF98 (Beurskens et al., 1998), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
C1—C21.516 (4)C17—O291.212 (3)
C3—O301.214 (4)
C2—C1—C10114.2 (3)O30—C3—C4122.2 (3)
C10—C1—C2—C354.1 (4)C3—C4—C5—C104.3 (5)
C1—C2—C3—C430.5 (5)C4—C5—C10—C117.7 (4)
C2—C3—C4—C52.2 (5)C2—C1—C10—C546.1 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds