Download citation
Download citation
link to html
In the title compound, [Ni(C11H12N3O3)(CH3CO2)(H2O)2]·C2H5OH, the coordination geometry of the NiII atom is a distorted octahedron, with one carbonyl O and two imino N atoms of the hydrazone ligand, together with an acetate O atom, comprising the basal plane, and the two water O atoms occupying axial positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000329/de1121sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000329/de1121Isup2.hkl
Contains datablock I

CCDC reference: 144617

Comment top

Salicylhydroxamic acid and analogous derivatives, because of the nature of these polydentate ligands, may function as cation recognition agents to form metallacrown ether compounds (Gibney et al., 1994; Psomas et al., 1998), but salicylic hydrazide, with a similar structure, does not have this function. Compared with salicylic hydrazide, salicyloyl hydrazone Schiff bases have additional donor atoms, whose presence introduces a wider range of properties (Kwak et al., 1998) as new types of the inorganic host molecules. We report here the crystal structure of a new nickel(II) salicyloyl hydrazone complex, (I), derived from salicylic hydrazide.

The coordination geometry of NiII in (I) is a distorted octahedron. The two water molecules occupy the axial positions, while atom O5 of the carbonyl and the two atoms N1 and N2 of the imino in the hydrazone, together with atom O1 of the acetate, comprise the basal plane (mean deviation from the plane 0.0084 Å). The basal plane is stabilized by intramolecular O4—H4A···O2 hydrogen bonds, in which O4 is from the oxime and O2 from the acetate. Atom O6 of the hydrazone ligand and atom O3 of the ethanol molecule do not form coordination bonds but can both link two water molecules from two neighbouring molecules of the complex by strong intermolecular hydrogen bonds of the form O1Wi—H2i···O6, O2Wii—H3ii···O6, O1W—H1···O3 and O2Wiii—H4iii···O3; atom O6 has additional intramolecular hydrogen bonding with N3 (N3—H3A···O6) [symmetry codes: (i) -x - 2, -y, -z; (ii) -x - 3, -y, -z; (iii) x + 1, y, z]. Thus, two rows of complex molecules are connected by these hydrogen bonds to form polymeric chains, which are then connected by O3—H6A···O2iv hydrogen bonds to yield a two-dimensional layer structure (see Fig. 2) [symmetry code: (iv) -x - 1, 1 - y, 1 - z].

Experimental top

Compound (I) was synthesized by the reaction of a 1:1 mole ratio of diacetyl monoxime salicyloyl hydrazone and nickel(II) acetate tetrahydrate in ethanol at room temperature. Green single crystals of (I) suitable for X-ray diffraction were obtained by evaporating the solution in air for several weeks.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989)?; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL-Plus (Sheldrick, 1990b); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram for (I).
Acetatodiaqua[3-(salicyloylhydrazone)butan-2-one oximato]nickel(II) ethanol solvate top
Crystal data top
[Ni(C11H12N3O3)(C2H3O2)(H2O)2]·C2H5OHZ = 2
Mr = 434.09F(000) = 456
Triclinic, P1Dx = 1.449 Mg m3
a = 7.4120 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.505 (2) ÅCell parameters from 25 reflections
c = 13.255 (3) Åθ = 1.6–6.7°
α = 103.13 (3)°µ = 1.02 mm1
β = 103.97 (3)°T = 293 K
γ = 106.80 (3)°Prism, green
V = 995.0 (3) Å30.40 × 0.20 × 0.05 mm
Data collection top
FR590 CAD-4
diffractometer
2472 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
2θ/ω scansh = 08
Absorption correction: empirical (using intensity measurements) via ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.654, Tmax = 0.947l = 1515
3784 measured reflections3 standard reflections every 97 reflections
3486 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Calculated w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.63 e Å3
12 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ni(C11H12N3O3)(C2H3O2)(H2O)2]·C2H5OHγ = 106.80 (3)°
Mr = 434.09V = 995.0 (3) Å3
Triclinic, P1Z = 2
a = 7.4120 (15) ÅMo Kα radiation
b = 11.505 (2) ŵ = 1.02 mm1
c = 13.255 (3) ÅT = 293 K
α = 103.13 (3)°0.40 × 0.20 × 0.05 mm
β = 103.97 (3)°
Data collection top
FR590 CAD-4
diffractometer
2472 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.654, Tmax = 0.9473 standard reflections every 97 reflections
3784 measured reflections intensity decay: none
3486 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04712 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
3484 reflectionsΔρmin = 0.59 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 2 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.95134 (8)0.25295 (4)0.23640 (4)0.0304 (2)
N11.0929 (5)0.0716 (3)0.1346 (2)0.0305 (7)
N20.9171 (5)0.1378 (3)0.3365 (3)0.0363 (8)
N31.1903 (5)0.0604 (3)0.0295 (2)0.0335 (8)
H3A1.26060.01270.02000.040*
O1W0.6908 (4)0.2616 (3)0.2069 (3)0.0505 (8)
H1W0.57840.33750.24230.061*
H2W0.65410.19650.20280.061*
O2W1.2076 (4)0.2539 (2)0.2669 (2)0.0411 (7)
H3W1.31670.20300.23800.049*
H4W1.21340.33200.27820.049*
O10.8240 (4)0.4371 (2)0.3269 (2)0.0420 (7)
O20.7556 (5)0.4196 (3)0.4951 (2)0.0538 (9)
O30.3284 (5)0.4624 (3)0.2937 (2)0.0451 (7)
H6A0.29270.49980.35970.068*
O40.8149 (5)0.1788 (3)0.4474 (2)0.0517 (8)
H4A0.77360.25730.47100.078*
O51.0607 (4)0.2772 (2)0.0800 (2)0.0412 (7)
O61.4390 (4)0.0671 (3)0.1595 (2)0.0403 (7)
C11.1683 (6)0.1727 (4)0.0086 (3)0.0328 (9)
C21.2767 (6)0.1614 (4)0.1042 (3)0.0330 (9)
C31.2509 (7)0.2738 (4)0.1314 (3)0.0424 (10)
H31.14550.35360.08200.051*
C41.3482 (7)0.2730 (5)0.2330 (4)0.0511 (12)
H41.32020.34980.26260.061*
C51.4760 (7)0.1554 (5)0.3110 (4)0.0532 (12)
H5A1.54280.15300.38100.064*
C61.5048 (7)0.0441 (5)0.2865 (3)0.0472 (11)
H61.61270.04590.33630.057*
C71.4064 (6)0.0417 (4)0.1821 (3)0.0352 (9)
C81.1026 (6)0.0237 (4)0.1700 (3)0.0319 (9)
C90.9899 (6)0.0160 (4)0.2894 (3)0.0346 (9)
C101.2192 (7)0.1608 (4)0.1040 (4)0.0445 (11)
H10A1.28090.16710.02940.067*
H10B1.32030.19550.13390.067*
H10C1.13140.20800.10610.067*
C110.9705 (7)0.0796 (4)0.3464 (4)0.0497 (12)
H11A0.89310.03580.42240.075*
H11B0.90510.13050.31310.075*
H11C1.10070.13420.34040.075*
C120.3206 (14)0.4900 (7)0.1225 (6)0.113 (3)
H12A0.27270.55290.08890.169*
H12B0.46350.45200.09250.169*
H12C0.26480.42480.10850.169*
C130.2613 (10)0.5510 (5)0.2398 (5)0.071 (2)
H13A0.11700.59070.26960.085*
H13B0.31580.61800.25360.085*
C140.7693 (6)0.4834 (4)0.4296 (3)0.0394 (10)
C150.7206 (8)0.6247 (4)0.4781 (4)0.0568 (13)
H15A0.68100.64780.55660.085*
H15B0.83620.64500.45120.085*
H15C0.61350.67160.45740.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0328 (3)0.0234 (3)0.0277 (3)0.0071 (2)0.0055 (2)0.0037 (2)
N10.031 (2)0.029 (2)0.027 (2)0.0103 (14)0.0053 (14)0.0065 (14)
N20.041 (2)0.032 (2)0.027 (2)0.011 (2)0.0029 (15)0.0067 (14)
N30.042 (2)0.022 (2)0.027 (2)0.0082 (14)0.0047 (15)0.0012 (13)
O1W0.037 (2)0.028 (2)0.077 (2)0.0066 (13)0.019 (2)0.0067 (15)
O2W0.032 (2)0.0253 (14)0.057 (2)0.0068 (12)0.0133 (14)0.0037 (13)
O10.051 (2)0.0277 (15)0.032 (2)0.0025 (13)0.0098 (14)0.0004 (12)
O20.079 (2)0.033 (2)0.035 (2)0.014 (2)0.011 (2)0.0032 (14)
O30.056 (2)0.030 (2)0.042 (2)0.0098 (14)0.0151 (15)0.0047 (13)
O40.065 (2)0.040 (2)0.031 (2)0.012 (2)0.0056 (14)0.0074 (13)
O50.049 (2)0.0258 (15)0.034 (2)0.0062 (13)0.0041 (13)0.0035 (12)
O60.040 (2)0.0306 (15)0.036 (2)0.0066 (13)0.0036 (13)0.0031 (12)
C10.034 (2)0.031 (2)0.031 (2)0.009 (2)0.011 (2)0.008 (2)
C20.037 (2)0.033 (2)0.029 (2)0.013 (2)0.011 (2)0.008 (2)
C30.048 (3)0.039 (2)0.036 (2)0.013 (2)0.012 (2)0.010 (2)
C40.058 (3)0.054 (3)0.045 (3)0.020 (2)0.016 (2)0.025 (2)
C50.047 (3)0.072 (3)0.036 (2)0.018 (3)0.006 (2)0.022 (2)
C60.043 (3)0.056 (3)0.033 (2)0.012 (2)0.005 (2)0.012 (2)
C70.033 (2)0.037 (2)0.030 (2)0.013 (2)0.008 (2)0.004 (2)
C80.033 (2)0.025 (2)0.035 (2)0.010 (2)0.013 (2)0.006 (2)
C90.035 (2)0.037 (2)0.033 (2)0.013 (2)0.011 (2)0.012 (2)
C100.051 (3)0.028 (2)0.044 (2)0.006 (2)0.012 (2)0.006 (2)
C110.061 (3)0.039 (2)0.050 (3)0.017 (2)0.014 (2)0.021 (2)
C120.182 (7)0.086 (5)0.078 (4)0.044 (4)0.043 (4)0.044 (4)
C130.096 (4)0.045 (3)0.068 (4)0.016 (3)0.024 (3)0.025 (3)
C140.037 (2)0.028 (2)0.040 (2)0.002 (2)0.010 (2)0.001 (2)
C150.082 (4)0.032 (2)0.043 (3)0.012 (2)0.019 (3)0.001 (2)
Geometric parameters (Å, º) top
Ni1—O11.990 (3)O5—C11.241 (5)
Ni1—N12.012 (3)O6—C71.321 (5)
Ni1—O2W2.037 (3)C1—C21.473 (5)
Ni1—O1W2.040 (3)C2—C31.393 (6)
Ni1—N22.100 (3)C2—C71.413 (5)
Ni1—O52.148 (3)C3—C41.363 (6)
N1—C81.278 (5)C4—C51.396 (7)
N1—N31.363 (4)C5—C61.363 (7)
N2—C91.283 (5)C6—C71.410 (6)
N2—O41.378 (4)C8—C101.489 (5)
N3—C11.355 (5)C8—C91.491 (5)
O1—C141.258 (5)C9—C111.490 (6)
O2—C141.261 (5)C12—C131.448 (8)
O3—C131.417 (6)C14—C151.504 (6)
O1—Ni1—N1174.98 (12)O5—C1—N3121.6 (4)
O1—Ni1—O2W88.09 (12)O5—C1—C2123.0 (4)
N1—Ni1—O2W90.55 (12)N3—C1—C2115.4 (3)
O1—Ni1—O1W89.34 (12)C3—C2—C7120.6 (4)
N1—Ni1—O1W91.90 (13)C3—C2—C1117.6 (3)
O2W—Ni1—O1W177.10 (11)C7—C2—C1121.7 (4)
O1—Ni1—N2109.91 (12)C4—C3—C2121.8 (4)
N1—Ni1—N274.92 (13)C3—C4—C5118.2 (4)
O2W—Ni1—N289.82 (13)C6—C5—C4121.2 (4)
O1W—Ni1—N292.31 (14)C5—C6—C7122.0 (4)
O1—Ni1—O598.23 (11)O6—C7—C6121.0 (4)
N1—Ni1—O576.94 (12)O6—C7—C2122.8 (4)
O2W—Ni1—O590.42 (12)C6—C7—C2116.2 (4)
O1W—Ni1—O588.64 (13)N1—C8—C10125.6 (4)
N2—Ni1—O5151.86 (12)N1—C8—C9112.6 (3)
C8—N1—N3123.8 (3)C10—C8—C9121.7 (4)
C8—N1—Ni1121.3 (3)N2—C9—C11124.5 (4)
N3—N1—Ni1114.7 (2)N2—C9—C8113.7 (3)
C9—N2—O4115.7 (3)C11—C9—C8121.7 (4)
C9—N2—Ni1117.2 (3)O3—C13—C12111.9 (5)
O4—N2—Ni1127.0 (2)O1—C14—O2124.8 (4)
C1—N3—N1115.1 (3)O1—C14—C15117.7 (4)
C14—O1—Ni1127.4 (3)O2—C14—C15117.5 (4)
C1—O5—Ni1111.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
O4—H4A···O22.576 (5)163
O1Wi—H2i···O62.688 (5)164
O2Wii—H3ii···O62.658 (5)172
O1W—H1···O32.754 (4)166
O2Wiii—H4iii···O32.773 (5)158
O3—H6A···O2iv2.648 (4)173
N3—H3A···O6??
Symmetry codes: (i) x2, y, z; (ii) x3, y, z; (iii) x+1, y, z; (iv) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C11H12N3O3)(C2H3O2)(H2O)2]·C2H5OH
Mr434.09
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4120 (15), 11.505 (2), 13.255 (3)
α, β, γ (°)103.13 (3), 103.97 (3), 106.80 (3)
V3)995.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerFR590 CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ scan
(North et al., 1968)
Tmin, Tmax0.654, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
3784, 3486, 2472
Rint0.022
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.00
No. of reflections3484
No. of parameters244
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.59

Computer programs: CAD-4 Software (Enraf-Nonius, 1989)?, SHELXS86 (Sheldrick, 1990a), SHELXL93 (Sheldrick, 1993), SHELXTL-Plus (Sheldrick, 1990b), SHELXL93.

Selected geometric parameters (Å, º) top
Ni1—O11.990 (3)Ni1—O1W2.040 (3)
Ni1—N12.012 (3)Ni1—N22.100 (3)
Ni1—O2W2.037 (3)Ni1—O52.148 (3)
O2W—Ni1—O1W177.10 (11)O1—Ni1—O598.23 (11)
O1—Ni1—N2109.91 (12)N1—Ni1—O576.94 (12)
N1—Ni1—N274.92 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD···AD—H···A
O4—H4A···O22.576 (5)163
O1Wi—H2i···O62.688 (5)164
O2Wii—H3ii···O62.658 (5)172
O1W—H1···O32.754 (4)166
O2Wiii—H4iii···O32.773 (5)158
O3—H6A···O2iv2.648 (4)173
N3—H3A···O6??
Symmetry codes: (i) x2, y, z; (ii) x3, y, z; (iii) x+1, y, z; (iv) x1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds