Download citation
Download citation
link to html
Crystalline 4-nitro-1-phenyl­imidazole, C9H7N3O2, (I), and 4′-­nitro-1-phenyl-4,1′-bii­imidazole, C12H9N5O2, (II), contain C—H...O and C—H...N hydrogen bonds, connecting the mol­ecules into infinite chains. The aromatic fragments in both compounds are nearly planar. The dihedral angles between the benzene and imidazole rings are 26.78 (5)° in (I) and 29.36 (8)° in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014852/de1151sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014852/de1151Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014852/de1151IIsup3.hkl
Contains datablock II

CCDC references: 158273; 158274

Comment top

The imidazole ring is present in a number of biologically active compounds as well as in many natural products (Josephy & Mason, 1985). 1-Substituted 4-nitroimidazoles are generated in excellent yields from the reaction of 1,4-dinitroimidazoles with primary amines (Suwiński & Salwińska, 1990; Suwiński & Wagner, 1997). Here, we present the crystal structures of two compounds of this kind, (I) and (II). \sch

In (I), both benzene and imidazole rings are almost perfectly planar [maximum deviations from the least-squares planes are 0.0070 (9) and 0.0048 (7) Å for benzene and imidazole rings, respectively] and the dihedral angle between these planes is 26.78 (5)°. The nitro group is twisted slightly but significantly [by 6.91 (14)°] with respect to the plane of the five-membered ring. The C2—N3 bond length is shorter than N3—C4 [1.311 (2) and 1.363 (2) Å, respectively]. In (II), all rings are also planar, with maximum deviations from the least-squares planes of 0.0039 (13), 0.0046 (12) and 0.0049 (17) Å for nitroimidazole, imidazole and benzene rings, respectively.

The dihedral angle between benzene and imidazole rings is 29.36 (8)° [similar value was found for (I)] while the angle between two imidazole rings is significantly smaller, 11.28 (13)°. The reason for this can be of a geometrical nature: five-membered rings afford more space around the junction bond than the six-membered one. The twist angle of nitro group is smaller than in (I) [3.3 (3)°].

In compound (I), there is a statistically significant deformation of the endocyclic bond angles pattern in the benzene ring due to the influence of electron-accepting nitroimidazole substituent. These deformations are generally consistent with those described by Domenicano (1988) and are comparable with those found for the cyano group. In (II), these effects are negligible because of weaker electron-accepting properties of imidazole as compared with the nitroimidazole.

In both compounds, there are weak though important hydrogen bonds C—H···O and C—H···N (see Table 3). In (I), two such bonds connect the molecules into infinite chains (Fig. 1). Isolated chains have also been found in the crystal structure of (II); in this case, however, chains are comprised of hydrogen-bonded centrosymmetric dimers. The linearity of these contacts as well as their determinative role in the crystal packing justify the using of the term "hydrogen bonds" in these cases (Desiraju & Steiner, 1999). We have not detected any interplanar interactions, the distance between chains being close to the sums of van der Waals radii. In the nitro group of (I), the N1—O2 bond is significantly shorter than N1—O1. These could be related to the fact that the O2 atom acts as an acceptor in a hydrogen bond, however, no such shortening can be found in 2 and therefore it probably should be labelled as an artefact.

Experimental top

The synthesis of the compounds (I) and (II) was described elsewhere (Suwiński & Salwińska, 1990; Suwiński & Wagner, 1997). Crystals appropriate for data collection were obtained by slow evaporation from methanol solution.

Computing details top

For both compounds, data collection: CrysAlis CCD (KUMA Diffraction, 1999). Cell refinement: CrysAlis RED (KUMA Diffraction, 1999) for (I); CrysAlis CCD for (II). Data reduction: CrysAlis RED for (I); CrysAlis CCD for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Stereochemical Workstation (Siemens, 1989) for (I); Stereochemical workstation (Siemens 1989) for (II). Software used to prepare material for publication: Stereochemical Workstation for (I); Stereochemical workstation for (II).

Figures top
[Figure 1] Fig. 1. View of hydrogen-bonded motive of compound (I) (Siemens, 1989) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry codes: (i) x - 1/2, 1/2 - y, 1 - z; (ii) 1/2 + x, 1/2 - y, 1 - z; (iii) 1 + x, y, z.
[Figure 2] Fig. 2. View of hydrogen-bonded motive of compound (II) (Siemens, 1989) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry codes: (i) - x, - y, 1 - z; (ii) -x, y - 1/2, 1/2 - z; (iii) x, -1/2 + y, 1/2 + z.
(I) 1-phenyl-4-nitroimidazole top
Crystal data top
C9H7N3O2F(000) = 784
Mr = 189.18Dx = 1.498 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1027 reflections
a = 11.088 (2) Åθ = 1–50°
b = 6.884 (1) ŵ = 0.11 mm1
c = 21.976 (4) ÅT = 293 K
V = 1677.4 (5) Å3Prismatic, colourless
Z = 80.5 × 0.2 × 0.2 mm
Data collection top
KUMA KM4-CCD
diffractometer
1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.1°, θmin = 3.6°
ω/2θ scansh = 1414
8680 measured reflectionsk = 58
1846 independent reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.0033P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1846 reflectionsΔρmax = 0.22 e Å3
156 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (13)
Crystal data top
C9H7N3O2V = 1677.4 (5) Å3
Mr = 189.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.088 (2) ŵ = 0.11 mm1
b = 6.884 (1) ÅT = 293 K
c = 21.976 (4) Å0.5 × 0.2 × 0.2 mm
Data collection top
KUMA KM4-CCD
diffractometer
1424 reflections with I > 2σ(I)
8680 measured reflectionsRint = 0.046
1846 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
1846 reflectionsΔρmin = 0.23 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.84427 (9)0.09313 (16)0.58588 (5)0.0230 (3)
O20.95214 (8)0.09132 (15)0.59995 (4)0.0318 (3)
N30.69680 (9)0.18320 (16)0.50867 (5)0.0227 (3)
O10.76318 (9)0.03601 (16)0.61899 (4)0.0352 (3)
N10.82342 (9)0.26126 (14)0.43359 (4)0.0195 (3)
C50.89461 (11)0.21182 (18)0.48199 (5)0.0197 (3)
C60.86295 (11)0.32408 (18)0.37463 (5)0.0203 (3)
C110.97382 (12)0.4141 (2)0.36843 (6)0.0238 (3)
C80.82550 (13)0.3578 (2)0.26806 (6)0.0278 (3)
C20.70604 (11)0.24310 (19)0.45225 (6)0.0222 (3)
C90.93557 (13)0.4503 (2)0.26129 (6)0.0284 (3)
C40.81398 (11)0.16430 (18)0.52645 (5)0.0201 (3)
C70.78864 (13)0.2936 (2)0.32475 (6)0.0243 (3)
C101.00987 (13)0.4773 (2)0.31126 (6)0.0280 (3)
H1111.0254 (12)0.431 (2)0.4019 (6)0.027 (4)*
H210.6390 (13)0.270 (2)0.4265 (6)0.029 (4)*
H710.7102 (13)0.231 (2)0.3301 (6)0.023 (4)*
H810.7721 (14)0.340 (2)0.2324 (7)0.031 (4)*
H510.9803 (14)0.214 (2)0.4802 (6)0.028 (4)*
H1011.0879 (14)0.547 (2)0.3059 (6)0.037 (4)*
H910.9607 (13)0.498 (2)0.2223 (7)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0208 (6)0.0288 (6)0.0195 (6)0.0006 (4)0.0019 (4)0.0013 (4)
O20.0215 (5)0.0488 (7)0.0251 (5)0.0014 (4)0.0027 (4)0.0065 (4)
N30.0184 (6)0.0260 (6)0.0237 (6)0.0007 (4)0.0018 (4)0.0018 (4)
O10.0277 (5)0.0551 (7)0.0230 (5)0.0045 (5)0.0069 (4)0.0072 (5)
N10.0195 (5)0.0210 (6)0.0180 (5)0.0000 (4)0.0003 (4)0.0001 (4)
C50.0176 (7)0.0229 (7)0.0188 (6)0.0011 (5)0.0012 (4)0.0001 (5)
C60.0237 (7)0.0193 (6)0.0178 (6)0.0032 (5)0.0004 (5)0.0004 (5)
C110.0227 (7)0.0286 (7)0.0199 (7)0.0008 (5)0.0018 (5)0.0007 (5)
C80.0348 (8)0.0291 (7)0.0195 (6)0.0057 (6)0.0052 (5)0.0024 (5)
C20.0183 (6)0.0243 (7)0.0240 (6)0.0005 (5)0.0011 (5)0.0019 (5)
C90.0350 (8)0.0305 (8)0.0196 (7)0.0074 (6)0.0045 (5)0.0033 (6)
C40.0201 (6)0.0210 (6)0.0192 (6)0.0002 (5)0.0002 (5)0.0013 (5)
C70.0259 (7)0.0237 (7)0.0235 (7)0.0005 (5)0.0034 (5)0.0021 (5)
C100.0260 (7)0.0316 (8)0.0264 (7)0.0008 (6)0.0041 (5)0.0041 (6)
Geometric parameters (Å, º) top
N2—O11.2216 (13)C5—C41.3641 (17)
N2—O21.2355 (13)C6—C111.3833 (17)
N2—C41.4348 (16)C6—C71.3872 (17)
N3—C21.3106 (17)C11—C101.3883 (17)
N3—C41.3631 (16)C8—C71.3837 (19)
N1—C51.3677 (15)C8—C91.385 (2)
N1—C21.3703 (15)C9—C101.3855 (18)
N1—C61.4346 (15)
O1—N2—O2124.07 (11)C7—C6—N1119.11 (11)
O1—N2—C4118.67 (10)C6—C11—C10119.04 (12)
O2—N2—C4117.25 (10)C7—C8—C9120.27 (12)
C2—N3—C4103.10 (10)N3—C2—N1112.71 (11)
C5—N1—C2107.02 (10)C8—C9—C10120.04 (12)
C5—N1—C6126.95 (10)N3—C4—C5113.36 (11)
C2—N1—C6126.02 (10)N3—C4—N2121.11 (11)
C4—C5—N1103.80 (11)C5—C4—N2125.48 (11)
C11—C6—C7121.18 (11)C8—C7—C6119.18 (13)
C11—C6—N1119.70 (11)C9—C10—C11120.27 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O2i0.953 (14)2.353 (14)3.2466 (16)156.0 (11)
C5—H51···N3ii0.952 (15)2.514 (15)3.4338 (18)162.5 (12)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
(II) 1-(1-phenyl-4-imidazolyl)-4-nitroimidazole top
Crystal data top
C12H9N5O2Dx = 1.498 Mg m3
Mr = 255.24Melting point: 209-211 (methanol) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.143 (3) ÅCell parameters from 531 reflections
b = 3.888 (1) Åθ = 1–50°
c = 20.660 (4) ŵ = 0.11 mm1
β = 94.92 (3)°T = 293 K
V = 1131.9 (4) Å3Plate, colourless
Z = 40.4 × 0.2 × 0.02 mm
F(000) = 528
Data collection top
KUMA KM4 CCD
diffractometer
1046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 29.4°, θmin = 3.4°
ω/2θ scansh = 1915
6713 measured reflectionsk = 55
2882 independent reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.78(Δ/σ)max < 0.001
2882 reflectionsΔρmax = 0.16 e Å3
209 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (10)
Crystal data top
C12H9N5O2V = 1131.9 (4) Å3
Mr = 255.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.143 (3) ŵ = 0.11 mm1
b = 3.888 (1) ÅT = 293 K
c = 20.660 (4) Å0.4 × 0.2 × 0.02 mm
β = 94.92 (3)°
Data collection top
KUMA KM4 CCD
diffractometer
1046 reflections with I > 2σ(I)
6713 measured reflectionsRint = 0.056
2882 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 0.78Δρmax = 0.16 e Å3
2882 reflectionsΔρmin = 0.17 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N60.23611 (11)0.0437 (4)0.39758 (7)0.0412 (4)
N10.01115 (11)0.3600 (4)0.37315 (7)0.0398 (4)
C40.13052 (14)0.5578 (6)0.36235 (9)0.0443 (6)
N30.09174 (13)0.6482 (4)0.30671 (8)0.0490 (5)
C90.09675 (15)0.1879 (5)0.39356 (10)0.0398 (5)
C100.16838 (15)0.1183 (6)0.35678 (11)0.0437 (6)
N80.11439 (13)0.0749 (5)0.45543 (8)0.0536 (5)
N170.22617 (13)0.6559 (5)0.37163 (10)0.0589 (5)
C110.32471 (14)0.1763 (5)0.38106 (10)0.0425 (5)
C50.06947 (15)0.3834 (6)0.40436 (11)0.0449 (6)
O20.26021 (10)0.5573 (5)0.42069 (8)0.0794 (6)
C70.19943 (18)0.0634 (6)0.45584 (11)0.0556 (7)
C20.00587 (18)0.5220 (6)0.31513 (10)0.0468 (6)
O10.26964 (12)0.8270 (5)0.32952 (9)0.0891 (7)
C120.33392 (17)0.2862 (6)0.31788 (11)0.0492 (6)
C160.40009 (17)0.1998 (6)0.42756 (12)0.0553 (7)
C140.49497 (19)0.4421 (7)0.34865 (14)0.0615 (7)
C130.41958 (18)0.4194 (6)0.30233 (13)0.0574 (7)
C150.48545 (19)0.3308 (7)0.41093 (15)0.0658 (8)
H1610.3937 (15)0.111 (5)0.4708 (11)0.069 (7)*
H710.2321 (13)0.173 (5)0.4928 (9)0.047 (6)*
H1010.1734 (13)0.159 (5)0.3134 (10)0.056 (6)*
H510.0762 (13)0.283 (5)0.4459 (10)0.051 (6)*
H210.0414 (14)0.534 (5)0.2846 (9)0.055 (6)*
H1210.2758 (15)0.271 (5)0.2842 (10)0.063 (7)*
H1410.5522 (16)0.532 (6)0.3366 (10)0.070 (7)*
H1310.4236 (15)0.500 (6)0.2571 (11)0.083 (8)*
H1510.5351 (16)0.347 (5)0.4434 (11)0.070 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N60.0405 (11)0.0476 (11)0.0359 (10)0.0034 (9)0.0061 (8)0.0003 (9)
N10.0400 (11)0.0443 (11)0.0355 (10)0.0035 (9)0.0060 (8)0.0004 (9)
C40.0404 (13)0.0576 (15)0.0348 (12)0.0009 (11)0.0035 (10)0.0001 (11)
N30.0540 (12)0.0551 (12)0.0379 (10)0.0022 (10)0.0030 (9)0.0031 (9)
C90.0407 (13)0.0399 (14)0.0390 (13)0.0033 (11)0.0036 (10)0.0001 (10)
C100.0444 (14)0.0532 (15)0.0337 (13)0.0034 (12)0.0044 (11)0.0031 (12)
N80.0536 (13)0.0694 (14)0.0386 (11)0.0104 (10)0.0093 (9)0.0077 (10)
N170.0447 (12)0.0788 (15)0.0522 (12)0.0007 (11)0.0015 (11)0.0107 (12)
C110.0399 (13)0.0423 (13)0.0463 (13)0.0026 (11)0.0100 (11)0.0029 (11)
C50.0443 (14)0.0551 (15)0.0357 (13)0.0039 (12)0.0053 (11)0.0018 (12)
O20.0547 (11)0.1269 (16)0.0585 (11)0.0137 (10)0.0163 (9)0.0240 (11)
C70.0587 (16)0.0717 (18)0.0366 (14)0.0082 (14)0.0057 (12)0.0126 (13)
C20.0534 (16)0.0512 (15)0.0366 (13)0.0056 (12)0.0083 (12)0.0017 (12)
O10.0596 (11)0.1261 (17)0.0801 (13)0.0193 (11)0.0034 (10)0.0435 (12)
C120.0435 (14)0.0550 (16)0.0502 (15)0.0063 (12)0.0103 (12)0.0002 (12)
C160.0522 (16)0.0619 (17)0.0514 (15)0.0007 (13)0.0026 (13)0.0075 (13)
C140.0490 (17)0.0568 (17)0.081 (2)0.0042 (13)0.0218 (16)0.0024 (15)
C130.0559 (17)0.0585 (17)0.0599 (17)0.0054 (14)0.0158 (14)0.0045 (14)
C150.0483 (17)0.074 (2)0.0729 (19)0.0025 (15)0.0052 (15)0.0012 (16)
Geometric parameters (Å, º) top
N6—C71.353 (2)C9—N81.354 (2)
N6—C101.374 (2)N8—C71.317 (3)
N6—C111.423 (2)N17—O11.219 (2)
N1—C21.357 (2)N17—O21.220 (2)
N1—C51.360 (2)C11—C161.376 (3)
N1—C91.415 (2)C11—C121.390 (3)
C4—C51.353 (3)C12—C131.381 (3)
C4—N31.362 (2)C16—C151.381 (3)
C4—N171.434 (3)C14—C131.373 (3)
N3—C21.308 (3)C14—C151.375 (3)
C9—C101.345 (3)
C7—N6—C10105.75 (19)O1—N17—O2123.6 (2)
C7—N6—C11127.3 (2)O1—N17—C4118.3 (2)
C10—N6—C11126.94 (17)O2—N17—C4118.1 (2)
C2—N1—C5107.17 (18)C16—C11—C12120.4 (2)
C2—N1—C9124.39 (17)C16—C11—N6120.14 (19)
C5—N1—C9128.37 (17)C12—C11—N6119.5 (2)
C5—C4—N3112.94 (19)C4—C5—N1104.14 (19)
C5—C4—N17127.2 (2)N8—C7—N6113.0 (2)
N3—C4—N17119.8 (2)N3—C2—N1112.6 (2)
C2—N3—C4103.16 (18)C13—C12—C11119.2 (2)
C10—C9—N8112.41 (19)C11—C16—C15119.5 (2)
C10—C9—N1126.39 (18)C13—C14—C15120.0 (3)
N8—C9—N1121.20 (18)C14—C13—C12120.4 (2)
C9—C10—N6105.36 (18)C14—C15—C16120.5 (3)
C7—N8—C9103.46 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O2i0.959 (19)2.34 (2)3.249 (3)158.9 (15)
C5—H51···N8i0.955 (19)2.56 (2)3.505 (3)168.7 (15)
C2—H21···N3ii0.959 (19)2.56 (2)3.309 (3)135.2 (16)
C10—H101···N3ii0.919 (19)2.65 (2)3.460 (3)148.0 (16)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC9H7N3O2C12H9N5O2
Mr189.18255.24
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)11.088 (2), 6.884 (1), 21.976 (4)14.143 (3), 3.888 (1), 20.660 (4)
α, β, γ (°)90, 90, 9090, 94.92 (3), 90
V3)1677.4 (5)1131.9 (4)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.5 × 0.2 × 0.20.4 × 0.2 × 0.02
Data collection
DiffractometerKUMA KM4-CCD
diffractometer
KUMA KM4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8680, 1846, 1424 6713, 2882, 1046
Rint0.0460.056
(sin θ/λ)max1)0.6410.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.08 0.046, 0.105, 0.78
No. of reflections18462882
No. of parameters156209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.230.16, 0.17

Computer programs: CrysAlis CCD (KUMA Diffraction, 1999), CrysAlis RED (KUMA Diffraction, 1999), CrysAlis CCD, CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation (Siemens, 1989), Stereochemical workstation (Siemens 1989), Stereochemical Workstation, Stereochemical workstation.

Selected geometric parameters (Å, º) for (I) top
N2—O11.2216 (13)N1—C51.3677 (15)
N2—O21.2355 (13)N1—C21.3703 (15)
N3—C21.3106 (17)N1—C61.4346 (15)
N3—C41.3631 (16)C5—C41.3641 (17)
C11—C6—C7121.18 (11)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H21···O2i0.953 (14)2.353 (14)3.2466 (16)156.0 (11)
C5—H51···N3ii0.952 (15)2.514 (15)3.4338 (18)162.5 (12)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
N6—C71.353 (2)C4—C51.353 (3)
N6—C101.374 (2)C4—N31.362 (2)
N6—C111.423 (2)N3—C21.308 (3)
N1—C21.357 (2)C9—C101.345 (3)
N1—C51.360 (2)C9—N81.354 (2)
N1—C91.415 (2)N8—C71.317 (3)
C16—C11—C12120.4 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O2i0.959 (19)2.34 (2)3.249 (3)158.9 (15)
C5—H51···N8i0.955 (19)2.56 (2)3.505 (3)168.7 (15)
C2—H21···N3ii0.959 (19)2.56 (2)3.309 (3)135.2 (16)
C10—H101···N3ii0.919 (19)2.65 (2)3.460 (3)148.0 (16)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds